Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Feature Review
  • Published:

The molecular genetics of schizophrenia: new findings promise new insights

Abstract

The high heritability of schizophrenia has stimulated much work aimed at identifying susceptibility genes using positional genetics. However, difficulties in obtaining clear replicated linkages have led to the scepticism that such approaches would ever be successful. Fortunately, there are now signs of real progress. Several strong and well-established linkages have emerged. Three of the best-supported regions are 6p24–22, 1q21–22 and 13q32–34. In these cases, single studies achieved genome-wide significance at P<0.05 and suggestive positive findings have also been reported in other samples. The other promising regions include 8p21–22, 6q21–25, 22q11–12, 5q21–q33, 10p15–p11 and 1q42. The study of chromosomal abnormalities in schizophrenia has also added to the evidence for susceptibility loci at 22q11 and 1q42. Recently, evidence implicating individual genes within some of the linked regions has been reported and more importantly replicated. The weight of evidence now favours NRG1 and DTNBP1 as susceptibility loci, though work remains before we understand precisely how genetic variation at each locus confers susceptibility and protection. The evidence for catechol-O-methyl transferase, RGS4 and G72 is promising but not yet persuasive. While further replications remain the top priority, the respective contributions of each gene, relationships with aspects of the phenotype, the possibility of epistatic interactions between genes and functional interactions between the gene products will all need investigation. The ability of positional genetics to implicate novel genes and pathways will open up new vistas for neurobiological research, and all the signs are that it is now poised to deliver crucial insights into the nature of schizophrenia.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1

Similar content being viewed by others

References

  1. Bray NJ, Owen MJ . Searching for schizophrenia genes. Trends Mol Med 2001; 7: 169–174.

    Article  CAS  PubMed  Google Scholar 

  2. Owen MJ, O'Donovan MC, Gottesman II . Schizophrenia. In: McGuffin P, Owen MJ, Gottesman II (eds) Psychiatric Genetics & Genomics. Oxford University Press: Oxford, UK, 2002, pp 247–266.

    Google Scholar 

  3. Goate A, Chartierharlin MC, Mullan M, Brown J, Crawford F, Fidani L et al. Segregation of a missense mutation in the amyloid precursor protein gene with familial Alzheimers-disease. Nature 1991; 349: 704–706.

    Article  CAS  PubMed  Google Scholar 

  4. Sherrington R, Rogaev EI, Liang Y, Rogaeva EA, Levesque G, Ikeda M et al. PH Stgeorgehyslop. Cloning of a gene bearing missense mutations in early-onset familial Alzheimers-disease. Nature 1995; 375: 754–760.

    Article  CAS  PubMed  Google Scholar 

  5. Levy-Lahad E, Wasco W, Poorkaj P, Romano DM, Oshima J, Pettingell WH et al. Candidate gene for the chromosome-1 familial Alzheimers-disease locus. Science 1995; 269: 973–977.

    Article  CAS  PubMed  Google Scholar 

  6. Gottesman II, Shields J . A polygenic theory of schizophrenia. Proc Natl Acad Sci USA 1967; 58: 199–205.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. McGue M, Gottesman II . A single dominant gene still cannot account for the transmission of schizophrenia. Arch Gen Psychiatry 1989; 46: 478–479.

    Article  CAS  PubMed  Google Scholar 

  8. McGuffin P, Owen MJ, O'Donovan MC, Thapar A, Gottesman II . Seminars in Psychiatric Genetics. Gaskell Press: London, 1994.

    Google Scholar 

  9. Risch N . Linkage strategies for genetically complex traits. 2. The power of affected relative pairs. Am J Hum Genet 1990; 46: 229–241.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Owen MJ, Cardno AG, O'Donovan MC . Psychiatric genetics: back to the future. Mol Psychiatry 2000; 5: 22–31.

    Article  CAS  PubMed  Google Scholar 

  11. McGuffin P, Farmer A, Gottesman II . Is there really a split in schizophrenia? The genetic evidence. Br J Psychiatry 1987; 150: 581–592.

    Article  CAS  PubMed  Google Scholar 

  12. Farmer AE, McGuffin P, Gottesman II . Twin concordance for DSM-III schizophrenia. Scrutinizing the validity of the definition. Arch Gen Psychiatry 1987; 44: 634–641.

    Article  CAS  PubMed  Google Scholar 

  13. Kendler KS, Neale MC, Walsh D . Evaluating the spectrum concept of schizophrenia in the Roscommon Family Study. Am J Psychiatry 1995; 152: 749–754.

    Article  CAS  PubMed  Google Scholar 

  14. Kendler KS, Karkowski LM, Walsh D, Crow TJ . The structure of psychosis: latent class analysis of probands from the Roscommon family study. Arch Gen Psychiatry 1998; 55: 492–509.

    Article  CAS  PubMed  Google Scholar 

  15. Tienari P, Wynne LC, Moring J, Laksy K, Nieminen P, Sorri A et al. Finnish adoptive family study: sample selection and adoptee DSM-III-R diagnoses. Acta Psychiatr Scand 2000; 101: 433–443.

    Article  CAS  PubMed  Google Scholar 

  16. Cardno AG, Rijsdijk FV, Sham PC, Murray RM, McGuffin P . A twin study of genetic relationships between psychotic symptoms. Am J Psychiatry 2002; 159: 539–545.

    Article  PubMed  Google Scholar 

  17. Gottesman II, Shields J . Schizophrenia and Genetics: A Twin Study Vantage Point. Academic Press: New York, 1972.

    Google Scholar 

  18. Gottesman II, Gould TD . The endophenotype concept in psychiatry: etymology and strategic intentions. Am J Psychiatry 2003; 160: 636–645.

    Article  PubMed  Google Scholar 

  19. Risch N, Merikangas K . The future of genetic studies of complex human diseases. Science 1996; 273: 1516–1517.

    Article  CAS  PubMed  Google Scholar 

  20. Gabriel SB, Schaffner SF, Nguyen H, Moore JM, Roy J, Blumenstiel B et al. The structure of haplotype blocks in the human genome. Science 2002; 296: 2225–2229.

    Article  CAS  PubMed  Google Scholar 

  21. Owen MJ, Holmans P, McGuffin P . Association studies in psychiatric genetics. Mol Psychiatry 1997; 2: 270–273.

    Article  CAS  PubMed  Google Scholar 

  22. Sham P, McGuffin P . Linkage and association. In: McGuffin P, Owen MJ, Gottesman II (eds) Psychiatric Genetics & Genomics. Oxford University Press: Oxford, 2002, pp 55–73.

    Google Scholar 

  23. Duggan DJ, Bittner M, Chen Y, Meltzer P, Trent JM . Expression profiling using cDNA microarrays. Nat Genet 1999; 21: 10–14.

    Article  CAS  PubMed  Google Scholar 

  24. Lipshutz RJ, Fodor SPA, Gingeras TR, Lockhart DJ . High density synthetic oligonucleotide arrays. Nat Genet 1999; 21(Suppl S): 20–24.

    Article  CAS  PubMed  Google Scholar 

  25. Straub RE, Maclean CJ, ONeill FA, Burke J, Murphy B, Duke F et al. A potential vulnerability locus for schizophrenia on chromosome 6P24-22—evidence for genetic-heterogeneity. Nat Genet 1995; 11: 287–293.

    Article  CAS  PubMed  Google Scholar 

  26. Blouin JL, Dombroski BA, Nath SK, Lasseter VK, Wolyniec PS, Nestadt G et al. Schizophrenia susceptibility loci on chromosomes 13q32 and 8p21. Nat Genet 1998; 20: 70–73.

    Article  CAS  PubMed  Google Scholar 

  27. Brustowicz LM, Hodgkinson KA, Chow EW, Honer WG, Bassett AS . Location of a major susceptibility locus for familial schizophrenia on chromosome 1q21–q22. Science 2000; 288: 678–682.

    Article  Google Scholar 

  28. Moises HW, Yang L, Kristobjarnarson H, Wiese C, Byerley W, Macciardi F et al. An international 2-stage genome-wide search for schizophrenia susceptibility genes. Nat Genet 1995; 11: 321–324.

    Article  CAS  PubMed  Google Scholar 

  29. Schizophrenia Linkage Collaborative Group for Chromosomes 3, 6, and 8. Additional support for schizophrenia linkage on chromosomes 6 and 8: a multicenter study. Am J Med Genet 1996; 67: 580–594.

  30. Maziade M, Bissonnette L, Rouillard E, Roy MA, Merette C . Further evidence of a susceptibility gene for schizophrenia in 6p22–p24: a contribution from the eastern Quebec population. Am J Med Genet 1997; 74: 666–667.

    Article  Google Scholar 

  31. Lindholm E, Ekholm B, Shaw S, Jalonen P, Johansson G, Pettersson U et al. A schizophrenia-susceptibility locus at 6q25, in one of the world's largest reported pedigrees. Am J Hum Genet 2001; 69: 96–105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Schwab SG, Hallmayer J, Albus M, Lerer B, Eckstein GN, Borrmann M et al. A genome-wide autosomal screen for schizophrenia susceptibility loci in 71 families with affected siblings: support for loci on chromosome 10p and 6. Mol Psychiatry 2000; 5: 638–649.

    Article  CAS  PubMed  Google Scholar 

  33. Gurling HM, Kalsi G, Brynjolfson J, Sigmundsson T, Sherrington R, Mankoo BS et al. Genomewide genetic linkage analysis confirms the presence of susceptibility loci for schizophrenia, on chromosomes 1q32.2, 5q33.2, and 8p21–22 and provides support for linkage to schizophrenia, on chromosomes 11q23.3–24 and 20q12.1–11.23. Am J Hum Genet 2001; 68: 661–673.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Kendler KS, Gallagher TJ, Abelson JM, Kessler RC . Lifetime prevalence, demographic risk factors, and diagnostic validity of nonaffective psychosis as assessed in a US community sample. The National Comorbidity Survey. Arch Gen Psychiatry 1996; 53: 1022–1031.

    Article  CAS  PubMed  Google Scholar 

  35. Stefansson H, Sigurdsson E, Steinthorsdottir V, Bjornsdottir S, Sigmundsson T, Ghosh S et al. Neuregulin 1 and susceptibility to schizophrenia. Am J Hum Genet 2002; 71: 877–892.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Cao Q, Martinez M, Zhang J, Sanders AR, Badner JA, Cravchik A et al. Suggestive evidence for a schizophrenia susceptibility locus on chromosome 6q and a confirmation in an independent series of pedigrees. Genomics 1997; 43: 1–8.

    Article  CAS  PubMed  Google Scholar 

  37. Martinez M, Goldin LR, Cao Q, Zhang J, Sanders AR, Nancarrow DJ et al. Follow-up study on a susceptibility locus for schizophrenia on chromosome 6q. Am J Med Genet 1999; 88: 337–343.

    Article  CAS  PubMed  Google Scholar 

  38. Levinson DF, Holmans P, Straub RE, Owen MJ, Wildenauer DB, Gejman PV et al. Multicenter linkage study of schizophrenia candidate regions on chromosomes 5q, 6q, 10p, and 13q: schizophrenia linkage collaborative group III. Am J Hum Genet 2000; 67: 652–663.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Lerer B, Segman RH, Hamdan A, Kanyas K, Karni O, Kohn Y et al. Genome scan of Arab Israeli families maps a schizophrenia susceptibility gene to chromosome 6q23 and supports a locus at chromosome 10q24. Mol Psychiatry 2003; 8: 488–498.

    Article  CAS  PubMed  Google Scholar 

  40. Lindholm E, Ekholm B, Shaw S, Halonen P, Johansson G, Pettersson U et al. A schizophrenia-susceptibility locus at 6q25, in one of the world's largest reported pedigrees. Am J Hum Genet 2001; 69: 96–105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Roberts SB, MacLean CJ, Neale MC, Eaves LJ, Kendler KS . Replication of linkage studies of complex traits: an examination of variation in location estimates. Am J Hum Genet 1999; 65: 876–884.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Pulver AE, Nestadt G, Goldberg R, Shprintzen RJ, Lamacz M, Wolyniec PS et al. Psychotic illness in patients diagnosed with velo-cardio-facial syndrome and their relatives. J Nerv Ment Dis 1994; 182: 476–478.

    Article  CAS  PubMed  Google Scholar 

  43. Coon H, Jensen S, Holik J, Hoff M, Myles-Worsley M, Reimherr F et al. Genomic scan for genes predisposing to schizophrenia. Am J Med Genet 1994; 54: 59–71.

    Article  CAS  PubMed  Google Scholar 

  44. Gill M, Vallada H, Collier D, Sham P, Holmans P, Murray R et al. A combined analysis of D22s278 marker alleles in affected Sib-pairs—support for a susceptibility locus for schizophrenia at chromosome 22Q12. Am J Med Genet 1996; 67: 40–45.

    Article  CAS  PubMed  Google Scholar 

  45. DeLisi LE, Shaw SH, Crow TJ, Shields G, Smith AB, Larach VW et al. A genome-wide scan for linkage to chromosomal regions in 382 sibling pairs with schizophrenia or schizoaffective disorder. Am J Psychiatry 2002; 159: 803–812.

    Article  PubMed  Google Scholar 

  46. Straub RE, Maclean CJ, Oneill FA, Walsh D, Kendler KS . Support for a possible schizophrenia vulnerability locus in region 5q22–31 in Irish families. Mol Psychiatry 1997; 2: 148–155.

    Article  CAS  PubMed  Google Scholar 

  47. Camp NJ, Neuhausen SL, Tiobech J, Polloi A, Coon H, Myles-Worsley M . Genomewide multipoint linkage analysis of seven extended Palauan pedigrees with schizophrenia, by a Markov-chain Monte Carlo method. Am J Hum Genet 2001; 69: 1278–1289.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Schwab SG, Eckstein GN, Hallmayer J, Lerer B, Albus M et al. Evidence suggestive of a locus on chromosome 5q31 contributing to susceptibility for schizophrenia in German and Israeli families by multipoint affected sib-pair linkage analysis. Mol Psychiatry 1997; 2: 156–160.

    Article  CAS  PubMed  Google Scholar 

  49. Faraone SV, Matise T, Svrakic D, Pepple J, Malaspina D, Suarez B et al. Genome scan of European–American schizophrenia pedigrees: results of the nimh genetics initiative and millennium consortium. Am J Med Genet 1998; 81: 290–295.

    Article  CAS  PubMed  Google Scholar 

  50. Straub RE, Maclean CJ, Martin RB, Ma YL, Myakishev MV, HarrisKerr C et al. A schizophrenia locus may be located in region 10p15–p11. Am J Med Genet 1998; 81: 296–301.

    Article  CAS  PubMed  Google Scholar 

  51. Hovatta I, Varilo T, Suvisaari J, Terwilliger JD, Ollikainen V, Arajärvi R . Screen for schizophrenia genes in an isolated Finnish subpopulation, suggesting multiple susceptibility loci. Am J Hum Genet 2000; 65: 1114–1125.

    Article  Google Scholar 

  52. Ekelund J, Lichtermann D, Hovatta I, Ellonen P, Suvisaari J, Terwilliger JD . Genome-wide scan for schizophrenia in the Finnish population: evidence for a locus on chromosome 7q22. Hum Mol Genet 2000; 9: 1049–1057.

    Article  CAS  PubMed  Google Scholar 

  53. Blackwood DH, Fordyce A, Walker MT, St Clair DM, Porteous DJ, Muir WJ . Schizophrenia and affective disorders—cosegregation with a translocation at chromosome 1q42 that directly disrupts brain-expressed genes: clinical and P300 findings in a family. Am J Hum Genet 2001; 69: 428–433.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Flint J, Mott R . Finding the molecular basis of quantitative traits: successes and pitfalls. Nat Rev Genet 2001; 2: 437–445.

    Article  CAS  PubMed  Google Scholar 

  55. Suarez BK, Hampe CL, Van Eerdewegh P . Problems of replicating linkage claims in psychiatry. In: Gershon ES, Cloninger CR (eds) Genetic Approaches to Mental Disorders. American Psychiatric Press: Washington, DC, 1994, pp 23–46.

    Google Scholar 

  56. Goring HH, Terwilliger JD, Blangero J . Large upward bias in estimation of locus-specific effects from genomewide scans. Am J Hum Genet 2001; 69: 1357–1369.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. O'Donovan MC, Owen MJ . Candidate gene association studies of schizophrenia. Am J Hum Genet 1999; 65: 587–592.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Vieland VJ . The replication requirement. Nat Genet 2001; 29: 244–245.

    Article  CAS  PubMed  Google Scholar 

  59. Levinson DF, Levinson MD, Segurado R, Lewis CM . Genome san meta-analysis of schizophrenia and bipolar disorder, part I: methods and power analysis. Am J Hum Genet 2003; 73: 17–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Lewis CM, Levinson DF, Wise LH, DeLisi LE, Straub RE, Hovatta I et al. Genome scan meta-analysis of schizophrenia and bipolar disorder, Part II: schizophrenia. Am J Hum Genet 2003; 73: 34–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Badner JA, Gershon ES . Regional meta-analysis of published data supports linkage of autism with markers on chromosome 7. Mol Psychiatry 2002; 7: 56–66.

    Article  CAS  PubMed  Google Scholar 

  62. Williams NM, Rees MI, Holmans P, Norton N, Cardno AG, Jones LA . A two-stage genome scan for schizophrenia susceptibility genes in 196 affected sibling pairs. Hum Mol Genet 1999; 8: 1729–1739.

    Article  CAS  PubMed  Google Scholar 

  63. Bassett AS, Chow EWC, Weksberg R . Chromosomal abnormalities and schizophrenia. Am J Med Genet (Semin Med Genet) 2000; 97: 45–51.

    Article  CAS  Google Scholar 

  64. Baron M . Genetics of schizophrenia and the new millennium: progress and pitfalls. Am J Hum Genet 2001; 68: 299–312.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. MacIntyre DJ, Blackwood DH, Porteous DJ, Pickard BS, Muir WJ . Chromosomal abnormalities and mental illness. Mol Psychiatry 2003; 8: 275–287.

    Article  CAS  PubMed  Google Scholar 

  66. St Clair D, Blackwood D, Muir W, Carothers A, Walker M, Spowart G et al. Association within a family of a balanced autosomal translocation with major mental illness. Lancet 1990; 336: 13–16.

    Article  CAS  PubMed  Google Scholar 

  67. Millar JK, Wilson-Annan JC, Anderson S, Christie S, Taylor MS, Semple CA et al. Disruption of two novel genes by a translocation co-segregating with schizophrenia. Hum Mol Genet 2000; 9: 1415–1423.

    Article  CAS  PubMed  Google Scholar 

  68. Morris JA, Kandapal G, Ma L, Austin CP . DISC1 (disrupted-in-schizophrenia 1) is a centrosome-associated protein that interacts with MAP1A, MIPT3, ATF4/5 and NUDEL: regulation and loss of interaction with mutation. Hum Mol Genet 2003; 12: 1591–1608.

    Article  CAS  PubMed  Google Scholar 

  69. Ozeki Y, Tomoda T, Kleiderlein J, Kamiya A, Bord L, Fujii K et al. Disrupted-in-schizophrenia-1 (DISC-1): mutant truncation prevents binding to NudE-like (NUDEL) and inhibits neurite outgrowth. Proc Natl Acad Sci USA 2003; 100: 289–294.

    Article  CAS  PubMed  Google Scholar 

  70. Miyoshi K, Honda A, Baba K, Taniguchi M, Oono K, Fujita T et al. Disrupted-in schizophrenia1, a candidate gene for schizophrenia, participates in neurite outgrowth. Mol Psychiatry 2003; 8: 685–694.

    Article  CAS  PubMed  Google Scholar 

  71. Devon RS, Anderson S, Teague PW, Burgess P, Kipari TM, Semple CA et al. Identification of polymorphisms within disrupted in schizophrenia 1 and disrupted in schizophrenia 2, and an investigation of their association with schizophrenia and bipolar affective disorder. Psychiatr Genet 2001; 11: 71–78.

    Article  CAS  PubMed  Google Scholar 

  72. Shprintzen RJ, Goldberg RB, Golding-Kushner KJ . Late-onset psychosis in the Velo-Cardio-Facial syndrome. Am J Med Genet 1992; 42: 141–142.

    Article  CAS  PubMed  Google Scholar 

  73. Papolos DF, Faedda GI, Veit S, Goldberg RB, Morrow B, Kucherlapati R et al. Bipolar spectrum disorders in patients diagnosed with velo-cardio-facial syndrome: does a hemizygous deletion of chromosome 22q11 result in bipolar affective disorder? Am J Psychiatry 1996; 153: 1541–1547.

    Article  CAS  PubMed  Google Scholar 

  74. Murphy KC, Jones LA, Owen MJ . High rates of schizophrenia in adults with velo-cardio-facial syndrome. Arch Gen Psychiatry 1999; 56: 940–945.

    Article  CAS  PubMed  Google Scholar 

  75. Karayiorgou M, Morris MA, Morrow B, Shprintzen RJ, Goldberg R, Borrow J et al. Schizophrenia susceptibility associated with interstitial deletions of chromosome 22q11. Proc Natl Acad Sci USA 1995; 92: 7612–7616.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Ivanov D, Norton N, Williams HJ, Williams NM, Nikolov I, Tzwetkova R et al. A molecular genetic study of the VCFS region in patients with early onset psychosis. Br J Psychiatry 2003, (in press).

  77. Gothelf D, Frisch A, Munitz H, Rockah R, Aviram T, Mozes A et al. Velocardiofacial manifestations and microdeletions in schizophrenic patients. Am J Med Genet 1997; 72: 455–461.

    Article  CAS  PubMed  Google Scholar 

  78. Lindsay EA, Botta A, Jurecic V, Carattini-Rivera S, Cheah YC, Rosenblatt HM et al. Congenital heart disease in mice deficient for the DiGeorge syndrome region. Nature 1999; 401: 379–383.

    CAS  PubMed  Google Scholar 

  79. Paylor R, McIlwain KL, McAninch R, Nellis A, Yuva-Paylor LA, Baldini A et al. Mice deleted for the DiGeorge/velocardiofacial syndrome region show abnormal sensorimotor gating and learning and memory impairments. Hum Mol Genet 2001; 10: 2645–2650.

    Article  CAS  PubMed  Google Scholar 

  80. Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC, Baldwin J et al. Initial sequencing and analysis of the human genome. Nature 2001; 409: 860–921.

    Article  CAS  PubMed  Google Scholar 

  81. Williams NM, Bowen T, Spurlock G, Norton N, Williams HJ, Hoogendoorn B et al. Determination of the genomic structure and mutation screening in schizophrenic individuals for five subunits of the N-methyl-D-aspartate glutamate receptor. Mol Psychiatry 2002; 7: 508–514.

    Article  CAS  PubMed  Google Scholar 

  82. Williams J, Spurlock G, McGuffin P, Mallet J, Nothen MM, Gill M et al. Association between schizophrenia and T102C polymorphism of the 5-hydroxytryptamine type 2A-receptor gene. Lancet 1996; 347: 1294–1296.

    Article  CAS  PubMed  Google Scholar 

  83. Inayama Y, Yoneda H, Sakai T, Ishida Y, Nonomura Y, Kono R et al. Positive association between a DNA sequence variant in the serotonin 2A receptor gene and schizophrenia. Am J Med Genet 1996; 67: 103–105.

    Article  CAS  PubMed  Google Scholar 

  84. Williams J, McGuffin P, Nothen M, Owen MJ, The EMASS Collaborative Group. Meta-analysis of association between the 5-HT2a receptor T102C polymorphism and schizophrenia. Lancet 1997; 349: 1221.

    Article  CAS  PubMed  Google Scholar 

  85. Lohmueller KE, Pearce CL, Pike M, Lander ES, Hirschhorn JN . Meta-analysis of genetic association studies supports a contribution of common variants to susceptibility to common disease. Nat Genet 2003; 33: 177–182.

    Article  CAS  PubMed  Google Scholar 

  86. Bray NJ, Buckland PR, Hall H, Owen MJ, O'Donovan MC . The serotonin-2A receptor gene locus does not contain common polymorphisms or epigenetic variation affecting expression in adult brain. Mol Psychiatry 2003, (in press).

  87. Duan J, Wainwright MS, Comeron JP, Saitou N, Sanders AR, Gelernter J et al. Synonymous mutations in the human dopamine receptor D2 (DRD2) affect mRNA stability and synthesis of the receptor. Hum Mol Genet 2003; 12: 205–216.

    Article  CAS  PubMed  Google Scholar 

  88. Arinami T, Gao M, Hamaguchi H, Toru MA . Functional polymorphism in the promoter region of the dopamine D2 receptor gene is associated with schizophrenia. Hum Mol Genet 1997; 6: 577–582.

    Article  CAS  PubMed  Google Scholar 

  89. Ohara K, Nagai M, Tani K, Nakamura Y, Ino A, Ohara K . Functional polymorhism of −141c Ins/Del in the dopamine D2 receptor gene promoter and schizophrenia. Psychiatry Res 1998; 81: 117–123.

    Article  CAS  PubMed  Google Scholar 

  90. Jonsson EG, Nothen MM, Neidt H, Forslund K, Rylander G, Mattila-Evenden M et al. Association between a promoter polymorphism in the dopamine D2 receptor gene and schizophrenia. Schizophr Res 1999; 40: 31–36.

    Article  CAS  PubMed  Google Scholar 

  91. Li T, Hu X, Chandy KG, Fantino E, Kalman K, Gutman G et al. Transmission disequilibrium analysis of a triplet repeat within the HkCa3 gene using family trios with schizophrenia. Biochem Biophys Res Commun 1998; 251: 662–665.

    Article  CAS  PubMed  Google Scholar 

  92. Breen G, Brown J, Maude S, Fox H, Collier D, Li T et al. −141 C Del/Ins polymorphism of the dopamine receptor 2 gene is associatedwith schizophrenia in a British population. Am J Med Genet Neuropsychiatr Genet 1999; 88: 407–410.

    Article  CAS  Google Scholar 

  93. Crocq MA, Mant R, Asherson P, Williams J, Hode Y, Mayerova A et al. Association between schizophrenia and homozygosity at the dopamine-d3 receptor gene. J Med Genet 1992; 29: 858–860.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Williams J, Spurlock G, Holmans P, Mant R, Murphy K, Jones L et al. A meta-analysis and transmission disequilibrium study of association between the dopamine D3 receptor gene and schizophrenia. Mol Psychiatry 1998; 3: 141–149.

    Article  CAS  PubMed  Google Scholar 

  95. Anney RJ, Rees MI, Bryan E, Spurlock G, Williams N, Norton N et al. Characterisation, mutation detection, and association analysis of alternative promoters and 5′ UTRs of the human dopamine D3 receptor gene in schizophrenia. Mol Psychiatry 2002; 7: 493–502.

    Article  CAS  PubMed  Google Scholar 

  96. Horikawa Y, Oda N, Cox NJ, Li X, Orho-Melander M, Hara M et al. Genetic variation in the gene encoding calpain-10 is associated with type 2 diabetes mellitus. Nat Genet 2000; 26: 163–175.

    Article  CAS  PubMed  Google Scholar 

  97. Hugot JP, Chamaillard M, Zouali H, Lesage S, Cezard JP, Belaiche J et al. Association of NOD2 leucine-rich repeat variants with susceptibility to Crohn's disease. Nature 2001; 411: 599–603.

    Article  CAS  PubMed  Google Scholar 

  98. Rioux JD, Daly MJ, Silverberg MS, Lindblad K, Steinhart H, Cohen Z et al. Genetic variation in the 5q31 cytokine gene cluster confers susceptibility to Crohn disease. Nat Genet 2001; 29: 223–228.

    Article  CAS  PubMed  Google Scholar 

  99. Van Eerdewegh P, Little RD, Dupuis J, Del Mastro RG, Falls K, Simon J et al. Association of the ADAM33 gene with asthma and bronchial hyperresponsiveness. Nature 2002; 418: 426–430.

    Article  CAS  PubMed  Google Scholar 

  100. Ueda H, Howson JMM, Esposito L, Heward J, Snook H, Chamberlain G et al. Association of the T-cell regulatory gene CTLA4 with susceptibility to autoimmune disease. Nature 2003; 423: 506–511.

    Article  CAS  PubMed  Google Scholar 

  101. Weiss KM, Terwilliger JD . How many diseases does it take to map a gene with SNPs? Nat Genet 2000; 26: 151–157.

    Article  CAS  PubMed  Google Scholar 

  102. Straub RE, Jiang Y, MacLean CJ, Ma Y, Webb BT, Myakishev MV et al. Genetic variation in the 6p22.3 gene DTNBP1, the human ortholog of the mouse dysbindin gene, is associated with schizophrenia. Am J Hum Genet 2002; 71: 337–348.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Schwab SG, Knapp M, Mondabon S, Hallmayer J, Borrmann-Hassenbach M, Albus M et al. Support for association of schizophrenia with genetic variation in the 6p22.3 gene, dysbindin, in sib-pair families with linkage and in an additional sample of triad families. Am J Hum Genet 2003; 72: 185–190.

    Article  CAS  PubMed  Google Scholar 

  104. Morris DW, McGhee KA, Schwaiger S, Scully P, Quinn J, Meagher D et al. No evidence for association of the dysbindin gene [DTNBP1] with schizophrenia in an Irish population-based study. Schizophr Res 2003; 60: 167–172.

    Article  PubMed  Google Scholar 

  105. Williams NM, Preece A, Morris DW, Spurlock G, Bray NJ, Stephens M et al. Identification in two independent samples of a novel haplotype of the dystobrevin binding protein gene(DTNBP1) that is associated with schizophrenia. (submitted for publication).

  106. Bray NJ, Buckland PR, Owen MJ, O'Donovan MC . Cis-acting variation in the expression of a high proportion of genes in human brain. Hum Genet 2003; 113: 149–153.

    PubMed  Google Scholar 

  107. Stefansson H, Sarginson J, Kong A, Yates P, Steinthorsdottir V, Gudfinnsson E et al. Association of neuregulin 1 with schizophrenia confirmed in a Scottish population. Am J Hum Genet 2003; 72: 83–87.

    Article  CAS  PubMed  Google Scholar 

  108. Williams NM, Preece A, Spurlock G, Norton N, Williams HJ, Zammit S et al. Support for genetic variation in neuregulin 1 and susceptibility to schizophrenia. Mol Psychiatry 2003; 8: 485–487.

    Article  CAS  PubMed  Google Scholar 

  109. Ioannidis JP, Ntzani EE, Trikalinos TA, Contopoulos-Ioannidis DG . Replication validity of genetic studies. Nat Genet 2001; 29: 306–309.

    Article  CAS  PubMed  Google Scholar 

  110. Zanazzi G, Einheber S, Westreich R, Hannocks MJ, Bedell-Hogan D, Marchionni MA et al. Glial growth factor/neuregulin inhibits Schwann cell myelination and induces demyelination. J Cell Biol 2001; 152: 1289–1299.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Syroid DE, Maycox PR, Burrola PG, Liu N, Wen D, Lee KF et al. Cell death in the Schwann cell lineage and its regulation by neuregulin. Proc Natl Acad Sci USA 1996; 93: 9229–9234.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Canoll PD, Musacchio JM, Hardy R, Reynolds R, Marchionni MA, Salzer JL . GGF/neuregulin is a neuronal signal that promotes the proliferation and survival and inhibits the differentiation of oligodendrocyte progenitors. Neuron 1996; 17: 229–243.

    Article  CAS  PubMed  Google Scholar 

  113. Davis KL, Stewart DG, Friedman JI, Buchsbaum M, Harvey PD, Hof PR et al. White matter changes in schizophrenia: evidence for myelin-related dysfunction. Arch Gen Psychiatry 2003; 60: 443–456.

    Article  PubMed  Google Scholar 

  114. Moises HW, Zoega T, Gottesman II . The glial growth factors deficiency and synaptic destabilization hypothesis of schizophrenia. BMC Psychiatry 2002; 2: 8.

    Article  PubMed  PubMed Central  Google Scholar 

  115. Hakak Y, Walker JR, Li C, Wong WH, Davis KL, Buxbaum JD et al. Genome-wide expression analysis reveals dysregulation of myelination-related genes in chronic schizophrenia. Proc Natl Acad Sci USA 2001; 98: 4746–4751.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Stevens ER, Esguerra M, Kim PM, Newman EA, Snyder SH, Zahs KR et al. D-serine and serine racemase are present in the vertebrate retina and contribute to the physiological activation of NMDA receptors. Proc Natl Acad Sci USA 2003; 100: 6789–6794.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Kumashiro S, Hashimoto A, Nishikawa T . Free d-serum in post-mortem brains and spinal cords of inidividuals with and without neruopsychiatric dieseases. Brain Res 1995; 681: 117–125.

    Article  CAS  PubMed  Google Scholar 

  118. Hashimito K, Fukushima T, Shimizu E, Komatsu N, Watanabe H, Shinoda N et al. Decreased serum levels of D-serine in patients with schizophrenia. Arch Gen Psychiatry 2003; 60: 576–772.

    Google Scholar 

  119. Chumakov I, Blumenfeld M, Guerassimenko O, Cavarec L, Palicio M, Abderrahim H et al. Genetic and physiological data implicating the new human gene G72 and the gene for D-amino acid oxidase in schizophrenia. Proc Natl Acad Sci USA 2002; 99: 13675–13680.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Hattori E, Liu C, Badner JA, Bonner TI, Christian SL, Maheshwari M, Detera-Wadleigh SD, Gibbs RA, Gershon ES . Polymorphisms at the G72/G30 gene locus, on 13q33, are associated with bipolar disorder in two independent pedigree series. Am J Hum Genet 2003; 72: 1131–1140.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Chowdari KV, Mirnics K, Semwal P, Wood J, Lawrence E, Bhatia T et al. Association and linkage analyses of RGS4 polymorphisms in schizophrenia. Hum Mol Genet 2002; 11: 1373–1380.

    Article  CAS  PubMed  Google Scholar 

  122. Mirnics K, Middleton FA, Lewis DA, Levitt P . Analysis of complex brain disorders with gene expression microarrays: schizophrenia as a disease of the synapse. Trends Neurosci 2001; 24: 479–486.

    Article  CAS  PubMed  Google Scholar 

  123. Mirnics K, Middleton FA, Stanwood GD, Lewis DA, Levitt P . Disease-specific changes in regulator of G-protein signaling 4 (RGS4) expression in schizophrenia. Mol Psychiatry 2001; 6: 293–301.

    Article  CAS  PubMed  Google Scholar 

  124. Jeffery DR, Roth JA . Characterization of membrane-bound and soluble catechol-O-methyltransferase from human frontal cortex. J Neurochem 1984; 42: 826–832.

    Article  CAS  PubMed  Google Scholar 

  125. Grossman MH, Creveling CR, Rybczynski R, Braverman M, Isersky C, Breakefield XO . Soluble and particulate forms of rat catechol-O-methyltransferase distinguished by gel electrophoresis and immune fixation. J Neurochem 1985; 44: 421–432.

    Article  CAS  PubMed  Google Scholar 

  126. Tenhunen J, Salminen M, Lundstrom K, Kiviluoto T, Savolainen R, Ulmanen I . Genomic organization of the human catechol O-methyltransferase gene and its expression from two distinct promoters. Eur J Biochem 1994; 223: 1049–1059.

    Article  CAS  PubMed  Google Scholar 

  127. Lachman HM, Papolos DF, Saito T, Yu YM, Szumlanski CL, Weinshilboum RM . Human catechol-O-methyltransferase pharmacogenetics: description of a functional polymorphism and its potential application to neuropsychiatric disorders. Pharmacogenetics 1996; 6: 243–250.

    Article  CAS  PubMed  Google Scholar 

  128. Lotta T, Vidgren J, Tilgmann C, Ulmanen I, Melen K, Julkunen I et al. Kinetics of human soluble and membrane-bound catechol O-methyltransferase: a revised mechanism and description of the thermolabile variant of the enzyme. Biochemistry 1995; 34: 4202–4210.

    Article  CAS  PubMed  Google Scholar 

  129. Daniels JK, Williams NM, Williams J, Jones LA, Cardno AG, Murphy KC et al. No evidence for allelic association between schizophrenia and a polymorphism determining high or low catechol O-methyltransferase activity. Am J Psychiatry 1996; 153: 268–270.

    Article  CAS  PubMed  Google Scholar 

  130. Liou YJ, Tsai SJ, Hong CJ, Wang YC, Lai IC . Association analysis of a functional catechol-O-methyltransferase gene polymorphism in schizophrenic patients in Taiwan. Neuropsychobiology 2001; 43: 11–14.

    Article  CAS  PubMed  Google Scholar 

  131. Ohmori O, Shinkai T, Kojima H, Terao T, Suzuki T, Mita T et al. Association study of a functional catechol-O-methyltransferase gene polymorphism in Japanese schizophrenics. Neurosci Lett 1998; 243: 109–112.

    Article  CAS  PubMed  Google Scholar 

  132. Li T, Sham PC, Vallada H, Xie T, Tang X, Murray RM et al. Preferential transmission of the high activity allele of COMT in schizophrenia. Psychiatr Genet 1996; 6: 131–133.

    Article  CAS  PubMed  Google Scholar 

  133. Kunugi H, Vallada HP, Sham PC, Hoda F, Arranz MJ, Li T et al. Catechol-O-methyltransferase polymorphisms and schizophrenia: a transmission disequilibrium study in multiply affected families. Psychiatr Genet 1997; 7: 97–101.

    Article  CAS  PubMed  Google Scholar 

  134. Egan MF, Goldberg TE, Kolachana BS, Callicott JH, Mazzanti CM, Straub RE et al. Effect of COMT Val108/158 Met genotype on frontal lobe function and risk for schizophrenia. Proc Natl Acad Sci USA 2001; 98: 6917–6922.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Malhotra AK, Kestler LJ, Mazzanti C, Bates JA, Goldberg T, Goldman D . A functional polymorphism in the COMT gene and performance on a test of prefrontal cognition. Am J Psychiatry 2002; 159: 652–654.

    Article  PubMed  Google Scholar 

  136. Shifman S, Bronstein M, Sternfeld M, Pisante-Shalom A, Lev-Lehman E, Weizman A et al. A highly significant association between a COMT haplotype and schizophrenia. Am J Hum Genet 2002; 71: 1296–1302.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Bray NJ, Buckland PR, Williams NM, Williams HJ, Norton N, Owen MJ et al. A haplotype implicated in schizophrenia susceptibility is associated with reduced COMT expression in human brain. Am J Hum Genet 2003; 73: 152–161.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Liu H, Heath SC, Sobin C, Roos JL, Galke BL, Blundell ML et al. Genetic variation in at the 22q11 PRODH2/DGCR6 locus presents an unusual pattern and increases susceptibility to schizophrenia. Proc Natl Acad Sci USA 2002; 99: 3717–37722.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Gogos JA, Santha M, Takacs Z, Beck KD, Luine V, Lucas LR et al. The gene encoding proline dehydrogenase modulates sensorimotor gating in mice. Nat Genet 1999; 21: 434–439.

    Article  CAS  PubMed  Google Scholar 

  140. Fan JB, Ma J, Zhang CS, Tang JX, Gu NF, Feng GY et al. A family-based association study of T1945C polymorphism in the proline dehydrogenase gene and schizophrenia in the Chinese population. Neurosci Lett 2003; 338: 252–254.

    Article  CAS  PubMed  Google Scholar 

  141. Williams HJ, Williams N, Spurlock G, Norton N, Ivanov D, McCreadie RG et al. Association between PRODH and schizophrenia is not confirmed. Mol Psychiatry 2003; 8: 644–645.

    Article  CAS  PubMed  Google Scholar 

  142. Mackay TF . Quantitative trait loci in Drosophila. Nat Rev Genet 2001; 2: 11–20.

    Article  CAS  PubMed  Google Scholar 

  143. Williams HJ, Williams N, Spurlock G, Norton N, Zammit S, Kirov G et al. Detailed analysis of PRODH and PsPRODH reveals no association with schizophrenia. Am J Med Genet (Neuropsychiatr Genet) 2003; 120: 42–46.

    Article  Google Scholar 

  144. Prokunina L, Castillejo-Lopez C, Oberg F, Gunnarsson I, Berg L, Magnusson V et al. A regulatory polymorphism in PDCD1 is associated with susceptibility to systemic lupus erythematosus in humans. Nat Genet 2002; 32: 666–669.

    Article  CAS  PubMed  Google Scholar 

  145. Ozaki K, Ohnishi Y, Iida A, Sekine A, Yamada R, Tsunoda T et al. Functional SNPs in the lymphotoxin-alpha gene that are associated with susceptibility to myocardial infarction. Nat Genet 2002; 32: 650–654.

    Article  CAS  PubMed  Google Scholar 

  146. Cox R, Bouzekri N, Martin S, Southam L, Hugill A, Golamaully M et al. Angiotensin-1-converting enzyme (ACE) plasma concentration is influenced by multiple ACE-linked quantitative trait nucleotides. Hum Mol Genet 2002; 11: 2969–2977.

    Article  CAS  PubMed  Google Scholar 

  147. Owen MJ, McGuffin P, Gottesman II . Psychiatric Genetics and Genomics. McGuffin P, Owen MJ, Gottesman II (eds) Oxford University Press: Oxford, 2002.

  148. Harrison PJ, Owen MJ . Genes for schizophrenia? Recent findings and their pathophysiological implications. Lancet 2003; 361: 417–419.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to the MRC, NIH and the Wellcome Trust for support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M J Owen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Owen, M., Williams, N. & O'Donovan, M. The molecular genetics of schizophrenia: new findings promise new insights. Mol Psychiatry 9, 14–27 (2004). https://doi.org/10.1038/sj.mp.4001444

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.mp.4001444

Keywords

This article is cited by

Search

Quick links