Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Preclinical and clinical evaluation of epratuzumab (anti-CD22 IgG) in B-cell malignancies

Abstract

The vast majority of non-Hodgkin's lymphomas are of B-cell phenotype. Development of unlabeled or radiolabeled therapeutic monoclonal antibodies against the cell surface antigen, CD20, has revolutionized the treatment of these malignancies. It is clear that antibodies targeting other B-cell-specific molecules, such as CD22, also offer potential therapeutic benefit. Epratuzumab is a humanized anti-CD22 monoclonal, which has undergone preclinical and phase I/II clinical evaluation in patients with indolent or aggressive lymphoma. Data suggest that this agent is well tolerated, and can induce tumor regressions. Trials are currently evaluating its safety and activity in combination with rituximab (chimeric anti-CD20) and standard chemotherapy are ongoing. Initial results suggest that these regimens have acceptable toxicity, and that epratuzumab warrants further evaluation as an adjunct to standard lymphoma treatment regimens.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  • Ansell SM, Ristow KM, Habermann TM, Wiseman GA, Witzig TE . (2002). Subsequent chemotherapy regimens are well tolerated after radioimmunotherapy with yttrium-90 ibritumomab tiuxetan for non-Hodgkin's lymphoma. J Clin Oncol 20: 3885–3890.

    CAS  PubMed  Google Scholar 

  • Armitage J . (1993). Treatment of non-Hodgkin's lymphoma. N Engl J Med 328: 1023–1030.

    CAS  PubMed  Google Scholar 

  • Baum RP, Niesen A, Hertel A, Adams S, Koujouharoff G, Goldenberg DM et al. (2004). Initial clinical results with technetium-99m-labeled LL2 monoclonal antibody fragment in the radioimmunodetection of B-cell lymphomas. Cancer 73 (Suppl 3): 896–899.

    Google Scholar 

  • Becker WS, Behr TM, Cumme F, Rossler W, Wendler J, Kern PM et al. (1995). 67Ga citrate versus 99mTc-labeled LL2-Fab' (anti-CD22) fragments in the staging of B-cell non-Hodgkin's lymphoma. Cancer Res 55: 5771s–5773s.

    CAS  PubMed  Google Scholar 

  • Behr TM, Holler E, Gratz S . (2002). CD22 is a suitable target molecule for detection and high-dose, myoablative radioimmunotherapy with the monoclonal antibody LL2 in acute lymphatic leukaemia and Waldenström's macroglobulinemia. Tumor Targeting 3: 32–40.

    Google Scholar 

  • Behr TM, Wörmann B, Gramatzki M, Riggert J, Gratz S, Behe M et al. (1999). Low- versus high-dose radioimmunotherapy with humanized anti-CD22 or chimeric anti-CD20 antibodies in a broad spectrum of B-cell associated malignancies. Clin Cancer Res 5: 3304s–33314s.

    CAS  PubMed  Google Scholar 

  • Blend MJ, Hyun H, Kozloff M, Levi H, Mills GQ, Gaspirini M et al. (1995). Improved staging of B-cell non-Hodgkin's lymphoma patients with 99mTc-labeled LL2 monoclonal antibody fragment. Cancer Res 55: 5764s–5770s.

    CAS  PubMed  Google Scholar 

  • Buchsbaum DJ, Wahl RL, Normolle DP, Kaminski MS . (1992). Therapy with unlabeled and 131I-labeled pan-B-cell monoclonal antibodies in nude mice bearing Raji Burkitt's lymphoma xenografts. Cancer Res 52: 6476–6481.

    CAS  PubMed  Google Scholar 

  • Carnahan J, Stein R, Qu Z, Hess K, Cesano A, Hansen HJ et al. (2007). Epratuzumab, a CD22-targeting recombinant humanized antibody with a different mode of action from rituximab. Mol Immunol 44: 1331–1341.

    CAS  PubMed  Google Scholar 

  • Carnahan J, Wang P, Kendall R, Chen C, Hu S, Boone T et al. (2003). Epratuzumab, a humanized monoclonal antibody targeting CD22: characterization of in vitro properties. Clin Cancer Res 9: 3982s–3990s.

    CAS  PubMed  Google Scholar 

  • Cesano A, Gayko U, Brannan C . (2002). Differential expression of CD22 in indolent and aggressive non-Hodgkin's lymphoma (NHL): implications for targeted immunotherapy [abstract]. Blood 100: 350a.

    Google Scholar 

  • Chaouchi N, Vazquez A, Calanaud P, Laprince C . (1995). B cell antigen receptor-mediated apoptosis. Importance of accessory molecules CD19 and CD22, and of surface IgM cross-linking. J Immunol 154: 3096–3104.

    CAS  PubMed  Google Scholar 

  • Chatal J-F, Harousseau J-L, Griesinger F . (2005). Fractionated radioimmunotherapy in NHL with DOTA-conjugated, humanized anti-CD22 Epratuzumab at high cumulative 90Y doses [abstract 447]. Proc Soc Nucl Med, 52nd Annual Meeting, 155P.

  • Cheson BD . (2003). Radioimmunotherapy of non-Hodgkin lymphomas. Blood 101: 391–398.

    CAS  PubMed  Google Scholar 

  • Cheson BD . (2005). The role of radioimmunotherapy with yttrium-90 ibritumomab tiuxetan in the treatment of non-Hodgkin lymphoma. BioDrugs 19: 309–322.

    CAS  PubMed  Google Scholar 

  • Chow KU, Sommerlad WD, Boehrer S, Schneider B, Seipelt G, Rummel MJ et al. (2002). Anti-CD20 antibody (IDEC-C2B8, rituximab) enhances efficacy of cytotoxic drugs on neoplstic lymphocytes in vitro: role of cytokines, complement, and caspases. Haematologica 87: 33–43.

    CAS  PubMed  Google Scholar 

  • Coffey J, Hodgson DC, Gospodarowicz MK . (2003). Therapy of non-Hodgkin's lymphoma. Eur J Nucl Med Mol Imaging 30 (Suppl 1): S28–S36.

    CAS  PubMed  Google Scholar 

  • Coiffier B, Lepage E, Briere J, Herbrecht R, Tilly H, Bouabdallah R et al. (2002). CHOP chemotherapy plus rituximab compared with CHOP alone in elderly patients with diffuse large-B-cell lymphoma. N Engl J Med 346: 235–242.

    CAS  PubMed  Google Scholar 

  • Coiffier B . (2005). State-of-the-art therapeutics: diffuse large B-cell lymphoma. J Clin Oncol 23: 6387–6393.

    CAS  PubMed  Google Scholar 

  • Coiffier B, Haioun C, Ketterer N, Engert A, Tilly H, Ma D et al. (1998). Rituximab (anti-CD20 monoclonal antibody) for the treatment of patients with relapsing or refractory aggressive lymphoma: a multicenter phase II study. Blood 92: 1927–1932.

    CAS  PubMed  Google Scholar 

  • Czuczman MS, Weaver R, Alkuzweny B, Berlfein J, Grillo-Lopez AJ . (2004). Prolonged clinical and molecular remission in patients with low-grade or follicular non-Hodgkin's lymphoma treated with rituximab plus CHOP chemotherapy: 9-year follow-up. J Clin Oncol 22: 4711–4716.

    CAS  PubMed  Google Scholar 

  • Davis TA, Grillo-Lopez AJ, White CA, McLaughlin P, Czuczman MS, Link BK et al. (2000). Rituximab anti-CD20 monoclonal antibody therapy in non-Hodgkin's lymphoma: safety and efficacy of re-treatment. J Clin Oncol 18: 3135–3143.

    CAS  PubMed  Google Scholar 

  • Davis TA, Kaminski MS, Leonard JP, Hsu FJ, Wilkinson M, Zelenetz A et al. (2004). The radioisotope contributes significantly to the activity of radioimmunotherapy. Clin Cancer Res 10: 7792–7798.

    CAS  PubMed  Google Scholar 

  • Dörken B, Moldenhauer G, Pezzutto A, Schwartz R, Feller A, Kiesel S et al. (1986). HD39 (B3), a B lineage-restricted antigen whose cell surface expression is limited to resting and activated human B lymphocytes. J Immunol 136: 4470–4479.

    PubMed  Google Scholar 

  • Dörner T, Kaufmann J, Wegener WA, Teoh N, Goldenberg DM, Burmester GR . (2006). Intitial clinical trial of epratuzumab (humanized anti-CD22 antibody) for immunotherapy of systemic lupus erythematosus. Arthritis Res Ther 8, Apr: 21;8(3):R74 [Epub ahead of print].

  • Dosik AD, Coleman M, Kostakoglu L, Furman RR, Fiore JM, Muss D et al. (2006). Subsequent therapy can be administered after tositumomab and iodine I-131 tositumomab for non-Hodgkin lymphoma. Cancer 106: 616–622.

    CAS  PubMed  Google Scholar 

  • Emmanouilides C, Leonard JP, Schuster SJ . (2004). Initial results of a pilot study of epratuzumab and rituximab in combination with CHOP chemotherapy (ER-CHOP) in previously untreated patients with diffuse large B-cell lymphoma (BLBCL) [abstract]. Proc Am Soc Clin Oncol 23: 6580.

    Google Scholar 

  • Engel P, Nojima Y, Rothstein D, Zhou LJ, Wilson GL, Kehrl JH et al. (1993). The same epitope on CD22 of B lymphocytes mediates the adhesion of erythrocytes, T and B lymphocytes, neutrophils and monocytes. J Immunol 150: 4719–4732.

    CAS  PubMed  Google Scholar 

  • Engel P, Wagner N, Miller A, Tedder TF . (1995). Identification of the ligand binding domains of CD22, a member of the immunoglobulin superfamily that uniquely binds a sialic acid-dependent ligand. J Exp Med 181: 1581–1586.

    CAS  PubMed  Google Scholar 

  • Fisher RI, Miller TP, O'Connor OA . (2004). Diffuse aggressive lymphoma. Hematology (Am Soc Hematol Educ Program), 221–226.

    Google Scholar 

  • Friedberg JW, Fisher RI . (2004). Iodine-131 tositumomab (Bexxar): radioimmunoconjugate therapy for indolent and transformed B-cell non-Hodgkin's lymphoma. Expert Rev Anticancer Ther 4: 18–26.

    CAS  PubMed  Google Scholar 

  • Furman RR, Coleman M, Muss D, Leonard JP . (2006). Monoclonal antibodies in the treatment of non-Hodgkin's lymphoma. Cancer Treat Res 131: 141–159.

    Google Scholar 

  • Gallagher CJ, Gregory WM, Jones AE, Stansfeld AG, Richards MA, Dhaliwal HS et al. (1986). Follicular lymphoma: prognostic factors for response and survival. J Clin Oncol 4: 1470–1480.

    CAS  PubMed  Google Scholar 

  • Gasparini M, Bombardieri E, Tondini C, Maffioli L, Hughes L, Burraggi GL et al. (1995). Clinical utility of radioimmunoschintigraphy of non-Hodgkin's lymphoma with radiolabeled LL2 monoclonal antibody, Lymphoscanâ„¢; preliminary results. Tumori 81: 173–178.

    CAS  PubMed  Google Scholar 

  • Ghielmini M, Schmitz SF, Cogliatti SB, Pichert G, Hummerjohann J, Waltzer U et al. (2004). Prolonged treatment with rituximab in patients with follicular lymphoma significantly increases event-free survival and response duration compared with the standard weekly × 4 schedule. Blood 103: 4416–4423.

    CAS  PubMed  Google Scholar 

  • Golay J, Zaffaroni L, Vaccari T, Lazzari M, Borleri GM, Bernasconi S et al. (2000). Biologic response of B lymphoma cells to anti-CD20 monoclonal antibody rituximab in vitro: CD55 and CD59 regulate complement-mediated cell lysis. Blood 95: 3900–3908.

    CAS  PubMed  Google Scholar 

  • Goldenberg DM . (2001). The role of radiolabeled antibodies in the treatment of non-Hodgkin's lymphoma: the coming of age of radioimmunotherapy. Crit Rev Oncol Hematol 39: 195–201.

    CAS  PubMed  Google Scholar 

  • Goldenberg DM . (2003). Advancing role of radiolabeled antibodies in the therapy of cancer. Cancer Immunol Immunother 52: 281–296.

    CAS  PubMed  Google Scholar 

  • Goldenberg DM, Horowitz JA, Sharkey RM, Hall TC, Murthy S, Goldenberg H et al. (1991). Targeting, dosimetry, and radioimmunotherapy of B-cell lymphomas with iodine-131-labeled LL2 monoclonal antibody. J Clin Oncol 9: 548–564.

    CAS  PubMed  Google Scholar 

  • Gordon LI, Witzig T, Molina A, Czuczman M, Emmanouilides C, Joyce R et al. (2004). Yttrium 90-labeled ibritumomab tiuxetan radioimmunotherapy produces high response rates and durable remissions in patients with previously treated B-cell lymphoma. Clin Lymphoma 5: 98–101.

    CAS  PubMed  Google Scholar 

  • Greiner TC, Medeiros LJ, Jaffe ES . (1995). Non-Hodgkin's lymphoma. Cancer 75: 370–380.

    CAS  PubMed  Google Scholar 

  • Griffiths GL, Govindan SV, Sharkey RM, Fisher DR, Goldenberg DM . (2003). 90Y-DOTA-hLL2: an agent for radioimmunotherapy of non-Hodgkin's lymphoma. J Nucl Med 44: 77–84.

    CAS  PubMed  Google Scholar 

  • Grillo-Lopez AJ . (2000). Rituximab: an insider's historical perspective. Semin Oncol 27 (Suppl 12): 9–16.

    CAS  PubMed  Google Scholar 

  • Hainsworth JD . (2004). Prolonging remission with rituximab maintenance therapy. Semin Oncol 31: 17–21.

    CAS  PubMed  Google Scholar 

  • Harjunpaa A, Junnikkala S, Meri S . (2000). Rituximab (anti-CD20) therapy of B-cell lymphomas: direct complement killing is superior to cellular effector mechanisms. Scand J Immunol 51: 634–641.

    CAS  PubMed  Google Scholar 

  • Hiddemann W, Buske C, Dreyling M, Weigert O, Lenz G, Forstpointner R et al. (2005). Treatment strategies in follicular lymphomas: current status and future perspectives. J Clin Oncol 23: 6394–6399.

    CAS  PubMed  Google Scholar 

  • Jazirehi AR, Huerta-Yepez S, Cheng G, Bonavida B . (2005). Rituximab (chimeric anti-CD20 monoclonal antibody) inhibits the constitutive nuclear factor-êB signaling pathway in non-Hodgkin's lymphoma B-cell lines: role in sensitization to chemotherapeutic drug-induced apoptosis. Cancer Res 65: 264–276.

    CAS  PubMed  Google Scholar 

  • Jemal A, Siegel R, Ward E, Murray T, Xu J, Smigal C et al. (2006). Cancer statistics 2006. CA Cancer J Clin 56: 106–130.

    PubMed  Google Scholar 

  • Johnson P, Glennie M . (2003). The mechanisms of action of rituximab in the elimination of tumor cells. Semin Oncol 30 (Suppl 2): 3–8.

    CAS  PubMed  Google Scholar 

  • Juweid M, Sharkey RM, Markowitz A, Behr T, Swayne LC, Dunn R et al. (1995). Treatment of non-Hodgkin's lymphoma with radiolabeled murine, chimeric, or humanized LL2, an anti-CD22 monoclonal antibody. Cancer Res 55: 5899s–55907s.

    CAS  PubMed  Google Scholar 

  • Juweid ME, Stadtmauer E, Hajjar G, Sharkey RM, Suleiman S, Luger S et al. (1999). Pharmacokinetics, dosimetry, and initial therapeutic results with 131I- and 111In-/90Y-labeled humanized LL2 anti-CD22 monoclonal antibody in patients with relapsed, refractory non-Hodgkin's lymphoma. Clin Cancer Res 5: 3292s–33303s.

    CAS  PubMed  Google Scholar 

  • Kaminski MS, Fig LM, Zasadny KR, Koral KF, DelRosario RB, Francis IR et al. (1992). Imaging, dosimetry, and radioimmunotherapy with iodine 131-labeled anti-CD37 antibody in B-cell lymphoma. J Clin Oncol 10: 1696–1711.

    CAS  PubMed  Google Scholar 

  • Kaminski MS, Tuck M, Estes J, Kolstad A, Ross CW, Zasadny K et al. (2005). 131I-tositumomab therapy as initial treatment for follicular lymphoma. N Engl J Med 352: 441–449.

    CAS  PubMed  Google Scholar 

  • Kelm S, Pelz A, Schauer R, Filbin MT, Tang S, De Bellard ME et al. (1994). Sialoadhesis, myelin-associated glycoprotein and CD22 define a new family of sialic acid-dependent adhesion molecules of the immunoglobulin superfamily. Curr Biol 4: 965–972.

    CAS  PubMed  Google Scholar 

  • Kreitman RJ, Hansen HJ, Jones AL, FitzGerald DJ, Goldenberg DM, Pastan I . (1993). Pseudomonas exotoxin-based immunotoxins containing the antibody LL2 or LL2-Fab′ induce regression of subcutaneous human B-cell lymphoma in mice. Cancer Res 15: 819–825.

    Google Scholar 

  • Lamonica D, Czuczman M, Nabi H, Klippenstein D, Grossman Z . (2002). Radioimmunoscintigraphy (RIS) with bectumomab (Tc99m labeled IMMU-LL2, Lymphoscan) in the assessment of recurrent non-Hodgkin's lymphoma (NHL). Cancer Biother Radiopharm 17: 689–697.

    CAS  PubMed  Google Scholar 

  • Law CL, Torres RM, Sundberg HA, Parkhouse RM, Brannan CI, Copeland NG et al. (1993). Organization of the murine Cd22 locus. Mapping to chromosome 7 and characterization of two alleles. J Immunol 151: 17–87.

    Google Scholar 

  • Leonard JP . (2005). Targeting CD20 in follicular NHL: novel anti-CD20 therapies, antibody engineering, and the use of radioimmunoconjugates. Hematology (Am Soc Hematol Educ Program), 335–339.

    Google Scholar 

  • Leonard JP, Coleman M, Ketas J, Ashe M, Fiore JM, Furman RR et al. (2005a). Combination antibody therapy with epratuzumab and rituximab in relapsed or refractory non-Hodgkin's lymphoma. J Clin Oncol 23: 5044–5051.

    CAS  PubMed  Google Scholar 

  • Leonard JP, Coleman M, Ketas JC, Chadburn A, Ely S, Furman RR et al. (2003). Phase I/II trial of epratuzumab (humanized anti-CD22 antibody) in indolent non-Hodgkin's lymphoma. J Clin Oncol 21: 3051–3059.

    CAS  PubMed  Google Scholar 

  • Leonard JP, Coleman M, Ketas JC, Chadburn A, Furman R, Schuster MW et al. (2005b). Epratuzumab, a humanized anti-CD22 antibody, in aggressive non-Hodgkin's lymphoma: phase I/II clinical trial results. Clin Cancer Res 10: 5327–5334.

    Google Scholar 

  • Leung SO, Goldenberg DM, Dion AS, Pellegrini MC, Shevitz J, Shih LB et al. (1995). Construction and characterization of a humanized, internalizing, B-cell (CD22)-specific, leukemia/lymphoma antibody, LL2. Mol Immunol 32: 1413–1427.

    CAS  PubMed  Google Scholar 

  • Linden O, Hindorf C, Cavallin-Stahl E, Wegener WA, Goldenberg DM, Horne H et al. (2005). Dose-fractionated radioimmunotherapy in non-Hodgkin's lymphoma using DOTA-conjugated, 90Y-radiolabeled, humanized anti-CD22 monoclonal antibody, epratuzumab. Clin Cancer Res 11: 5215–5222.

    CAS  PubMed  Google Scholar 

  • Linden O, Tennvall J, Cavallin-Stahl E, Darte L, Garkavij M, Lindner KJ et al. (1999). Radioimmunotherapy using 131I-labeled anti-CD22 monoclonal antibody (LL2) in patients with previously treated B-cell lymphomas. Clin Cancer Res 5: 3287s–3291s.

    CAS  PubMed  Google Scholar 

  • Linden O, Tennvall J, Hindorf C, Cavallin-Stahl E, Lindner KJ, Ohlsson T et al. (2002). 131I-labelled anti-CD22 MAb (LL2) in patients with B-cell lymphomas failing chemotherapy. Treatment outcome, haematological toxicity and bone marrow absorbed dose estimates. Acta Oncol 41: 297–303.

    CAS  PubMed  Google Scholar 

  • Maloney DG, Smith B, Rose A . (2002). Rituximab: mechanism of action and resistance. Semin Oncol 29: 2–9.

    CAS  PubMed  Google Scholar 

  • McLaughlin P, Grillo-Lopez AJ, Link BK, Levy R, Czuczman MS, Williams ME et al. (1998). Rituximab chimeric anti-CD20 monoclonal antibody therapy for relapsed indolent lymphoma: half of patients respond to a four-dose treatment program. J Clin Oncol 16: 2825–2833.

    CAS  PubMed  Google Scholar 

  • Micallef INM, Kahl BS, Maurer MJ, Dogan A, Ansell SM, Colgan JP et al. (2006). A pilot study of epratuzumab and rituximab in combination with cyclophosphamide, doxorubicin, vincristine, and prednisone chemotherapy in patients with previously untreated, diffuse large B-cell lymphoma. Cancer 107: 2826–2832.

    CAS  PubMed  Google Scholar 

  • Morschhauser F, Huglo D, Martinelli G . (2004). Yttrium-90 ibritumomab tiuxetan (Zevalin) for patients with relapsed/refractory diffuse large B-cell lymphoma not appropriate for autologous stem cell transplantation: results of an open-label phase II trial [abstract 130]. Blood 104: 41a.

    Google Scholar 

  • Morschhauser F, Leonard JP, Coiffier B . (2005). Initial safety and efficacy results of a second-generation humanized anti-CD20 antibody, IMMU-106 (hA20), in non-Hodgkin's lymphoma [abstract]. Blood 106: 683a.

    Google Scholar 

  • Murthy S, Sharkey RM, Goldenberg DM, Lee RE, Pinsky CM, Hansen HJ et al. (1992). Lymphoma imaging with a new technetium-99m labelled antibody, LL2. Eur J Nucl Med 19: 394–401.

    CAS  PubMed  Google Scholar 

  • Newton DL, Hansen HJ, Liu H, Ruby D, Iordanov MS, Magun BE et al. (2001a). Specifically targeting the CD22 receptor of human B-cell lymphomas with RNA damaging agents. Crit Rev Oncol Hematol 39: 79–86.

    CAS  PubMed  Google Scholar 

  • Newton DL, Hansen HJ, Mikulski SM, Goldenberg DM, Rybak SM . (2001b). Potent and specific antitumor effects of an anti-CD22-targeted cytotoxic ribonuclease: potential for the treatment of non-Hodgkin lymphoma. Blood 97: 528–535.

    CAS  PubMed  Google Scholar 

  • Nitschke L . (2005). The role of CD22 and other inhibitory co-receptors in B-cell activation. Curr Op. Immunol 17: 290–297.

    CAS  Google Scholar 

  • Nitschke L, Carsetti B, Ocker B, Kohler G, Lamers MC . (1997). CD22 is a negative regulator of B-cell receptor signaling. Curr Biol 7: 133–143.

    CAS  PubMed  Google Scholar 

  • O'Keefe TL, Williams GT, Davies SL, Neuberger MS . (1996). Hyperresponsive B cells in CD22-deficient mice. Science 274: 798–801.

    CAS  PubMed  Google Scholar 

  • Otipoby KL, Andersson KB, Draves KE, Klaus SJ, Farr AG, Kerner JD et al. (1996). CD22 regulates thymus-independent responses and the lifespan of B cells. Nature 384: 634–637.

    CAS  PubMed  Google Scholar 

  • Pawlak-Byczkowska EJ, Hansen HJ, Dion AS, Goldenberg DM . (1989). Two new monoclonal antibodies, EPB-1 and EPB-2, reactive with human lymphoma. Cancer Res 49: 4568–4577.

    CAS  PubMed  Google Scholar 

  • Postema EJ, Raemaekers JM, Oyen WJ, Boerman OC, Mandigers CM, Goldenberg DM et al. (2003). Final results of a phase I radioimmunotherapy trial using 186Re-epratuzumab for the treatment of patients with non-Hodgkin's lymphoma. Clin Cancer Res 9: 3995s–34002s.

    CAS  PubMed  Google Scholar 

  • Press OW . (2003). Radioimmunotherapy for non-Hodgkin's lymphomas: a historical perspective. Semin Oncol 30: 10–21.

    CAS  PubMed  Google Scholar 

  • Press OW, Eary JF, Badger CC, Martin PJ, Appelbaum FR, Levy R et al. (1989). Treatment of refractory non-Hodgkin's lymphoma with radiolabeled MB-1 (anti-CD37) antibody. J Clin Oncol 7: 1027–1038.

    CAS  PubMed  Google Scholar 

  • Sato S, Miller AS, Inaoki M, Bock CB, Jansen PJ, Tang ML et al. (1996). CD22 is both a positive and negative regulator of B lymphocyte antigen receptor signal transduction: altered signaling in CD22-deficient mice. Immunity 5: 551–562.

    CAS  PubMed  Google Scholar 

  • Sharkey RM, Brenner A, Burton J, Hajjar G, Toder SP, Alavi A et al. (2003). Radioimmunotherapy of non-Hodgkin's lymphoma with 90Y-DOTA humanized anti-CD22 IgG (90Y-epratuzumab): do tumor targeting and dosimetry predict therapeutic response? J Nucl Med 44: 2000–2018.

    CAS  PubMed  Google Scholar 

  • Sharkey RM, Burton J, Goldenberg DM . (2005). Radioimmunotherapy of non-Hodgkin's lymphoma: a critical appraisal. Expert Rev Clin Immunol 1: 47–62.

    CAS  PubMed  Google Scholar 

  • Sharkey RM, Goldenberg DM . (2005). Perspectives on cancer therapy with radiolabeled monoclonal antibodies. J Nucl Med 46 (Suppl 1): 115s–1127s.

    CAS  PubMed  Google Scholar 

  • Shih LB, Lu HH, Xuan H, Goldenberg DM . (1994). Internalization and intracellular processing of an anti-B-cell lymphoma monoclonal antibody, LL2. Int J Cancer 56: 538–545.

    CAS  PubMed  Google Scholar 

  • Siegel JA, Goldenberg DM, Sharkey RM . (1991). Tumor and organ dosimetry for I-131 LL2 (EPB2) monoclonal antibody in patients with B-cell lymphomas. Antib Immunconjug Radiopharm 4: 649–654.

    Google Scholar 

  • Silverman DH, Delpassand ES, Torabi F, Goy A, McLaughlin P, Murray JL . (2004). Radiolabeled antibody therapy in non-Hodgkin's lymphoma: radiation protection, isotope comparisons and quality of life issues. Cancer Treat Rev 30: 165–172.

    CAS  PubMed  Google Scholar 

  • Skarin AT, Dorfman DM . (1997). Non-Hodgkin's lymphomas: current classification and management. CA Cancer J Clin 47: 351–372.

    CAS  PubMed  Google Scholar 

  • Skvortsova I, Popper BA, Skvortsov S, Haidenberger A, Saurer M, Gunkel AR et al. (2005). Pretreatment with rituximab enhances radiosensitivity of non-Hodgkin's lymphoma cells. J Radiat Res (Tokyo) 46: 241–248.

    CAS  Google Scholar 

  • Stamenkovic I, Seed B . (1990). The B-cell antigen CD22 mediates monocyte and erythrocyte adhesion. Nature 344: 74–77.

    Google Scholar 

  • Stein R, Belisle E, Hansen HJ, Goldenberg DM . (1993). Epitope specificity of the anti-B cell lymphoma monoclonal antibody, LL2. Cancer Immunol Immunother 37: 293–298.

    CAS  PubMed  Google Scholar 

  • Stein R, Qu Z, Chen S, Rosario A, Horak ID, Hansen HJ et al. (2004). Characterization of a new humanized anti-CD20 monoclonal antibody, IMMU-106, and its use in combination with the humanized anti-CD22 antibody, epratuzumab, for the therapy of non-Hodgkin's lymphoma. Clin Cancer Res 10: 2868–2878.

    CAS  PubMed  Google Scholar 

  • Stein R, Shih LB, Sharkey RM, Hansen HJ, Goldenberg DM . (1994). Immu-RAIDâ„¢-LL2 [Tc-99 m] and Immu-RAITâ„¢-LL2 [I-131]. Drugs Future 18: 997–1004.

    Google Scholar 

  • Steinfeld SD, Youinou P . (2006). Epratuzumab (humanised anti-CD22 antibody) in autoimmune diseases. Expert opin Biol Ther 6: 943–949.

    CAS  PubMed  Google Scholar 

  • Steinfeld SD, Tant L, Burmester GR, Teoh NK, Wegener WA, Goldenberg DM et al. (2006). Epratuzumab (humanized anti-CD22 antibody) in primary Sjögren's syndrome: an open-label phase I/II study. Arthritis Res Ther 8: R129.

    PubMed  PubMed Central  Google Scholar 

  • Strauss SJ, Morschhauser F, Rech J, Repp R, Solal-Celigny P, Zinzani PL et al. (2006). Multicenter phase-II trial of immunotherapy with humanized anti-CD22 antibody, epratuzumab, in combination with rituximab, in refractory or recurrent non-Hodgkin's lymphoma. J Clin Oncol 24: 3880–3886.

    CAS  PubMed  Google Scholar 

  • Tedder TF, Poe JC, Haas KM . (2005). CD22: A multifunctional receptor that regulates B lymphocyte survival and signal transduction. Adv Immunol 88: 1–50.

    CAS  PubMed  Google Scholar 

  • Teeling JL, French RR, Cragg MS, van den Brakel J, Pluyter M, Huang H et al. (2004). Characterization of new human CD20 monoclonal antibodies with potent cytolytic activity against non-Hodgkin lymphomas. Blood 104: 1793–1800.

    CAS  PubMed  Google Scholar 

  • Theuer CP, Leigh BR, Multani PS, Allen RS, Liang BC . (2004). Radioimmunotherapy of non-Hodgkin's lymphoma: clinical development of the Zevalin regimen. Biotechnol Annu Rev 10: 265–295.

    CAS  PubMed  Google Scholar 

  • Tuscano JM, Riva A, Toscano SN, Tedder TF, Kehrl JH . (1999). CD22 cross-linking generates B-cell antigen receptor-independent signals that activate the JNK/SAPK signaling cascade. Blood 94: 1382–1393.

    CAS  PubMed  Google Scholar 

  • Vose JM . (2004). Bexxar: novel radioimmunotherapy for the treatment of low-grade and transformed low-grade non-Hodgkin's lymphoma. Oncologist 9: 160–172.

    CAS  PubMed  Google Scholar 

  • Vose JM, Colcher D, Gobar L, Bierman PJ, Augustine S, Tempero M et al. (2000). Phase I/II trial of multiple dose 131I-MAb LL2 (CD22) in patients with recurrent non-Hodgkin's lymphoma. Leuk Lymphoma 38: 91–101.

    CAS  PubMed  Google Scholar 

  • Wagner Jr HN, Wiseman GA, Marcus CS, Nabi HA, Nagle CE, Fink-Bennett DM et al. (2002). Administration guidelines for radioimmunotherapy of non-Hodgkin's lymphoma with 90Y-labeled anti-CD20 monoclonal antibody. J Nucl Med 43: 267–272.

    CAS  PubMed  Google Scholar 

  • Wilson CL, Fox CH, Fauci AS, Kehrl JH . (1991). CDNA cloning of the B-cell membrane protein CD22: A mediator of B-B-cell interactions. J Exp Med 173: 137–146.

    CAS  PubMed  Google Scholar 

  • Wilson GL, Najfeld V, Kozlow E, Menniger J, Ward D, Kehrl JH . (1993). Genomic structure and chromosomal mapping of the human CD22 gene. J Immunol 150: 5013–5024.

    CAS  PubMed  Google Scholar 

  • Winter JN, Gascoyne RD, Besien KV . (2004). Low-grade lymphoma. Hematology (Am Soc Hematol Educ Program), 203–220.

    Google Scholar 

  • Witzig TE . (2004). Yttrium-90-ibritumomab tiuxetan radioimmunotherapy: a new treatment approach for B-cell non-Hodgkin's lymphoma. Drugs Today (Barcelona) 40: 111–119.

    CAS  Google Scholar 

  • Witzig TE, Gordon LI, Cabanillas F, Czuczman MS, Emmanouilides C, Joyce R et al. (2002). Randomized controlled trial of yttrium-90-labeled ibritumomab tiuxetan radioimmunotherapy versus rituximab immunotherapy for patients with relapsed or refractory low-grade, follicular, or transformed B-cell non-Hodgkin's lymphoma. J Clin Oncol 20: 2453–2463.

    CAS  PubMed  Google Scholar 

  • Zelenetz AD, Vose J . (2002). Patients with transformed low-grade lymphoma attain durable responses following outpatient radioimmunotherapy with toxitumomab and iodine I-131 toxitumomab (Bexxar) [abstract]. Blood 100: 357a.

    Google Scholar 

  • Zinzani PL . (2005). Lymphoma: diagnosis, staging, natural history, and treatment strategies. Semin Oncol 32 (Part 2): 4–10.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J P Leonard.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Leonard, J., Goldenberg, D. Preclinical and clinical evaluation of epratuzumab (anti-CD22 IgG) in B-cell malignancies. Oncogene 26, 3704–3713 (2007). https://doi.org/10.1038/sj.onc.1210370

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1210370

Keywords

This article is cited by

Search

Quick links