Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

miRNAs and apoptosis: RNAs to die for

Abstract

MicroRNAs (miRNAs) are small non-coding RNAs of about 18–24 nucleotides in length that negatively regulate gene expression. Discovered only recently, it has become clear that they are involved in many biological processes such as developmental timing, differentiation and cell death. Data that connect miRNAs to various kinds of diseases, particularly cancer, are accumulating. miRNAs can influence cancer development in many ways, including the regulation of cell proliferation, cell transformation, and cell death. In this review, we focus on miRNAs that have been shown to play a role in the regulation of apoptosis. We first describe in detail how Drosophila has been utilized as a model organism to connect several miRNAs with the cell death machinery. We discuss the genetic approaches that led to the identification of those miRNAs and subsequent work that helped to establish their function. In the second part of the review article, we focus on the involvement of miRNAs in apoptosis regulation in mammals. Intriguingly, many of the miRNAs that regulate apoptosis have been shown to affect cancer development. In the end, we discuss a virally encoded miRNA that influences the cell death response in the mammalian host cell. In summary, the data gathered over the recent years clearly show the potential and important role of miRNAs to regulate apoptosis at various levels and in several organisms.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  • Alvarez-Garcia I, Miska EA . (2005). MicroRNA functions in animal development and human disease. Development 132: 4653–4662.

    Article  CAS  PubMed  Google Scholar 

  • Ambros V . (2004). The functions of animal microRNAs. Nature 431: 350–355.

    Article  CAS  PubMed  Google Scholar 

  • Bagga S, Bracht J, Hunter S, Massirer K, Holtz J, Eachus R et al. (2005). Regulation by let-7 and lin-4 miRNAs results in target mRNA degradation. Cell 122: 553–563.

    Article  CAS  PubMed  Google Scholar 

  • Bartel DP . (2004). MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116: 281–297.

    Article  CAS  PubMed  Google Scholar 

  • Bernstein E, Caudy AA, Hammond SM, Hannon GJ . (2001). Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature 409: 363–366.

    Article  CAS  PubMed  Google Scholar 

  • Bohnsack MT, Czaplinski K, Gorlich D . (2004). Exportin 5 is a RanGTP-dependent dsRNA-binding protein that mediates nuclear export of pre-miRNAs. RNA 10: 185–191.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bracken AP, Ciro M, Cocito A, Helin K . (2004). E2F target genes: unraveling the biology. Trends Biochem Sci 29: 409–417.

    Article  CAS  PubMed  Google Scholar 

  • Brennecke J, Hipfner DR, Stark A, Russell RB, Cohen SM . (2003). Bantam encodes a developmentally regulated microRNA that controls cell proliferation and regulates the proapoptotic gene hid in Drosophila. Cell 113: 25–36.

    Article  CAS  PubMed  Google Scholar 

  • Brennecke J, Stark A, Russell RB, Cohen SM . (2005). Principles of microRNA-target recognition. PLoS Biol 3: e85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brodsky MH, Weinert BT, Tsang G, Rong YS, McGinnis NM, Golic KG et al. (2004). Drosophila melanogaster MNK/Chk2 and p53 regulate multiple DNA repair and apoptotic pathways following DNA damage. Mol Cell Biol 24: 1219–1231.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Calin GA, Dumitru CD, Shimizu M, Bichi R, Zupo S, Noch E et al. (2002). Frequent deletions and down-regulation of microRNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc Natl Acad Sci USA 99: 15524–15529.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Calin GA, Sevignani C, Dumitru CD, Hyslop T, Noch E, Yendamuri S et al. (2004). Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proc Natl Acad Sci USA 101: 2999–3004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chan JA, Krichevsky AM, Kosik KS . (2005). MicroRNA-21 is an antiapoptotic factor in human glioblastoma cells. Cancer Res 65: 6029–6033.

    Article  CAS  PubMed  Google Scholar 

  • Chen P, Nordstrom W, Gish B, Abrams JM . (1996). Grim, a novel cell death gene in Drosophila. Genes Dev 10: 1773–1782.

    Article  CAS  PubMed  Google Scholar 

  • Cheng AM, Byrom MW, Shelton J, Ford LP . (2005). Antisense inhibition of human miRNAs and indications for an involvement of miRNA in cell growth and apoptosis. Nucleic Acids Res 33: 1290–1297.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cimmino A, Calin GA, Fabbri M, Iorio MV, Ferracin M, Shimizu M et al. (2005). miR-15 and miR-16 induce apoptosis by targeting BCL2. Proc Natl Acad Sci USA 102: 13944–13949.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cullen BR . (2004). Transcription and processing of human microRNA precursors. Mol Cell 16: 861–865.

    Article  CAS  PubMed  Google Scholar 

  • Denli AM, Tops BB, Plasterk RH, Ketting RF, Hannon GJ . (2004). Processing of primary microRNAs by the microprocessor complex. Nature 432: 231–235.

    Article  CAS  PubMed  Google Scholar 

  • Doench JG, Petersen CP, Sharp PA . (2003). siRNAs can function as miRNAs. Genes Dev 17: 438–442.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Doench JG, Sharp PA . (2004). Specificity of microRNA target selection in translational repression. Genes Dev 18: 504–511.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dyson N . (1998). The regulation of E2F by pRB-family proteins. Genes Dev 12: 2245–2262.

    Article  CAS  PubMed  Google Scholar 

  • Edgar BA . (2006). From cell structure to transcription: Hippo forges a new path. Cell 124: 267–273.

    Article  CAS  PubMed  Google Scholar 

  • Eis PS, Tam W, Sun L, Chadburn A, Li Z, Gomez MF et al. (2005). Accumulation of miR-155 and BIC RNA in human B cell lymphomas. Proc Natl Acad Sci USA 102: 3627–3632.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Engles BM, Hutvagner G . (2006). Principles and effects of microRNA-mediated post-transcriptional gene regulation. Oncogene 25: 6163–6169.

    Article  CAS  Google Scholar 

  • Enright AJ, John B, Gaul U, Tuschl T, Sander C, Marks DS . (2003). MicroRNA targets in Drosophila. Genome Biol 5: R1.

    Article  PubMed  PubMed Central  Google Scholar 

  • Esquela-Kerscher A, Slack FJ . (2006). Oncomirs – microRNAs with a role in cancer. Nat Rev Cancer 6: 259–269.

    CAS  PubMed  Google Scholar 

  • Evan G, Harrington E, Fanidi A, Land H, Amati B, Bennett M . (1994). Integrated control of cell proliferation and cell death by the c-myc oncogene. Philos Trans R Soc Lond B Biol Sci 345: 269–275.

    Article  CAS  PubMed  Google Scholar 

  • Feng XH, Derynck R . (2005). Specificity and versatility in TGF-beta signaling through SMADS. Annu Rev Cell Dev Biol 21: 659–693.

    Article  CAS  PubMed  Google Scholar 

  • Fernandez PC, Frank SR, Wang L, Schroeder M, Liu S, Greene J et al. (2003). Genomic targets of the human c-Myc protein. Genes Dev 17: 1115–1129.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goyal L, McCall K, Agapite J, Hartwieg E, Steller H . (2000). Induction of apoptosis by Drosophila reaper, hid and grim through inhibition of IAP function. EMBO J 19: 589–597.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gregory RI, Yan KP, Amuthan G, Chendrimada T, Doratotaj B, Cooch N et al. (2004). The Microprocessor complex mediates the genesis of microRNAs. Nature 432: 235–240.

    Article  CAS  PubMed  Google Scholar 

  • Grether ME, Abrams JM, Agapite J, White K, Steller H . (1995). The head involution defective gene of Drosophila melanogaster functions in programmed cell death. Genes Dev 9: 1694–1708.

    Article  CAS  PubMed  Google Scholar 

  • Grishok A, Pasquinelli AE, Conte D, Li N, Parrish S, Ha I et al. (2001). Genes and mechanisms related to RNA interference regulate expression of the small temporal RNAs that control C. Elegans Dev Timing Cell 106: 23–34.

    Article  CAS  Google Scholar 

  • Gupta A, Gartner JJ, Sethupathy P, Hatzigeorgiou AG, Fraser NW . (2006). Anti-apoptotic function of a microRNA encoded by the HSV-1 latency-associated transcript. Nature 442: 82–86.

    Article  CAS  PubMed  Google Scholar 

  • Hamaratoglu F, Willecke M, Kango-Singh M, Nolo R, Hyun E, Tao C et al. (2006). The tumour-suppressor genes NF2/Merlin and Expanded act through Hippo signalling to regulate cell proliferation and apoptosis. Nat Cell Biol 8: 27–36.

    Article  CAS  PubMed  Google Scholar 

  • Hammond SM . (2006). MicroRNAs as oncogenes. Curr Opin Genet Dev 16: 4–9.

    Article  CAS  PubMed  Google Scholar 

  • Han J, Lee Y, Yeom KH, Kim YK, Jin H, Kim VN . (2004). The Drosha-DGCR8 complex in primary microRNA processing. Genes Dev 18: 3016–3027.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harbour JW, Dean DC . (2000). Rb function in cell-cycle regulation and apoptosis. Nat Cell Biol 2: E65–E67.

    Article  CAS  PubMed  Google Scholar 

  • Hay BA . (2000). Understanding IAP function and regulation: a view from Drosophila. Cell Death Differ 7: 1045–1056.

    Article  CAS  PubMed  Google Scholar 

  • He L, Thomson JM, Hemann MT, Hernando-Monge E, Mu D, Goodson S et al. (2005). A microRNA polycistron as a potential human oncogene. Nature 435: 828–833.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hipfner DR, Weigmann K, Cohen SM . (2002). The bantam gene regulates Drosophila growth. Genetics 161: 1527–1537.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Holley CL, Olson MR, Colon-Ramos DA, Kornbluth S . (2002). Reaper eliminates IAP proteins through stimulated IAP degradation and generalized translational inhibition. Nat Cell Biol 4: 439–444.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hutvagner G, McLachlan J, Pasquinelli AE, Balint E, Tuschl T, Zamore PD . (2001). A cellular function for the RNA-interference enzyme Dicer in the maturation of the let-7 small temporal RNA. Science 293: 834–838.

    Article  CAS  PubMed  Google Scholar 

  • Hutvagner G, Simard MJ, Mello CC, Zamore PD . (2004). Sequence-specific inhibition of small RNA function. PLoS Biol 2: E98.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hutvagner G, Zamore PD . (2002). A microRNA in a multiple-turnover RNAi enzyme complex. Science 297: 2056–2060.

    Article  CAS  PubMed  Google Scholar 

  • Hwang HW, Mendell JT . (2006). MicroRNAs in cell proliferation, cell death, and tumorigenesis. Br J Cancer 94: 776–780.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • John B, Enright AJ, Aravin A, Tuschl T, Sander C, Marks DS . (2004). Human MicroRNA targets. PLoS Biol 2: e363.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johnson SM, Grosshans H, Shingara J, Byrom M, Jarvis R, Cheng A et al. (2005). RAS is regulated by the let-7 microRNA family. Cell 120: 635–647.

    Article  CAS  PubMed  Google Scholar 

  • Justice RW, Zilian O, Woods DF, Noll M, Bryant PJ . (1995). The Drosophila tumor suppressor gene warts encodes a homolog of human myotonic dystrophy kinase and is required for the control of cell shape and proliferation. Genes Dev 9: 534–546.

    Article  CAS  PubMed  Google Scholar 

  • Kent OA, Mendell JT . (2006). A small piece in the cancer puzzle: microRNAs as tumor suppressors and oncogenes. Oncogene 25: 6188–6196.

    Article  CAS  PubMed  Google Scholar 

  • Ketting RF, Fischer SE, Bernstein E, Sijen T, Hannon GJ, Plasterk RH . (2001). Dicer functions in RNA interference and in synthesis of small RNA involved in developmental timing in C. elegans. Genes Dev 15: 2654–2659.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim VN . (2005). Small RNAs: classification, biogenesis, and function. Mol Cells 19: 1–15.

    Article  CAS  PubMed  Google Scholar 

  • Knight SW, Bass BL . (2001). A role for the RNase III enzyme DCR-1 in RNA interference and germ line development in Caenorhabditis elegans. Science 293: 2269–2271.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kornbluth S, White K . (2005). Apoptosis in Drosophila: neither fish nor fowl (nor man, nor worm). J Cell Sci 118 (Part 9): 1779–1787.

    Article  CAS  PubMed  Google Scholar 

  • Lagos-Quintana M, Rauhut R, Lendeckel W, Tuschl T . (2001). Identification of novel genes coding for small expressed RNAs. Science 294: 853–858.

    Article  CAS  PubMed  Google Scholar 

  • Lai EC . (2002). Micro RNAs are complementary to 3′ UTR sequence motifs that mediate negative post-transcriptional regulation. Nat Genet 30: 363–364.

    Article  CAS  PubMed  Google Scholar 

  • Landthaler M, Yalcin A, Tuschl T . (2004). The human DiGeorge syndrome critical region gene 8 and Its D. melanogaster homolog are required for miRNA biogenesis. Curr Biol 14: 2162–2167.

    Article  CAS  PubMed  Google Scholar 

  • Lau NC, Lim LP, Weinstein EG, Bartel DP . (2001). An abundant class of tiny RNAs with probable regulatory roles in Caenorhabditis elegans. Science 294: 858–862.

    Article  CAS  PubMed  Google Scholar 

  • Leaman D, Chen PY, Fak J, Yalcin A, Pearce M, Unnerstall U et al. (2005). Antisense-mediated depletion reveals essential and specific functions of microRNAs in Drosophila development. Cell 121: 1097–1108.

    Article  CAS  PubMed  Google Scholar 

  • Lecellier CH, Dunoyer P, Arar K, Lehmann-Che J, Eyquem S, Himber C et al. (2005). A cellular microRNA mediates antiviral defense in human cells. Science 308: 557–560.

    Article  CAS  PubMed  Google Scholar 

  • Lee RC, Ambros V . (2001). An extensive class of small RNAs in Caenorhabditis elegans. Science 294: 862–864.

    Article  CAS  PubMed  Google Scholar 

  • Lee RC, Feinbaum RL, Ambros V . (1993). The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75: 843–854.

    Article  CAS  PubMed  Google Scholar 

  • Leone G, DeGregori J, Sears R, Jakoi L, Nevins JR . (1997). Myc and Ras collaborate in inducing accumulation of active cyclin E/Cdk2 and E2F. Nature 387: 422–426.

    Article  CAS  PubMed  Google Scholar 

  • Lewis BP, Shih IH, Jones-Rhoades MW, Bartel DP, Burge CB . (2003). Prediction of mammalian microRNA targets. Cell 115: 787–798.

    Article  CAS  PubMed  Google Scholar 

  • Lim LP, Lau NC, Garrett-Engele P, Grimson A, Schelter JM, Castle J et al. (2005). Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature 433: 769–773.

    Article  CAS  PubMed  Google Scholar 

  • Lin YW, Sheu JC, Liu LY, Chen CH, Lee HS, Huang GT et al. (1999). Loss of heterozygosity at chromosome 13q in hepatocellular carcinoma: identification of three independent regions. Eur J Cancer 35: 1730–1734.

    Article  CAS  PubMed  Google Scholar 

  • Lisi S, Mazzon I, White K . (2000). Diverse domains of THREAD/DIAP1 are required to inhibit apoptosis induced by REAPER and HID in Drosophila. Genetics 154: 669–678.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Llave C, Kasschau KD, Rector MA, Carrington JC . (2002). Endogenous and silencing-associated small RNAs in plants. Plant Cell 14: 1605–1619.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu J, Getz G, Miska EA, Alvarez-Saavedra E, Lamb J, Peck D et al. (2005). MicroRNA expression profiles classify human cancers. Nature 435: 834–838.

    Article  CAS  PubMed  Google Scholar 

  • Lund E, Guttinger S, Calado A, Dahlberg JE, Kutay U . (2004). Nuclear export of microRNA precursors. Science 303: 95–98.

    Article  CAS  PubMed  Google Scholar 

  • Martinez J, Patkaniowska A, Urlaub H, Luhrmann R, Tuschl T . (2002). Single-stranded antisense siRNAs guide target RNA cleavage in RNAi. Cell 110: 563–574.

    Article  CAS  PubMed  Google Scholar 

  • Matsumura I, Tanaka H, Kanakura Y . (2003). E2F1 and c-Myc in cell growth and death. Cell Cycle 2: 333–338.

    Article  CAS  PubMed  Google Scholar 

  • Meister G, Landthaler M, Dorsett Y, Tuschl T . (2004). Sequence-specific inhibition of microRNA- and siRNA-induced RNA silencing. RNA 10: 544–550.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mendell JT . (2005). MicroRNAs: critical regulators of development, cellular physiology and malignancy. Cell Cycle 4: 1179–1184.

    Article  CAS  PubMed  Google Scholar 

  • Metzler M, Wilda M, Busch K, Viehmann S, Borkhardt A . (2004). High expression of precursor microRNA-155/BIC RNA in children with Burkitt lymphoma. Genes Chromosomes Cancer 39: 167–169.

    Article  CAS  PubMed  Google Scholar 

  • Michael MZ, SM OC, van Holst Pellekaan NG, Young GP, James RJ . (2003). Reduced accumulation of specific microRNAs in colorectal neoplasia. Mol Cancer Res 1: 882–891.

    CAS  PubMed  Google Scholar 

  • Nairz K, Rottig C, Rintelen F, Zdobnov E, Moser M, Hafen E . (2006). Overgrowth caused by misexpression of a microRNA with dispensable wild-type function. Dev Biol 291: 314–324.

    Article  CAS  PubMed  Google Scholar 

  • Neufeld TP, de la Cruz AF, Johnston LA, Edgar BA . (1998). Coordination of growth and cell division in the Drosophila wing. Cell 93: 1183–1193.

    Article  CAS  PubMed  Google Scholar 

  • Nordstrom W, Chen P, Steller H, Abrams JM . (1996). Activation of the reaper gene during ectopic cell killing in Drosophila. Dev Biol 180: 213–226.

    Article  CAS  PubMed  Google Scholar 

  • O’Donnell KA, Wentzel EA, Zeller KI, Dang CV, Mendell JT . (2005). c-Myc-regulated microRNAs modulate E2F1 expression. Nature 435: 839–843.

    Article  CAS  PubMed  Google Scholar 

  • Ota A, Tagawa H, Karnan S, Tsuzuki S, Karpas A, Kira S et al. (2004). Identification and characterization of a novel gene, C13orf25, as a target for 13q31-q32 amplification in malignant lymphoma. Cancer Res 64: 3087–3095.

    Article  CAS  PubMed  Google Scholar 

  • Pasquinelli AE, Reinhart BJ, Slack F, Martindale MQ, Kuroda MI, Maller B et al. (2000). Conservation of the sequence and temporal expression of let-7 heterochronic regulatory RNA. Nature 408: 86–89.

    Article  CAS  PubMed  Google Scholar 

  • Pelengaris S, Khan M, Evan GI . (2002). Suppression of Myc-induced apoptosis in beta cells exposes multiple oncogenic properties of Myc and triggers carcinogenic progression. Cell 109: 321–334.

    Article  CAS  PubMed  Google Scholar 

  • Perng GC, Jones C, Ciacci-Zanella J, Stone M, Henderson G, Yukht A et al. (2000). Virus-induced neuronal apoptosis blocked by the herpes simplex virus latency-associated transcript. Science 287: 1500–1503.

    Article  CAS  PubMed  Google Scholar 

  • Reinhart BJ, Slack FJ, Basson M, Pasquinelli AE, Bettinger JC, Rougvie AE et al. (2000). The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature 403: 901–906.

    Article  CAS  PubMed  Google Scholar 

  • Reinhart BJ, Weinstein EG, Rhoades MW, Bartel B, Bartel DP . (2002). MicroRNAs in plants. Genes Dev 16: 1616–1626.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rodriguez A, Griffiths-Jones S, Ashurst JL, Bradley A . (2004). Identification of mammalian microRNA host genes and transcription units. Genome Res 14: 1902–1910.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rorth P . (1996). A modular misexpression screen in Drosophila detecting tissue-specific phenotypes. Proc Natl Acad Sci USA 93: 12418–12422.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Salvesen GS, Abrams JM . (2004). Caspase activation – stepping on the gas or releasing the brakes? Lessons from humans and flies. Oncogene 23: 2774–2784.

    Article  CAS  PubMed  Google Scholar 

  • Schuster N, Krieglstein K . (2002). Mechanisms of TGF-beta-mediated apoptosis. Cell Tissue Res 307: 1–14.

    Article  CAS  PubMed  Google Scholar 

  • Schutz S, Sarnow P . (2006). Interaction of viruses with the mammalian RNA interference pathway. Virology 344: 151–157.

    Article  CAS  PubMed  Google Scholar 

  • Slack FJ, Weidhaas JB . (2006). MicroRNAs as a potential magic bullet in cancer. Future Oncol 2: 73–82.

    Article  CAS  PubMed  Google Scholar 

  • Stark A, Brennecke J, Russell RB, Cohen SM . (2003). Identification of Drosophila MicroRNA targets. PLoS Biol 1: E60.

    Article  PubMed  PubMed Central  Google Scholar 

  • Sullivan CS, Ganem D . (2005). MicroRNAs and viral infection. Mol Cell 20: 3–7.

    Article  CAS  PubMed  Google Scholar 

  • Teleman AA, Chen YW, Cohen SM . (2005). Drosophila melted modulates FOXO and TOR activity. Dev Cell 9: 271–281.

    Article  CAS  PubMed  Google Scholar 

  • Teleman AA, Maitra S, Cohen SM . (2006). Drosophila lacking microRNA miR-278 are defective in energy homeostasis. Genes Dev 20: 417–422.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tittel JN, Steller H . (2000). A comparison of programmed cell death between species. Genome Biol 1: REVIEWS0003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trimarchi JM, Lees JA . (2002). Sibling rivalry in the E2F family. Nat Rev Mol Cell Biol 3: 11–20.

    Article  CAS  PubMed  Google Scholar 

  • Valencia-Sanchez MA, Liu J, Hannon GJ, Parker R . (2006). Control of translation and mRNA degradation by miRNAs and siRNAs. Genes Dev 20: 515–524.

    Article  CAS  PubMed  Google Scholar 

  • White K, Grether ME, Abrams JM, Young L, Farrell K, Steller H . (1994). Genetic control of programmed cell death in Drosophila. Science 264: 677–683.

    Article  CAS  PubMed  Google Scholar 

  • Wightman B, Ha I, Ruvkun G . (1993). Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell 75: 855–862.

    Article  CAS  PubMed  Google Scholar 

  • Wolff T, Ready DF . (1993). Pattern formation in the Drosphila retina. In: Bate M, Martinez Arias A (eds). The Development of Drosophila Melanogaster. Cold Spring Harbor Laboratory: Plainview, NY, pp 1277–1325.

    Google Scholar 

  • Xu P, Vernooy SY, Guo M, Hay BA . (2003). The Drosophila microRNA Mir-14 suppresses cell death and is required for normal fat metabolism. Curr Biol 13: 790–795.

    Article  CAS  PubMed  Google Scholar 

  • Yi R, Qin Y, Macara IG, Cullen BR . (2003). Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs. Genes Dev 17: 3011–3016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoo SJ, Huh JR, Muro I, Yu H, Wang L, Wang SL et al. (2002). Hid, Rpr and Grim negatively regulate DIAP1 levels through distinct mechanisms. Nat Cell Biol 4: 416–424.

    Article  CAS  PubMed  Google Scholar 

  • Zeng Y . (2006). Principles of micro-RNA production and maturation. Oncogene 25: 6156–6162.

  • Zeng Y, Wagner EJ, Cullen BR . (2002). Both natural and designed micro RNAs can inhibit the expression of cognate mRNAs when expressed in human cells. Mol Cell 9: 1327–1333.

    Article  CAS  PubMed  Google Scholar 

  • Zeng Y, Yi R, Cullen BR . (2003). MicroRNAs and small interfering RNAs can inhibit mRNA expression by similar mechanisms. Proc Natl Acad Sci USA 100: 9779–9784.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Erica Bogan, Caren Chang, George Hausmann, Alister Smith, Peter Geuking and the Hengartner lab for reading and critical comments about the manuscript. Work in the authors’ laboratory is supported by the Kanton of Zurich, the Swiss National Science Foundation, the Josef Steiner Foundation and the Gebert Rüf Foundation. Marko Jovanovic is funded by a fellowship from the Forschungskredit der Universitaet Zurich.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M O Hengartner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jovanovic, M., Hengartner, M. miRNAs and apoptosis: RNAs to die for. Oncogene 25, 6176–6187 (2006). https://doi.org/10.1038/sj.onc.1209912

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1209912

Keywords

This article is cited by

Search

Quick links