Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Molecular Targets for Therapy

Multidrug resistance-associated protein 1 expression is under the control of the phosphoinositide 3 kinase/Akt signal transduction network in human acute myelogenous leukemia blasts

Abstract

A high incidence of relapses following induction chemotherapy is a major hindrance to patient survival in acute myelogenous leukemia (AML). There is strong evidence that activation of the phosphoinositide 3 kinase (PI3K)/Akt signaling network plays a significant role in rendering AML blasts drug resistant. An important mechanism underlying drug resistance is represented by overexpression of membrane drug transporters such as multidrug resistance-associated protein 1 (MRP1) or 170-kDa P-glycoprotein (P-gp). Here, we present evidence that MRP1, but not P-gp, expression is under the control of the PI3K/Akt axis in AML blasts. We observed a highly significant correlation between levels of phosphorylated Akt and MRP1 expression in AML cells. Furthermore, incubation of AML blasts with wortmannin, a PI3K pharmacological inhibitor, resulted in lower levels of phosphorylated Akt, downregulated MRP1 expression, and decreased Rhodamine 123 extrusion in an in vitro functional dye efflux assay. We also demonstrate that wortmannin-dependent PI3K/Akt inhibition upregulated p53 protein levels in most AML cases, and this correlated with diminished MRP1 expression and enhanced phosphorylation of murine double minute 2 (MDM2). Taken together, these data suggest that PI3K/Akt activation may lead to the development of chemoresistance in AML blasts through a mechanism involving a p53-dependent suppression of MRP1 expression.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Bellacosa A, Kumar CC, Di Cristofano A, Testa JR . Activation of AKT kinases in cancer: implications for therapeutic targeting. Adv Cancer Res 2005; 94: 29–86.

    Article  CAS  PubMed  Google Scholar 

  2. Hanada M, Feng J, Hemmings BA . Structure, regulation and function of PKB/AKT–a major therapeutic target. Biochim Biophys Acta 2004; 1697: 3–16.

    Article  CAS  PubMed  Google Scholar 

  3. Chang F, Lee JT, Navolanic PM, Steelman LS, Shelton JG, Blalock WL et al. Involvement of PI3K/Akt pathway in cell cycle progression, apoptosis, and neoplastic transformation: a target for cancer chemotherapy. Leukemia 2003; 17: 590–603.

    Article  CAS  PubMed  Google Scholar 

  4. Steelman LS, Pohnert SC, Shelton JG, Franklin RA, Bertrand FE, McCubrey JA . JAK/STAT, Raf/MEK/ERK, PI3K/Akt and BCR-ABL in cell cycle progression and leukemogenesis. Leukemia 2004; 18: 189–218.

    Article  CAS  PubMed  Google Scholar 

  5. Hennessy BT, Smith DL, Ram PT, Lu Y, Mills GB . Exploiting the PI3K/AKT pathway for cancer drug discovery. Nat Rev Drug Discov 2005; 4: 988–1004.

    Article  CAS  PubMed  Google Scholar 

  6. Steffen B, Muller-Tidow C, Schwable J, Berdel WE, Serve H . The molecular pathogenesis of acute myeloid leukemia. Crit Rev Oncol Hematol 2005; 56: 195–221.

    Article  PubMed  Google Scholar 

  7. Lelievre H, Ferrand A, Mozziconacci MJ, Birnbaum D, Delaval B . Myeloproliferative disorders: premalignant, stem cell, G1 diseases? Leukemia 2006; 20: 1475–1480.

    Article  CAS  PubMed  Google Scholar 

  8. Xu Q, Simpson SE, Scialla TJ, Bagg A, Carroll M . Survival of acute myeloid leukemia cells requires PI3 kinase activation. Blood 2003; 102: 972–980.

    Article  CAS  PubMed  Google Scholar 

  9. Zhao S, Konopleva M, Cabreira-Hansen M, Xie Z, Hu W, Milella M et al. Inhibition of phosphatidylinositol 3-kinase dephosphorylates BAD and promotes apoptosis in myeloid leukemias. Leukemia 2004; 18: 267–275.

    Article  CAS  PubMed  Google Scholar 

  10. Grandage VL, Gale RE, Linch DC, Khwaja A . PI3-kinase/Akt is constitutively active in primary acute myeloid leukaemia cells and regulates survival and chemoresistance via NF-κB, Mapkinase and p53 pathways. Leukemia 2005; 19: 586–594.

    Article  CAS  PubMed  Google Scholar 

  11. Karajannis MA, Vincent L, Direnzo R, Shmelkov SV, Zhang F, Feldman EJ et al. Activation of FGFR1β signaling pathway promotes survival, migration and resistance to chemotherapy in acute myeloid leukemia cells. Leukemia 2006; 20: 979–986.

    Article  CAS  PubMed  Google Scholar 

  12. Matkovic K, Brugnoli F, Bertagnolo V, Banfic H, Visnjic D . The role of the nuclear Akt activation and Akt inhibitors in all-trans-retinoic acid-differentiated HL-60 cells. Leukemia 2006; 20: 941–951.

    Article  CAS  PubMed  Google Scholar 

  13. Martelli AM, Nyakern M, Tabellini G, Bortul R, Tazzari PL, Evangelisti C et al. Phosphoinositide 3-kinase/Akt signaling pathway and its therapeutical implications for human acute myeloid leukemia. Leukemia 2006; 20: 911–928.

    Article  CAS  PubMed  Google Scholar 

  14. Min YH, Eom JI, Cheong JW, Maeng HO, Kim JY, Jeung HK et al. Constitutive phosphorylation of Akt/PKB protein in acute myeloid leukemia: its significance as a prognostic variable. Leukemia 2003; 17: 995–997.

    Article  CAS  PubMed  Google Scholar 

  15. Kim R . Recent advances in understanding the cell death pathways activated by anticancer therapy. Cancer 2005; 103: 1551–1560.

    Article  CAS  PubMed  Google Scholar 

  16. Lee Jr JT, Steelman LS, McCubrey JA . Phosphatidylinositol 3’-kinase activation leads to multidrug resistance protein-1 expression and subsequent chemoresistance in advanced prostate cancer cells. Cancer Res 2004; 64: 8397–8404.

    Article  CAS  PubMed  Google Scholar 

  17. Scotto KW . Transcriptional regulation of ABC drug transporters. Oncogene 2003; 22: 7496–7511.

    Article  CAS  PubMed  Google Scholar 

  18. Bonhoure E, Pchejetski D, Aouali N, Morjani H, Levade T, Kohama T et al. Overcoming MDR-associated chemoresistance in HL-60 acute myeloid leukemia cells by targeting sphingosine kinase-1. Leukemia 2006; 20: 95–102.

    Article  CAS  PubMed  Google Scholar 

  19. Legrand O, Simonin G, Beauchamp-Nicoud A, Zittoun R, Marie JP . Simultaneous activity of MRP1 and Pgp is correlated with in vitro resistance to daunorubicin and with in vivo resistance in adult acute myeloid leukemia. Blood 1999; 94: 1046–1056.

    CAS  PubMed  Google Scholar 

  20. Leith CP, Kopecky KJ, Chen IM, Eijdems L, Slovak ML, McConnell TS et al. Frequency and clinical significance of the expression of the multidrug resistance proteins MDR1/P-glycoprotein, MRP1, and LRP in acute myeloid leukemia: a Southwest Oncology Group Study. Blood 1999; 94: 1086–1099.

    CAS  PubMed  Google Scholar 

  21. van der Kolk DM, de Vries EG, van Putten WJ, Verdonck LF, Ossenkoppele GJ, Verhoef GE et al. P-glycoprotein and multidrug resistance protein activities in relation to treatment outcome in acute myeloid leukemia. Clin Cancer Res 2000; 6: 3205–3214.

    CAS  PubMed  Google Scholar 

  22. Mahadevan D, List AF . Targeting the multidrug resistance-1 transporter in AML: molecular regulation and therapeutic strategies. Blood 2004; 104: 1940–1951.

    Article  CAS  PubMed  Google Scholar 

  23. Mantovani I, Cappellini A, Tazzari PL, Papa V, Cocco L, Martelli AM . Caspase-dependent cleavage of 170-kDa P-glycoprotein during apoptosis of human T-lymphoblastoid CEM cells. J Cell Physiol 2006; 207: 836–844.

    Article  CAS  PubMed  Google Scholar 

  24. Ito K, Olsen SL, Qiu W, Deeley RG, Cole SP . Mutation of a single conserved tryptophan in multidrug resistance protein 1 (MRP1/ABCC1) results in loss of drug resistance and selective loss of organic anion transport. J Biol Chem 2001; 276: 15616–15624.

    Article  CAS  PubMed  Google Scholar 

  25. Nyakern M, Tazzari PL, Finelli C, Bosi C, Follo MY, Grafone T et al. Frequent elevation of Akt kinase phosphorylation in blood marrow and peripheral blood mononuclear cells from high-risk myelodysplastic syndrome patients. Leukemia 2006; 20: 230–238.

    Article  CAS  PubMed  Google Scholar 

  26. van der Kolk DM, de Vries EG, Noordhoek L, van den Berg E, van der Pol MA, Muller M et al. Activity and expression of the multidrug resistance proteins P-glycoprotein, MRP1, MRP2, MRP3 and MRP5 in de novo and relapsed acute myeloid leukemia. Leukemia 2001; 15: 1544–1553.

    Article  CAS  PubMed  Google Scholar 

  27. Funato T, Harigae H, Abe S, Sasaki T . Assessment of drug resistance in acute myeloid leukemia. Expert Rev Mol Diagn 2004; 4: 705–713.

    Article  CAS  PubMed  Google Scholar 

  28. Krutzik PO, Irish JM, Nolan GP, Perez OD . Analysis of protein phosphorylation and cellular signaling events by flow cytometry: techniques and clinical applications. Clin Immunol 2004; 110: 206–221.

    Article  CAS  PubMed  Google Scholar 

  29. Ricciardi MR, McQueen T, Chism D, Milella M, Estey E, Kaldjian E et al. Quantitative single cell determination of ERK phosphorylation and regulation in relapsed and refractory primary acute myeloid leukemia. Leukemia 2005; 19: 1543–1549.

    Article  CAS  PubMed  Google Scholar 

  30. Kornblau SM, Womble M, Cade JS, Lemker E, Qiu YH . Comparative analysis of the effects of sample source and test methodology on the assessment of protein expression in acute myelogenous leukemia. Leukemia 2005; 19: 1550–1557.

    Article  CAS  PubMed  Google Scholar 

  31. Uddin S, Hussain A, Al-Hussein K, Platanias LC, Bhatia KG . Inhibition of phosphatidylinositol 3’-kinase induces preferentially killing of PTEN-null T leukemias through AKT pathway. Biochem Biophys Res Commun 2004; 320: 932–938.

    Article  CAS  PubMed  Google Scholar 

  32. Laupeze B, Amiot L, Payen L, Drenou B, Grosset JM, Lehne G et al. Multidrug resistance protein (MRP) activity in normal mature leukocytes and CD34-positive hematopoietic cells from peripheral blood. Life Sci 2001; 68: 1323–1331.

    Article  CAS  PubMed  Google Scholar 

  33. Lunghi P, Tabilio A, Dall'Aglio PP, Ridolo E, Carlo-Stella C, Pelicci PG et al. Downmodulation of ERK activity inhibits the proliferation and induces the apoptosis of primary acute myelogenous leukemia blasts. Leukemia 2003; 17: 1783–1793.

    Article  CAS  PubMed  Google Scholar 

  34. Romano D, Pertuit M, Rasolonjanahary R, Barnier JV, Magalon K, Enjalbert A et al. Regulation of the Rap1/Raf-1/Erk-1/2 cascade and prolactin release by the Pi3k/Akt pathway in pituitary cells. Endocrinology 2006; 147: 6036–6045.

    Article  CAS  PubMed  Google Scholar 

  35. Bahr O, Wick W, Weller M . Modulation of MDR/MRP by wild-type and mutant p53. J Clin Invest 2001; 107: 643–646.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Fukushima Y, Oshika Y, Tokunaga T, Hatanaka H, Tomisawa M, Kawai K et al. Multidrug resistance-associated protein (MRP) expression is correlated with expression of aberrant p53 protein in colorectal cancer. Eur J Cancer 1999; 35: 935–938.

    Article  CAS  PubMed  Google Scholar 

  37. Grossman SR, Perez M, Kung AL, Joseph M, Mansur C, Xiao ZX et al. p300/MDM2 complexes participate in MDM2-mediated p53 degradation. Mol Cell 1998; 2: 405–415.

    Article  CAS  PubMed  Google Scholar 

  38. Tallman MS, Gilliland DG, Rowe JM . Drug therapy for acute myeloid leukemia. Blood 2005; 106: 1154–1163.

    Article  CAS  PubMed  Google Scholar 

  39. Haimeur A, Conseil G, Deeley RG, Cole SP . The MRP-related and BCRP/ABCG2 multidrug resistance proteins: biology, substrate specificity and regulation. Curr Drug Metab 2004; 5: 21–53.

    Article  CAS  PubMed  Google Scholar 

  40. Kruh GD, Belinsky MG . The MRP family of drug efflux pumps. Oncogene 2003; 22: 7537–7552.

    Article  CAS  PubMed  Google Scholar 

  41. Nicholson KM, Anderson NG . The protein kinase B/Akt signalling pathway in human malignancy. Cell Signal 2002; 14: 381–395.

    Article  CAS  PubMed  Google Scholar 

  42. Bertrand FE, Steelman LS, Chappell WH, Abrams SL, Shelton JG, White ER et al. Synergy between an IGF-1R antibody and Raf/MEK/ERK and PI3K/Akt/mTOR pathway inhibitors in suppressing IGF-1R-mediated growth in hematopoietic cells. Leukemia 2006; 20: 1254–1260.

    Article  CAS  PubMed  Google Scholar 

  43. Walter RB, Raden BW, Hong TC, Flowers DA, Bernstein ID, Linenberger ML . Multidrug resistance protein attenuates gemtuzumab ozogamicin-induced cytotoxicity in acute myeloid leukemia cells. Blood 2003; 102: 1466–1473.

    Article  CAS  PubMed  Google Scholar 

  44. Leith CP, Kopecky KJ, Godwin J, McConnell T, Slovak ML, Chen IM et al. Acute myeloid leukemia in the elderly: assessment of multidrug resistance (MDR1) and cytogenetics distinguishes biologic subgroups with remarkably distinct responses to standard chemotherapy. A Southwest Oncology Group study. Blood 1997; 89: 3323–3329.

    CAS  PubMed  Google Scholar 

  45. Billottet C, Grandage VL, Gale RE, Quattropani A, Rommel C, Vanhaesebroeck B et al. A selective inhibitor of the p110δ isoform of PI 3-kinase inhibits AML cell proliferation and survival and increases the cytotoxic effects of VP16. Oncogene 2006; 25: 6648–6659.

    Article  CAS  PubMed  Google Scholar 

  46. Szentpetery Z, Kern A, Liliom K, Sarkadi B, Varadi A, Bakos E . The role of the conserved glycines of ATP-binding cassette signature motifs of MRP1 in the communication between the substrate-binding site and the catalytic centers. J Biol Chem 2004; 279: 41670–41678.

    Article  CAS  PubMed  Google Scholar 

  47. Abdul-Ghani R, Serra V, Gyorffy B, Jurchott K, Solf A, Dietel M et al. The PI3K inhibitor LY294002 blocks drug export from resistant colon carcinoma cells overexpressing MRP1. Oncogene 2006; 25: 1743–1752.

    Article  CAS  PubMed  Google Scholar 

  48. Tolloczko B, Turkewitsch P, Al-Chalabi M, Martin JG . LY-294002 [2-(4-morpholinyl)-8-phenyl-4H-1-benzopyran-4-one] affects calcium signaling in airway smooth muscle cells independently of phosphoinositide 3-kinase inhibition. J Pharmacol Exp Ther 2004; 311: 787–793.

    Article  CAS  PubMed  Google Scholar 

  49. Sullivan GF, Yang JM, Vassil A, Yang J, Bash-Babula J, Hait WN . Regulation of expression of the multidrug resistance protein MRP1 by p53 in human prostate cancer cells. J Clin Invest 2000; 105: 1261–1267.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Tsang WP, Chau SP, Fung KP, Kong SK, Kwok TT . Modulation of multidrug resistance-associated protein 1 (MRP1) by p53 mutant in Saos-2 cells. Cancer Chemother Pharmacol 2003; 51: 161–166.

    CAS  PubMed  Google Scholar 

  51. Faderl S, Kantarjian HM, Estey E, Manshouri T, Chan CY, Rahman Elsaied A et al. The prognostic significance of p16(INK4a)/p14(ARF) locus deletion and MDM-2 protein expression in adult acute myelogenous leukemia. Cancer 2000; 89: 1976–1982.

    Article  CAS  PubMed  Google Scholar 

  52. Kojima K, Konopleva M, Samudio IJ, Shikami M, Cabreira-Hansen M, McQueen T et al. MDM2 antagonists induce p53-dependent apoptosis in AML: implications for leukemia therapy. Blood 2005; 106: 3150–3159.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Wang Q, Beck WT . Transcriptional suppression of multidrug resistance-associated protein (MRP) gene expression by wild-type p53. Cancer Res 1998; 58: 5762–5769.

    CAS  PubMed  Google Scholar 

  54. Tiwari G, Sakaue H, Pollack JR, Roth RA . Gene expression profiling in prostate cancer cells with Akt activation reveals Fra-1 as an Akt-inducible gene. Mol Cancer Res 2003; 1: 475–484.

    CAS  PubMed  Google Scholar 

  55. Furukawa Y, Sutheesophon K, Wada T, Nishimura M, Saito Y, Ishii H et al. Methylation silencing of the Apaf-1 gene in acute leukemia. Mol Cancer Res 2005; 3: 325–334.

    Article  CAS  PubMed  Google Scholar 

  56. Zhou DC, Ramond S, Viguie F, Faussat AM, Zittoun R, Marie JP . Sequential emergence of MRP- and MDR1-gene over-expression as well as MDR1-gene translocation in homoharringtonine-selected K562 human leukemia cell lines. Int J Cancer 1996; 65: 365–371.

    Article  CAS  PubMed  Google Scholar 

  57. Sonneveld P, List AF . Chemotherapy resistance in acute myeloid leukaemia. Best Pract Res Clin Haematol 2001; 14: 211–233.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from: CARISBO Foundation, Associazione Italiana Ricerca sul Cancro (AIRC Regional grants), Italian MIUR FIRB 2001, and COFIN 2005. JAM was supported by the USA Public Health Service (RO1098195).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A M Martelli.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tazzari, P., Cappellini, A., Ricci, F. et al. Multidrug resistance-associated protein 1 expression is under the control of the phosphoinositide 3 kinase/Akt signal transduction network in human acute myelogenous leukemia blasts. Leukemia 21, 427–438 (2007). https://doi.org/10.1038/sj.leu.2404523

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2404523

Keywords

This article is cited by

Search

Quick links