Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Animal models of acute myelogenous leukaemia – development, application and future perspectives

Abstract

From the early inception of the transplant models through to contemporary genetic and xenograft models, evolution of murine leukaemic model systems have been critical to our general comprehension and treatment of cancer, and, more specifically, disease states such as acute myelogenous leukaemia (AML). However, even with modern advances in therapeutics and molecular diagnostics, the majority of AML patients die from their disease. Thus, in the absence of definitive in vitro models which precisely recapitulate the in vivo setting of human AMLs and failure of significant numbers of new drugs late in clinical trials, it is essential that murine AML models are developed to exploit more specific, targeted therapeutics. While various model systems are described and discussed in the literature from initial transplant models such as BNML and spontaneous murine leukaemia virus models, to the more definitive genetic and clinically significant NOD/SCID xenograft models, there exists no single compendium which directly assesses, reviews or compares the relevance of these models. Thus, the function of this article is to provide clinicians and experimentalists a chronological, comprehensive appraisal of all AML model systems, critical discussion on the elucidation of their roles in our understanding of AML and consideration to their efficacy in the development of AML chemotherapeutics.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1

Similar content being viewed by others

References

  1. Lowenberg B, Downing JR, Burnett A . Acute myeloid leukemia. N Engl J Med 1999; 341: 1051–1062.

    CAS  PubMed  Google Scholar 

  2. Ries LAG, Eisner MP, Kosary CL, Hankey BF, Miller BA, Clegg L et al. (eds). SEER Cancer Statistics Review, 1975–2000. Bethesda, MD: National Cancer Institute, 2003.

    Google Scholar 

  3. Trail PA, King HD, Dubowchik GM . Monoclonal antibody drug immunoconjugates for targeted treatment of cancer. Cancer Immunol Immunother 2003; 52: 328–337.

    CAS  PubMed  Google Scholar 

  4. Appelbaum FR, Rowe JM, Radich J, Dick JE . Acute myeloid leukemia. Hematology (Am Soc Hematol Educ Program) 2001, 62–86.

  5. Bennett JM, Catovsky D, Daniel MT, Flandrin G, Galton DA, Gralnick HR et al. Proposals for the classification of the acute leukaemias. French–American–British (FAB) co-operative group. Br J Haematol 1976; 33: 451–458.

    CAS  PubMed  Google Scholar 

  6. Bennett JM, Catovsky D, Daniel MT, Flandrin G, Galton DA, Gralnick HR et al. Proposed revised criteria for the classification of acute myeloid leukemia. A report of the French–American–British Cooperative Group. Ann Intern Med 1985; 103: 620–625.

    CAS  PubMed  Google Scholar 

  7. Cheson BD, Cassileth PA, Head DR, Schiffer CA, Bennett JM, Bloomfield CD et al. Report of the National Cancer Institute-sponsored workshop on definitions of diagnosis and response in acute myeloid leukemia. J Clin Oncol 1990; 8: 813–819.

    CAS  PubMed  Google Scholar 

  8. Casasnovas RO, Campos L, Mugneret F, Charrin C, Bene MC, Garand R et al. Immunophenotypic patterns and cytogenetic anomalies in acute non-lymphoblastic leukemia subtypes: a prospective study of 432 patients. Leukemia 1998; 12: 34–43.

    CAS  PubMed  Google Scholar 

  9. van Bekkum DW, Hagenbeek A . Relevance of the BN leukemia as a model for human acute myeloid leukemia. Blood Cells 1977; 3: 565–579.

    Google Scholar 

  10. Burchenal JH . Murine and human leukaemias. Bibl Haematol 1975; 40: 665–677.

    CAS  Google Scholar 

  11. Law LW, Dunn TB, Boyle PJ, Miller JH . Observations of the effect of a folic acid antagonist on transplantable lymphoid leukemias in mice. J Natl Cancer Inst 1949; 10: 179–192.

    CAS  PubMed  Google Scholar 

  12. Dave CJ, Potter M . Morphological and biological progression of a lymphoid neoplasm of the mouse in vitro and in vivo. Am J Pathol 1957; 33: 603–607.

    Google Scholar 

  13. Kline I, Venditti JM, Tyrer DD, Mantel N, Goldin A . Chemotherapy of leukemia L1210 in mice with 1-beta-D-arabinofuranosylcytosine hydrochloride. II. Effectiveness against intracerebrally and subcutaneously inoculated leukemic cells. Cancer Res 1966; 26: 1930–1937.

    CAS  PubMed  Google Scholar 

  14. Kline I, Venditti J, Mead J, Tyrer D, Goldin A . The antileukemic effectiveness of 5-fluorouracil and methotrexate in the combination chemotherapy of advanced leukemia L1210 in mice. Cancer Res 1966; 26: 848–852.

    CAS  PubMed  Google Scholar 

  15. Law LW, Taormina V, Boyle PJ . Responce of acute lymphocytic leukemias to the purine antagonist 6-mercaptopurine. ANN NY Acad Sci 1954; 60: 244–250.

    CAS  PubMed  Google Scholar 

  16. Goldin A . Studies with high-dose methotrexate-historical background. Cancer Treat Rep 1978; 62: 307–312.

    CAS  PubMed  Google Scholar 

  17. Casazza AM, Pratesi G, Giuliani F, Di Marco A . Antileukemic activity of 4-demethoxydaunorubicin in mice. Tumorigenesis 1980; 66: 549–564.

    CAS  Google Scholar 

  18. Fujimoto S, Ogawa M . Antitumor activity of mitoxantrone against murine experimental tumors: comparative analysis against various antitumor antibiotics. Cancer Chemother Pharmacol 1982; 8: 157–162.

    CAS  PubMed  Google Scholar 

  19. Jensen PB, Roed H, Skovsgaard T, Friche E, Vindelov L, Hansen HH et al. Antitumor activity of the two epipodophyllotoxin derivatives VP-16 and VM-26 in preclinical systems: a comparison of in vitro and in vivo drug evaluation. Cancer Chemother Pharmacol 1990; 27: 194–198.

    CAS  PubMed  Google Scholar 

  20. Jackson Jr DV, Long TR, Trahey TF, Morgan TM . Synergistic antitumor activity of vincristine and VP-16-213. Cancer Chemother Pharmacol 1984; 13: 176–180.

    CAS  PubMed  Google Scholar 

  21. Kessel D, Wheeler C, Chou TH, Howard WS, Johnson RK . Studies on a mode of resistance to m-AMSA. Biochem Pharmacol 1982; 31: 3008–3010.

    CAS  PubMed  Google Scholar 

  22. Loefer JB . Studies with a lymphosarcoma, sarcoma 180 and leukemia P1534 in mice. Cancer Res 1953; 13: 59–63.

    CAS  PubMed  Google Scholar 

  23. Dunn TB, Potter M . A transplantable mast-cell neoplasm in the mouse. J Natl Cancer Inst 1957; 18: 587–601.

    CAS  PubMed  Google Scholar 

  24. Yung NC, Burchenal JH, Fecher R, Duschensky R, Fox JJ . Nucleosides. XI. Synthesis of 1-β-D-arabinofuranosyl-5-fluorouracil and related nucleosides. J Am Chem Soc 1961; 83: 4060–4065.

    CAS  Google Scholar 

  25. Old LJ, Boyse EA, Campbell HA . Leukaemia-inhibiting properties and L-asparaginase activity of sera from certain South American rodents. Nature 1963; 198: 801.

    CAS  PubMed  Google Scholar 

  26. Roberts J, Schmid FA, Old LJ, Stockert E . A comparative study of the antitumor effectiveness of E. coli and Erwinia asparaginases. Cancer Biochem Biophys 1976; 1: 175–178.

    CAS  PubMed  Google Scholar 

  27. Schabel Jr FM, Skipper HE, Laster Jr WR, Trader MW, Thompson SA . Experimental evaluation of potential anticancer agents. XX. Development of immunity to leukemia L1210 in BDF mice and effects of therapy. Cancer Chemother Rep 1966; 50: 55–77.

    PubMed  Google Scholar 

  28. Skipper HE, Schabel Jr FM, Mellett LB, Montgomery JA, Wilkoff LJ, Lloyd HH et al. Implications of biochemical, cytokinetic, pharmacologic, and toxicologic relationships in the design of optimal therapeutic schedules. Cancer Chemother Rep 1970; 54: 431–450.

    CAS  PubMed  Google Scholar 

  29. Keating MJ . Leukemia: a model for drug development. Clin Cancer Res 1997; 3: 2598–2604.

    CAS  PubMed  Google Scholar 

  30. Schabel Jr FM, Skipper HE, Trader MW, Laster Jr WR, Simpson-Herren L . Spontaneous AK leukemia (lymphoma) as a model system. Cancer Chemother Rep 1969; 53: 329–344.

    PubMed  Google Scholar 

  31. Skipper HE, Schabel Jr FM . Spontaneous AK leukemia (lymphoma) as a model for human leukemias and lymphomas. Cancer Chemother Rep 3 1972; 3: 3–5.

    CAS  PubMed  Google Scholar 

  32. Skipper HE, Perry S . Kinetics of normal and leukemic leukocyte populations and relevance to chemotherapy. Cancer Res 1970; 30: 1883–1897.

    CAS  PubMed  Google Scholar 

  33. Skipper HE, Schabel Jr FM, Trader MW, Laster Jr WR . Response to therapy of spontaneous, first passage, and long passage lines of AK leukemia. Cancer Chemother Rep 1969; 53: 345–366.

    CAS  PubMed  Google Scholar 

  34. Frei III E, Schabel Jr FM, Goldin A . Comparative chemotherapy of AKR lymphoma and human hematological neoplasia. Cancer Res 1974; 34: 184–193.

    CAS  PubMed  Google Scholar 

  35. Khlief SN, Curt GA . Animal models in developmental therapeutics. In: Bast RC, Kufe DW, Pollock RE, Weichselbaum RR, Holland JF, Frei E (eds). Cancer Medicine, 5th edn. Hamilton, Ontario: BC Decker Inc, 2000.

    Google Scholar 

  36. Wolff L . Contribution of oncogenes and tumor suppressor genes to myeloid leukemia. Biochim Biophys Acta 1997; 1332: F67–F104.

    CAS  PubMed  Google Scholar 

  37. Eckert EA, Beard D, Beard JW . J Natl Cancer Inst 1951; 12: 447–463.

  38. Mladenov Z, Heine U, Beard D, Beard JW . Strain MC29 avian leukosis virus. Myelocytoma, endothelioma, and renal growths: pathomorphological and ultrastructural aspects. J Natl Cancer Inst 1967; 38: 251–285.

    CAS  PubMed  Google Scholar 

  39. Fritz RB, Langlois AJ, Beard JW . Reaction of chick embryo cells infected with leukosis strain MC29 virus with fluorescein-labeled antibody. J Virol 1969; 4: 372–379.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Beug H, von Kirchbach A, Doderlein G, Conscience JF, Graf T . Chicken hematopoietic cells transformed by seven strains of defective avian leukemia viruses display three distinct phenotypes of differentiation. Cell 1979; 18: 375–390.

    CAS  PubMed  Google Scholar 

  41. Papas TS, Watson DK, Sacchi N, O'Brien SJ, Ascione R . Molecular evolution of ets genes from avians to mammals and their cytogenetic localization to regions involved in leukemia. Gene Amplif Anal 1986; 4: 207–238.

    CAS  PubMed  Google Scholar 

  42. Graf T, Oker-Blom N, Todorov TG, Beug H . Transforming capacities and defectiveness of avian leukemia viruses OK10 and E 26. Virology 1979; 99: 431–436.

    CAS  PubMed  Google Scholar 

  43. Graf T, Beug H . Avian leukemia viruses: interaction with their target cells in vivo and in vitro. Biochim Biophys Acta 1978; 516: 269–299.

    CAS  PubMed  Google Scholar 

  44. Graf T . Oncogenes and the origin of leukemia. Acute avian leukemia viruses. Arzneimittelforschung 1988; 38: 454–460.

    CAS  PubMed  Google Scholar 

  45. Largaespada DA . Genetic heterogeneity in acute myeloid leukemia: maximizing information flow from MuLV mutagenesis studies. Leukemia 2000; 14: 1174–1184.

    CAS  PubMed  Google Scholar 

  46. van Lohuizen M, Berns A . Tumorigenesis by slow-transforming retroviruses--an update. Biochim Biophys Acta 1990; 1032: 213–235.

    CAS  PubMed  Google Scholar 

  47. Tsichlis PN, Lazo PA . Virus–host interactions and the pathogenesis of murine and human oncogenic retroviruses. Curr Top Microbiol Immunol 1991; 171: 95–171.

    CAS  PubMed  Google Scholar 

  48. Kung HJ, Boerkoel C, Carter TH . Retroviral mutagenesis of cellular oncogenes: a review with insights into the mechanisms of insertional activation. Curr Top Microbiol Immunol 1991; 171: 1–25.

    CAS  PubMed  Google Scholar 

  49. Athas GB, Starkey CR, Levy LS . Retroviral determinants of leukemogenesis. Crit Rev Oncog 1994; 5: 169–199.

    CAS  PubMed  Google Scholar 

  50. Jonkers J, Berns A . Retroviral insertional mutagenesis as a strategy to identify cancer genes. Biochim Biophys Acta 1996; 1287: 29–57.

    PubMed  Google Scholar 

  51. Fan H . Leukemogenesis by Moloney murine leukemia virus: a multistep process. Trends Microbiol 1997; 5: 74–82.

    CAS  PubMed  Google Scholar 

  52. Neil JC, Cameron ER . Retroviral insertion sites and cancer: fountain of all knowledge? Cancer Cell 2002; 2: 253–255.

    CAS  PubMed  Google Scholar 

  53. Mikkers H, Berns A . Retroviral insertional mutagenesis: tagging cancer pathways. Adv Cancer Res 2003; 88: 53–99.

    CAS  PubMed  Google Scholar 

  54. Bryant ML, Scott JL, Pal BK, Estes JD, Gardner MB . Immunopathology of natural and experimental lymphomas induced by wild mouse leukemia virus. Am J Pathol 1981; 104: 272–282.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Boiron M, Levy JP, Lasneret J, Oppenheim S, Bernard J . Pathogenesis of Rauscher leukemia. J Natl Cancer Inst 1965; 35: 865–884.

    CAS  PubMed  Google Scholar 

  56. Ichikawa Y, Maeda M, Horuichi M . In vitro differentiation of Rauscher-virus-induced myeloid leukemia cells. Int J Cancer 1976; 17: 789–797.

    CAS  PubMed  Google Scholar 

  57. Gross L . Myeloid leukemia in thymectomised mice. Proc Soc Exp Biol Med 1960; 103: 509–514.

    CAS  PubMed  Google Scholar 

  58. Fredrickson TN, Langdon WY, Hoffman PM, Hartley JW, Morse III HC . Histologic and cell surface antigen studies of hematopoietic tumors induced by Cas-Br-M murine leukemia virus. J Natl Cancer Inst 1984; 72: 447–454.

    CAS  PubMed  Google Scholar 

  59. Mucenski ML, Taylor BA, Jenkins NA, Copeland NG . AKXD recombinant inbred strains: models for studying the molecular genetic basis of murine lymphomas. Mol Cell Biol 1986; 6: 4236–4243.

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Silver JE, Fredrickson TN . Susceptibility to Friend helper virus leukemias in CXB recombinant inbred mice. J Exp Med 1983; 158: 1693–1702.

    CAS  PubMed  Google Scholar 

  61. Ru M, Shustik C, Rassart E . Graffi murine leukemia virus: molecular cloning and characterization of the myeloid leukemia-inducing agent. J Virol 1993; 67: 4722–4731.

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Chesebro B, Portis JL, Wehrly K, Nishio J . Effect of murine host genotype on MCF virus expression, latency, and leukemia cell type of leukemias induced by Friend murine leukemia helper virus. Virology 1983; 128: 221–233.

    CAS  PubMed  Google Scholar 

  63. Siegler R, Rich MA . Pathogenesis of virus-induced myeloid leukemia in mice. J Natl Cancer Inst 1967; 38: 31–50.

    CAS  PubMed  Google Scholar 

  64. Bundy LM, Ru M, Zheng BF, Cheng L, Pattengale PK, Portis JL et al. Biological characterization and molecular cloning of murine C-type retroviruses derived from the TSZ complex from mainland China. Virology 1995; 212: 367–382.

    CAS  PubMed  Google Scholar 

  65. Bedigian HG, Johnson DA, Jenkins NA, Copeland NG, Evans R . Spontaneous and induced leukemias of myeloid origin in recombinant inbred BXH mice. J Virol 1984; 51: 586–594.

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Fan H, Mittal S, Chute H, Chao E, Pattengale PK . Rearrangements and insertions in the Moloney murine leukemia virus long terminal repeat alter biological properties in vivo and in vitro. J Virol 1986; 60: 204–214.

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Shen-Ong GL, Wolff L . Moloney murine leukemia virus-induced myeloid tumors in adult BALB/c mice: requirement of c-myb activation but lack of v-abl involvement. J Virol 1987; 61: 3721–3725.

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Rassart E, Houde J, Denicourt C, Ru M, Barat C, Edouard E et al. Molecular analysis and characterization of two myeloid leukemia inducing murine retroviruses. Curr Top Microbiol Immunol 1996; 211: 201–210.

    CAS  PubMed  Google Scholar 

  69. Nazarov V, Wolff L . Novel integration sites at the distal 3′ end of the c-myb locus in retrovirus-induced promonocytic leukemias. J Virol 1995; 69: 3885–3888.

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Wolff L, Koller R, Davidson W . Acute myeloid leukemia induction by amphotropic murine retrovirus (4070A): clonal integrations involve c-myb in some but not all leukemias. J Virol 1991; 65: 3607–3616.

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Copeland NG, Buchberg AM, Gilbert DJ, Jenkins NA . Recombinant inbred mouse strains: models for studying the molecular genetic basis of myeloid tumorigenesis. Curr Top Microbiol Immunol 1989; 149: 45–57.

    CAS  PubMed  Google Scholar 

  72. Mucenski ML, Taylor BA, Ihle JN, Hartley JW, Morse III HC, Jenkins NA et al. Identification of a common ecotropic viral integration site, Evi-1, in the DNA of AKXD murine myeloid tumors. Mol Cell Biol 1988; 8: 301–308.

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Silver J, Buckler CE . A preferred region for integration of Friend murine leukemia virus in hematopoietic neoplasms is closely linked to the Int-2 oncogene. J Virol 1986; 60: 1156–1158.

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Morishita K, Parker DS, Mucenski ML, Jenkins NA, Copeland NG, Ihle JN . Retroviral activation of a novel gene encoding a zinc finger protein in IL-3-dependent myeloid leukemia cell lines. Cell 1988; 54: 831–840.

    CAS  PubMed  Google Scholar 

  75. Bartholomew C, Ihle JN . Retroviral insertions 90 kilobases proximal to the Evi-1 myeloid transforming gene activate transcription from the normal promoter. Mol Cell Biol 1991; 11: 1820–1828.

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Bartholomew C, Morishita K, Askew D, Buchberg A, Jenkins NA, Copeland NG et al. Retroviral insertions in the CB-1/Fim-3 common site of integration activate expression of the Evi-1 gene. Oncogene 1989; 4: 529–534.

    CAS  PubMed  Google Scholar 

  77. Bordereaux D, Fichelson S, Sola B, Tambourin PE, Gisselbrecht S . Frequent involvement of the fim-3 region in Friend murine leukemia virus-induced mouse myeloblastic leukemias. J Virol 1987; 61: 4043–4045.

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Ymer S, Tucker WQ, Sanderson CJ, Hapel AJ, Campbell HD, Young IG . Constitutive synthesis of interleukin-3 by leukaemia cell line WEHI-3B is due to retroviral insertion near the gene. Nature 1985; 317: 255–258.

    CAS  PubMed  Google Scholar 

  79. Leslie KB, Lee F, Schrader JW . Intracisternal A-type particle-mediated activations of cytokine genes in a murine myelomonocytic leukemia: generation of functional cytokine mRNAs by retroviral splicing events. Mol Cell Biol 1991; 11: 5562–5570.

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Nakamura T, Largaespada DA, Shaughnessy Jr JD, Jenkins NA, Copeland NG . Cooperative activation of Hoxa and Pbx1-related genes in murine myeloid leukaemias. Nat Genet 1996; 12: 149–153.

    CAS  PubMed  Google Scholar 

  81. Moskow JJ, Bullrich F, Huebner K, Daar IO, Buchberg AM . Meis1, a PBX1-related homeobox gene involved in myeloid leukemia in BXH-2 mice. Mol Cell Biol 1995; 15: 5434–5443.

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Bergeron D, Poliquin L, Kozak CA, Rassart E . Identification of a common viral integration region in Cas-Br-E murine leukemia virus-induced non-T-, non-B-cell lymphomas. J Virol 1991; 65: 7–15.

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Bergeron D, Poliquin L, Houde J, Barbeau B, Rassart E . Analysis of proviruses integrated in Fli-1 and Evi-1 regions in Cas-Br-E MuLV-induced non-T-, non-B-cell leukemias. Virology 1992; 191: 661–669.

    CAS  PubMed  Google Scholar 

  84. Li J, Shen H, Himmel KL, Dupuy AJ, Largaespada DA, Nakamura T et al. Leukaemia disease genes: large-scale cloning and pathway predictions. Nat Genet 1999; 23: 348–353.

    CAS  PubMed  Google Scholar 

  85. Erkeland SJ, Valkhof M, Heijmans-Antonissen C, Delwel R, Valk PJ, Hermans MH et al. The gene encoding the transcriptional regulator Yin Yang 1 (YY1) is a myeloid transforming gene interfering with neutrophilic differentiation. Blood 2003; 101: 1111–1117.

    CAS  PubMed  Google Scholar 

  86. Denicourt C, Kozak CA, Rassart E . Gris1, a new common integration site in Graffi murine leukemia virus-induced leukemias: overexpression of a truncated cyclin D2 due to alternative splicing. J Virol 2003; 77: 37–44.

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Largaespada DA, Brannan CI, Jenkins NA, Copeland NG . Nf1 deficiency causes Ras-mediated granulocyte/macrophage colony stimulating factor hypersensitivity and chronic myeloid leukaemia. Nat Genet 1996; 12: 137–143.

    CAS  PubMed  Google Scholar 

  88. Buchberg AM, Bedigian HG, Jenkins NA, Copeland NG . Evi-2, a common integration site involved in murine myeloid leukemogenesis. Mol Cell Biol 1990; 10: 4658–4666.

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Blaydes SM, Kogan SC, Truong BT, Gilbert DJ, Jenkins NA, Copeland NG et al. Retroviral integration at the Epi1 locus cooperates with Nf1 gene loss in the progression to acute myeloid leukemia. J Virol 2001; 75: 9427–9434.

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Gisselbrecht S, Fichelson S, Sola B, Bordereaux D, Hampe A, Andre C et al. Frequent c-fms activation by proviral insertion in mouse myeloblastic leukaemias. Nature 1987; 329: 259–261.

    CAS  PubMed  Google Scholar 

  91. Valk PJ, Hol S, Vankan Y, Ihle JN, Askew D, Jenkins NA et al. The genes encoding the peripheral cannabinoid receptor and alpha-L-fucosidase are located near a newly identified common virus integration site, Evi11. J Virol 1997; 71: 6796–6804.

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Valk PJ, Vankan Y, Joosten M, Jenkins NA, Copeland NG, Lowenberg B et al. Retroviral insertions in Evi12, a novel common virus integration site upstream of Tra1/Grp94, frequently coincide with insertions in the gene encoding the peripheral cannabinoid receptor Cnr2. J Virol 1999; 73: 3595–3602.

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Jorda MA, Rayman N, Valk P, De Wee E, Delwel R . Identification, characterization, and function of a novel oncogene: the peripheral cannabinoid receptor Cb2. Ann NY Acad Sci 2003; 996: 10–16.

    CAS  PubMed  Google Scholar 

  94. Askew DS, Bartholomew C, Buchberg AM, Valentine MB, Jenkins NA, Copeland NG et al. His-1 and His-2: identification and chromosomal mapping of two commonly rearranged sites of viral integration in a myeloid leukemia. Oncogene 1991; 6: 2041–2047.

    CAS  PubMed  Google Scholar 

  95. Askew DS, Li J, Ihle JN . Retroviral insertions in the murine His-1 locus activate the expression of a novel RNA that lacks an extensive open reading frame. Mol Cell Biol 1994; 14: 1743–1751.

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Shaughnessy Jr JD, Largaespada DA, Tian E, Fletcher CF, Cho BC, Vyas P et al. Mrvi1, a common MRV integration site in BXH2 myeloid leukemias, encodes a protein with homology to a lymphoid-restricted membrane protein Jaw1. Oncogene 1999; 18: 2069–2084.

    CAS  PubMed  Google Scholar 

  97. Kone J, Arroyo J, Savinelli T, Lin S, Boyd K, Wu Y et al. F-MuLV acceleration of myelomonocytic tumorigenesis in SV40 large T antigen transgenic mice is accompanied by retroviral insertion at Fli1 and a novel locus, Fim4. Leukemia 2002; 16: 1827–1834.

    CAS  PubMed  Google Scholar 

  98. Tian E, Sawyer JR, Largaespada DA, Jenkins NA, Copeland NG, Shaughnessy Jr JD . Evi27 encodes a novel membrane protein with homology to the IL17 receptor. Oncogene 2000; 19: 2098–2109.

    CAS  PubMed  Google Scholar 

  99. Jenkins NA, Copeland NG, Taylor BA, Bedigian HG, Lee BK . Ecotropic murine leukemia virus DNA content of normal and lymphomatous tissues of BXH-2 recombinant inbred mice. J Virol 1982; 42: 379–388.

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Gopal V, Hulette B, Li YQ, Kuvelkar R, Raza A, Larson R et al. c-myc and c-myb expression in acute myelogenous leukemia. Leuk Res 1992; 16: 1003–1011.

    CAS  PubMed  Google Scholar 

  101. Poppe B, Vandesompele J, Schoch C, Lindvall C, Mrozek K, Bloomfield CD et al. Expression analyses identify MLL as a prominent target of 11q23 amplification and support an etiologic role for MLL gain of function in myeloid malignancies. Blood 2004; 103: 229–235.

    CAS  PubMed  Google Scholar 

  102. Breccia M, Petti MC, Ottaviani E, Mancini M, D'Elia GM, Mecarocci S et al. Diabetes insipidus as first manifestation of acute myeloid leukaemia with EVI-1-positive, 3q21q26 syndrome and T cell-line antigen expression: what is the EVI-1 gene role? Br J Haematol 2002; 118: 438–441.

    CAS  PubMed  Google Scholar 

  103. Privitera E, Longoni D, Brambillasca F, Biondi A . EVI-1 gene expression in myeloid clonogenic cells from juvenile myelomonocytic leukemia (JMML). Leukemia 1997; 11: 2045–2048.

    CAS  PubMed  Google Scholar 

  104. Ohyashiki K, Ohyashiki JH, Shimamoto T, Toyama K . Pattern of expression and their clinical implications of the GATA family, stem cell leukemia gene, and EVI1 in leukemia and myelodysplastic syndromes. Leuk Lymphoma 1996; 23: 431–436.

    CAS  PubMed  Google Scholar 

  105. Drabkin HA, Parsy C, Ferguson K, Guilhot F, Lacotte L, Roy L et al. Quantitative HOX expression in chromosomally defined subsets of acute myelogenous leukemia. Leukemia 2002; 16: 186–195.

    CAS  PubMed  Google Scholar 

  106. Afonja O, Smith Jr JE, Cheng DM, Goldenberg AS, Amorosi E, Shimamoto T et al. MEIS1 and HOXA7 genes in human acute myeloid leukemia. Leuk Res 2000; 24: 849–855.

    CAS  PubMed  Google Scholar 

  107. Lu D, Nounou R, Beran M, Estey E, Manshouri T, Kantarjian H et al. The prognostic significance of bone marrow levels of neurofibromatosis-1 protein and ras oncogene mutations in patients with acute myeloid leukemia and myelodysplastic syndrome. Cancer 2003; 97: 441–449.

    CAS  PubMed  Google Scholar 

  108. Copeland NG, Jenkins NA, Gilbert DJ, Eppig JT, Maltais LJ, Miller JC et al. A genetic linkage map of the mouse: current applications and future prospects. Science 1993; 262: 57–66.

    CAS  PubMed  Google Scholar 

  109. Look AT . Oncogenic transcription factors in the human acute leukemias. Science 1997; 278: 1059–1064.

    CAS  PubMed  Google Scholar 

  110. Michaud J, Scott HS, Escher R . AML1 interconnected pathways of leukemogenesis. Cancer Invest 2003; 21: 105–136.

    CAS  PubMed  Google Scholar 

  111. Nakamura T, Largaespada DA, Lee MP, Johnson LA, Ohyashiki K, Toyama K et al. Fusion of the nucleoporin gene NUP98 to HOXA9 by the chromosome translocation t(7;11)(p15;p15) in human myeloid leukaemia. Nat Genet 1996; 12: 154–158.

    CAS  PubMed  Google Scholar 

  112. Golub TR, Slonim DK, Tamayo P, Huard C, Gaasenbeek M, Mesirov JP et al. Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science 1999; 286: 531–537.

    CAS  PubMed  Google Scholar 

  113. Kroon E, Thorsteinsdottir U, Mayotte N, Nakamura T, Sauvageau G . NUP98-HOXA9 expression in hemopoietic stem cells induces chronic and acute myeloid leukemias in mice. EMBO J 2001; 20: 350–361.

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Ingram DA, Wenning MJ, Shannon K, Clapp DW . Leukemic potential of doubly mutant Nf1 and Wv hematopoietic cells. Blood 2003; 101: 1984–1986.

    CAS  PubMed  Google Scholar 

  115. Crowther D, Bateman CJ, Vartan CP, Whitehouse JM, Malpas JS, Fairley GH et al. Combination chemotherapy using L-asparaginase, daunorubicin, and cytosine arabinoside in adults with acute myelogenous leukaemia. Br Med J 1970; 4: 513–517.

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Bruserud O, Foss B, Abrahamsen JF, Gjertsen BT, Ernst P . Autologous stem cell transplantation as post-remission therapy in adult acute myelogenous leukemia: does platelet contamination of peripheral blood mobilized stem cell grafts influence the risk of leukemia relapse? J Hematother Stem Cell Res 2000; 9: 433–443.

    CAS  PubMed  Google Scholar 

  117. Grann V, Erichson R, Flannery J, Finch S, Clarkson B . The therapy of acute granulocytic leukemia in patients more than fifty years old. Ann Intern Med 1974; 80: 15–20.

    CAS  PubMed  Google Scholar 

  118. Thompson I, Hall TC, Moloney WC . Combination therapy of adult acute myelogenous leukemia: experience with the simultaneous use of vincristine, amethopterin, 6-mercaptopurine and prednisone. N Engl J Med 1965; 273: 1302–1307.

    CAS  PubMed  Google Scholar 

  119. Furth J . Transmission of leukaemia in mice: its relationiship to myeloma. J Exp Med 1935; 61: 423–427.

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Resk-Nielsen R . Transmissable myeloid leukemias in white mice: further studies. Acta Pathol Microbiol Scand 1938; 15: 285–291.

    Google Scholar 

  121. Upton AC, Jenkins VK, Walburg Jr HE, Tyndall RL, Conklin JW, Wald N . Observations on viral, chemical, and radiation-induced myeloid and lymphoid leukemias in RF mice. Natl Cancer Inst Monogr 1966; 22: 329–347.

    CAS  PubMed  Google Scholar 

  122. Sanel FT . Studies of neoplastic myelomonocytic cells in BALB-c mice producing infectious C-type viruses. Cancer Res 1973; 33: 671–678.

    CAS  PubMed  Google Scholar 

  123. Tanaka T, Testa NE, Lajtha LG . Leukaemic stem cell kinetics in experimental animals. Bibl Haematol 1973; 39: 984–991.

    CAS  PubMed  Google Scholar 

  124. Dunn TB . Normal and pathological anatomy of the recticular tissue in laboratory mice. J Natl Cancer Inst 1954; 14: 1281–1433.

    CAS  PubMed  Google Scholar 

  125. Wilens SL, Sproul EE . Spontaneous leukemia and chloroleukemia in the rat. Am J Path 1936; 12: 249–254.

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Oberling CH, Geurin M, Geurin P . Spontaneous transplantable leukemia in the rat. Bull Assoc Franc etude Cancer 1939; 28: 214–242.

    Google Scholar 

  127. Wrathmell A, Alexander P . Growth characteristics and immunological properties of a myeloblastic and a lymphoblastic leukaemia in pure line rats. Bibl Haematol 1973; 39: 649–653.

    CAS  PubMed  Google Scholar 

  128. de Gennaro A, di Grazia A . Sull'insorgenza di leucemie in topi trattati con idrocarburi policiclici oncogeni; ricerche sperimentali. Haematologica 1937; 18: 707–726.

    Google Scholar 

  129. Ito S . Development of leukaemia in rats. Gann 1940; 34: 133.

    Google Scholar 

  130. Svejda J, Kossey P, Hlavayova E, Svec F . Histological picture of the transplantable leukaemia induced by X-irradiation and methylcholantrene. Neoplasma 1958; 5: 123–131.

    CAS  PubMed  Google Scholar 

  131. Zipf RD, Chiles L, Miller M, Katchman BJ . Transplantable chloromyeloid leukemia in Sprague-Dawley rats following injection of Actinum 227. J Natl Cancer Inst 1959; 22: 669–683.

    CAS  PubMed  Google Scholar 

  132. Shay H, Gruenstein M, Marx HE, Glazer L . The development of lymphatic and myelogenous leukaemia in Wistar rats following gastric installation of methylcholantrene. Cancer Res 1951; 11: 29.

    CAS  PubMed  Google Scholar 

  133. Handler ES, Handle EE, Bacon ER . In vitro colony formation in bone marrow and spleen cell suspensions from rats with an acute myelogenous leukemia. J Lab Clin Med 1974; 84: 249–257.

    CAS  PubMed  Google Scholar 

  134. Huggins CB, Sugiyama T . Induction of leukemia in rat by pulse doses of 7,12-dimethylbenz(a)anthracene. Proc Natl Acad Sci USA 1966; 55: 74–81.

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Hempling HG, Wise WC . Maturation of membrane function: the permeability of the rat erythroblastic leukemic cell to water and to non-electrolytes. J Cell Physiol 1975; 85: 195–207.

    CAS  PubMed  Google Scholar 

  136. Gal F, Somfai S, Szentirmay Z . Transplantable myeloid rat leukaemia induced by 7,12-dimethylbenz(a)anthracene. Acta Haematol 1973; 49: 281–290.

    CAS  PubMed  Google Scholar 

  137. Moloney WC . Primary granulocytic leukemia in the rat. Cancer Res 1974; 34: 3049–3057.

    CAS  PubMed  Google Scholar 

  138. Greenberger JS, Bocaccino CA, Szot SJ, Moloney WC . Chemotherapeutic remissions in Wistar Furth rat acute myelogenous leukemia: a model for human AML. Acta Haematol 1977; 57: 233–241.

    CAS  PubMed  Google Scholar 

  139. Moloney WC, Boschetti AE, King V . Observations on leukemia in Wistar Furth rats. Cancer Res 1969; 29: 938–946.

    CAS  PubMed  Google Scholar 

  140. Moloney WC, Batata M, King V . Leukemogenesis in the rat: further observations. J Natl Cancer Inst 1971; 46: 1139–1144.

    CAS  PubMed  Google Scholar 

  141. Moriuchi T, Oikawa T, Kodama T, Yamaguchi H, Kobayashi H . Establishment and characterization of a transplantable rat myelomonocytic leukemia. Cancer Res 1983; 43: 5478–5483.

    CAS  PubMed  Google Scholar 

  142. Hoelzer D . Growth characteristics of a transferable acute leukemia in rats. J Natl Cancer Inst 1973; 50: 1321–1327.

    CAS  PubMed  Google Scholar 

  143. van Bekkum DW, van Oosterom P, Dicke KA . In vitro colony formation of transplantable rat leukemias in comparison with human acute myeloid leukemia. Cancer Res 1976; 36: 941–946.

    CAS  PubMed  Google Scholar 

  144. Singer DE, Haynor DR, Williams RM . Resistance to BN myelogenous leukemia in rat radiation chimeras. Leuk Res 1980; 4: 337–342.

    CAS  PubMed  Google Scholar 

  145. Williams RM, Singer DE, Rodday P, Bennett M . F1 hybrid resistance to BN rat myelogenous leukemia parallels resistance to transplantation of normal BN bone marrow. Leuk Res 1980; 4: 261–264.

    CAS  PubMed  Google Scholar 

  146. Burke PJ, Karp JE, Saylor PL . Drug induced host factors which stimulate growth of residual leukemia in Lewis × Brown Norway F1 (LEW-BN) rats. Cancer Res 1986; 46: 1813–1816.

    CAS  PubMed  Google Scholar 

  147. Vaughn WP, Burke PJ, Jung J . BN rat myeloid leukemia transferred to the (LEW x BN)F1 rat. J Natl Cancer Inst 1978; 61: 927–929.

    CAS  PubMed  Google Scholar 

  148. Tutschka PJ, Berkowitz SD, Tuttle S, Klein J . Graft-versus-leukemia in the rat-the antileukemic efficacy of syngeneic and allogeneic graft-versus-host disease. Transplant Proc 1987; 19: 2668–2673.

    CAS  PubMed  Google Scholar 

  149. Odashima S, Ogiu T, Maekawa A . Leukemias induced by 1-butyl- and 1-propyl-1-nitrosoureas in the rat. Bibl Haematol 1975; 40: 107–115.

    CAS  Google Scholar 

  150. Moloney WC, Dorr AD, Dowd G, Boschetti AE . Myelogenous leukaemia of the rat. Blood 1962; 19: 45–59.

    CAS  PubMed  Google Scholar 

  151. Handler EE, Handler ES . Experimental leukaemias: model systems for the study of haematopoiesis. In: Gordon AS (ed). Regulation of Hematopoiesis: White Cell and Platelet Production. New York: Appelton-Century-Crofts, 1970, pp 1273–1296.

    Google Scholar 

  152. Greenberger JS, Rosenthal DS, Aaronson SA, Moloney WC . Acute myelogenous leukemia of the Wistar/Furth rat: establishment of a continuous tissue culture line producing lysozyme in vitro and in vivo. Blood 1975; 46: 27–38.

    CAS  PubMed  Google Scholar 

  153. Hagenbeek A, Colly LP, van Bekkum DW . Growth regulation in the BN myelocytic leukaemia (BNML). Leuk Res 1977; 1: 149–151.

    Google Scholar 

  154. Hoelzer D, Calvo W, Meyer-Hamme KD, Harriss EB . Cell distribution and proliferation pattern of a transferable acute leukemia in rats. J Natl Cancer Inst 1973; 50: 1545–1553.

    CAS  PubMed  Google Scholar 

  155. Greenberger JS, Muse MB, Bocaccino CA, Moloney WC . Central nervous system (CNS) relapse following chemotherapy of WF rat acute myelogenous leukemia: a model for human CNS leukemia. J Natl Cancer Inst 1977; 58: 1139–1146.

    CAS  PubMed  Google Scholar 

  156. Greenberger JS, Aaronson SA, Rosenthal DS, Moloney WC . Continuous production of peroxidase, esterase, alkaline phosphatase and lysozyme by clones of promyelocytes. Nature 1975; 257: 143–144.

    CAS  PubMed  Google Scholar 

  157. Harriss EB, Hoelzer D . Proliferative state of normal in vitro colony-forming cells during development of L5222 rat leukemia and their reaction to chemotherapy. Blood 1978; 51: 221–227.

    CAS  PubMed  Google Scholar 

  158. Colly LP, van Bekkum DW, Hagenbeek A . Enhanced tumor load reduction after chemotherapy induced recruitment and synchronization in a slowly growing rat leukemia model (BNML) for human acute myelocytic leukemia. Leuk Res 1984; 8: 953–963.

    CAS  PubMed  Google Scholar 

  159. Hagenbeek A, van Bekkum DW . Comparitive evaluation of the L5222 and the BNML rat leukaemia models and their relavance to human acute leukaemia. Leuk Res 1977; 1: 75–255.

    Google Scholar 

  160. Lacaze N, Gombaud-Saintonge G, Lanotte M . Conditions controlling long-term proliferation of Brown Norway rat promyelocytic leukemia in vitro: primary growth stimulation by microenvironment and establishment of an autonomous Brown Norway ‘leukemic stem cell line’. Leuk Res 1983; 7: 145–154.

    CAS  PubMed  Google Scholar 

  161. Lanotte M, Hermouet S, Gombaud-Saintonge G, Dobo I . On growth regulation of the rat promyelocytic leukemia (BNML): growth inhibition and eradication of clonogenic cells by cholera toxin. Leuk Res 1986; 10: 1319–1326.

    CAS  PubMed  Google Scholar 

  162. Lanotte M, Lacaze N, Gombaud-Saintonge G . Evaluation of the clonogenic cell population (Leuk-CFU) in the marrow of BN rats during development of a promyelocytic leukemia (BNML): an in vitro assay. Leuk Res 1984; 8: 71–80.

    CAS  PubMed  Google Scholar 

  163. Hilgard P . Coagulation studies on the BNML rat leukemia. Leuk Res 1977; 1: 175–176.

    CAS  Google Scholar 

  164. Donati MB, Mussoni L, Kornblihtt L, Poggi A . Changes in the haemostatic system of rats bearing L5222 or BNML experimental leukaemias. Leuk Res 1977; 1: 177–180.

    CAS  Google Scholar 

  165. Colucci M, Lorenzet R, Locati D, Semeraro N, Donati MB . Occurrence of disseminated intravascular coagulation in rat BNML leukaemia despite lack of leucocyte procoagulant activity. Br J Exp Pathol 1983; 64: 207–210.

    CAS  PubMed  PubMed Central  Google Scholar 

  166. Glynn S, Sullivan AK . In vitro lines of the BN rat promyelocytic leukemia that differ from the parent. Leuk Res 1983; 7: 557–563.

    CAS  PubMed  Google Scholar 

  167. Brox A, Glynn S, Sullivan AK . Blastic variants of rat promyelocytic leukemia produce neurologic disease. Leuk Res 1984; 8: 81–86.

    CAS  PubMed  Google Scholar 

  168. Hoogerbrugge PM, Hagenbeek A . Leptomeningeal infiltration in rat models for human acute myelocytic and lymphocytic leukemia. Leuk Res 1985; 9: 1397–1404.

    CAS  PubMed  Google Scholar 

  169. Hagenbeek A, Martens AC . The pathogenesis of a rat model for human acute myelocytic leukemia. Haematologica 1980; 65: 293–308.

    CAS  PubMed  Google Scholar 

  170. van Bekkum DW, Hagenbeek A, Martens ACM, Colly LP, Aglietta M . Stem cells in experimental leukemia. In: Golde DW, Cline MJ, Metcalf D (eds). Hematopoietic Cell Differentiation. New York: Academic Press, 1978, pp 303–315.

    Google Scholar 

  171. Hagenbeek A, Martens ACM, van Bekkum DW, Hermens AF, Zaat T, Hoogen-van Beugen E . Proliferation kinetics of the BNML rat leukaemia in vivo. Leuk Res 1977; 1: 99–102.

    Google Scholar 

  172. Schultz FW, Martens ACM, Hagenbeek A . Mathematical modelling of leukaemia (re-) growth in the rat. In: Wahlstrom B, Henriksen R, Sundby NP (eds). Proceedings of the 11th IMACS World Congress on System Simulation and Scientific Computation. Oslo: Moberg and Helli, 1985, pp 89–92.

    Google Scholar 

  173. Schultz FW, Martens ACM, Hagenbeek A . Computer simulation of the progress of an acute myelocytic leukaemia in the Brown Norway rat. Comput Math Appl 1987; 14: 751–761.

    Google Scholar 

  174. Arkesteijn GJ, Martens AC, Jonker RR, Hagemeijer A, Hagenbeek A . Bivariate flow karyotyping of acute myelocytic leukemia in the BNML rat model. Cytometry 1987; 8: 618–624.

    CAS  PubMed  Google Scholar 

  175. Arkesteijn GJ, van Dekken H, Martens AC, Hagenbeek A . Clinical applications of flow karyotyping in myelocytic leukemia by stimulation of different subpopulations of cells in blood or bone marrow samples. Cytometry 1990; 11: 196–201.

    CAS  PubMed  Google Scholar 

  176. Arkesteijn GJ, Martens AC, Hagenbeek A . Bivariate flow karyotyping in human Philadelphia-positive chronic myelocytic leukemia. Blood 1988; 72: 282–286.

    CAS  PubMed  Google Scholar 

  177. van Bekkum DW, Osterom P . Interaction of AML cells and normal haematopoietic cells: replacement or inhibition?. In: Clemensen J, Yohn DS (eds). Proceedings of the Seventh International Symposium on Comparative Research on Leukaemia and Related Diseases, Copenhagen, October 13–17. Basel: Karger, 1976, pp 10–12.

    Google Scholar 

  178. Hagenbeek A, Colly LP, van Bekkum DW . Cellular kinetics of normal hematopoietic stem cells and leukemic cells in a rat model for human acute myelocytic leukemia. In: Bentvelzen P, Yohn DS (eds). Advances in Comparative Leukemia Research. New York: Elsevier/North Holland Biomedical Press, 1977, p. 475.

    Google Scholar 

  179. Hagenbeek A, Martens AC . The proliferative state of normal hematopoietic stem cells during progression of leukemia. Studies in the BN acute myelocytic leukemia (BNML). Leuk Res 1981; 5: 141–148.

    CAS  PubMed  Google Scholar 

  180. Martens AC, Hagenbeek A . Kinetics of normal hemopoietic stem cells during leukemia growth before and after induction of a complete remission. Studies in a rat model for acute myelocytic leukemia (BNML). Leuk Res 1987; 11: 453–459.

    CAS  PubMed  Google Scholar 

  181. Prins ME, van Bekkum DW . Comparison of the distribution pattern of Brown Norway myeloid leukaemia cells and L4415 lymphatic leukaemia cells in rat femoral bone marrow after i.v. infusion. Leuk Res 1981; 5: 57–63.

    CAS  PubMed  Google Scholar 

  182. Hagenbeek A, Martens AC . Extracorporeal irradiation of the blood in a rat model for human acute myelocytic leukemia. Increased efficacy after combination with cell mobilization by low-molecular-weight dextran sulfate. Radiat Res 1981; 88: 144–154.

    CAS  PubMed  Google Scholar 

  183. Hagenbeek A, Martens AC . Extracorporeal irradiation of the blood in a rat model for human acute myelocytic leukemia. Comparative evaluation of three treatment regimens with emphasis on cell compartment analysis. Radiat Res 1981; 85: 480–495.

    CAS  PubMed  Google Scholar 

  184. Hagenbeek A, Martens AC . A method for extracorporeal irradiation of the blood in the rat. Radiat Res 1979; 80: 198–207.

    CAS  PubMed  Google Scholar 

  185. Hagenbeek A, Martens ACM . Organ invasion and the kinetics of intercompartmental distribution in the BN myelocytic leukaemia. Leuk Res 1977; 1.

  186. Hagenbeek A, Martens AC . Functional cell compartments in a rat model for human acute myelocytic leukaemia. Cell Tissue Kinet 1979; 12: 361–377.

    CAS  PubMed  Google Scholar 

  187. Nooter K, Sonneveld P, Deurloo J, Oostrum R, Schultz F, Martens A et al. Repeated daunomycin administration in rats. Pharmacokinetics and bone marrow toxicity. Cancer Chemother Pharmacol 1984; 12: 187–189.

    CAS  PubMed  Google Scholar 

  188. Sonneveld P, van den Engh GJ . Differences in uptake of adriamycin and daunomycin by normal BM cells and acute leukemia cell determined by flow cytometry. Leuk Res 1981; 5: 251–257.

    CAS  PubMed  Google Scholar 

  189. Sonneveld P, Van Bekkum DW . Different distribution of adriamycin in normal and leukaemic rats. Br J Cancer 1981; 43: 464–470.

    CAS  PubMed  PubMed Central  Google Scholar 

  190. Nooter K, van den Engh G, Sonneveld P . Quantitative flow cytometric determination of anthracycline content of rat bone marrow cells. Cancer Res 1983; 43: 5126–5130.

    CAS  PubMed  Google Scholar 

  191. Nooter K, Sonneveld P, Martens A, Hagenbeek A, Schultz F . Tissue distribution and myelotoxicity of daunomycin in the rat: rapid bolus injection vs continuous infusion. Eur J Cancer Clin Oncol 1986; 22: 801–806.

    CAS  PubMed  Google Scholar 

  192. Sonneveld P, Mulder J, van Bekkum DW . Cytotoxicity of doxorubicin for normal hematopoietic and acute myeloid leukemia cells of the rat. Cancer Chemother Pharmacol 1981; 5: 167–173.

    CAS  PubMed  Google Scholar 

  193. Nooter K, Sonneveld P, Martens A . Differences in the pharmacokinetics of daunomycin in normal and leukemic rats. Cancer Res 1985; 45: 4020–4025.

    CAS  PubMed  Google Scholar 

  194. Aglietta M, Sonneveld P . The relevance of cell kinetics for optimal scheduling of 1-beta-D-arabinofuranosyl cytosine and methotrexate in a slow growing acute myeloid leukemia (BNML). Cancer Chemother Pharmacol 1978; 1: 219–223.

    CAS  PubMed  Google Scholar 

  195. Burke PJ, Vaughan WP, Karp JE . A rationale for sequential high-dose chemotherapy of leukemia timed to coincide with induced tumor proliferation. Blood 1980; 55: 960–968.

    CAS  PubMed  Google Scholar 

  196. Martens A, Hagenbeek A . Pulse cytophotometry of the BN myelocytic leukemia during development and during treatment with cytostatic drugs. Leuk Res 1977; 1: 103–106.

    CAS  Google Scholar 

  197. Aglietta M, Colly L . Relevance of recruitment-synchronization in the scheduling of 1-beta-D-arabinofuranosylcytosine in a slow-growing acute myeloid leukemia of the rat. Cancer Res 1979; 39: 2727–2732.

    CAS  PubMed  Google Scholar 

  198. Aglietta M, Hagenbeek A, Piacibello W, Sonneveld P, Van Bekkum DW . Effect of high doses of cytostatic drugs on cell kinetics of the acute myeloid leukemia of the BN rat and of human AML. Chemioter Oncol 1979; 3: 288–292.

    Google Scholar 

  199. Burke PJ, Vaughan WP, Karp JE, Saylor PL . The correlation of maximal drug dose, tumor recruitment, and sequence timing with therapeutic advantage: schedule-dependent toxicity of cytosine arabinoside. Med Pediatr Oncol 1982; 10 (Suppl 1): 201–208.

    PubMed  Google Scholar 

  200. Burke PJ, Karp JE, Vaughan WP, Sanford PL . Recruitment of quiescent tumor by humoral stimulatory activity: requirements for successful chemotherapy. Blood Cells 1982; 8: 519–533.

    CAS  PubMed  Google Scholar 

  201. Colly LP, van Bekkum DW, Hagenbeek A . Cell kinetic studies after high dose Ara-C and adriamycin treatment in a slowly growing rat leukemia model (BNML) for human acute myelocytic leukemia. Leuk Res 1984; 8: 945–952.

    CAS  PubMed  Google Scholar 

  202. Colly LP, Peters WG, Willemze R . Effect of the interval between high dose 1-beta-D-arabinofuranosylcytosine injections on leukemic cell load, intestinal toxicity, and normal hematopoietic stem cells in a rat model for acute myelogenous leukemia. Cancer Res 1986; 46: 3825–3827.

    CAS  PubMed  Google Scholar 

  203. Colly LP, Willemze R, Honders W, vd Hoorn F, Edelbroek PM . In vivo studies on high-dose 1-beta-D-arabinofuranosylcytosine (HDara-C) and 1-beta-D-arabinofuranosyluracil (ara-U) with respect to pharmacokinetics, cell kinetics, and cytotoxicity in a rat myelocytic leukaemia model (BNML). Semin Oncol 1985; 12: 49–54.

    CAS  PubMed  Google Scholar 

  204. Burke PJ, Karp JE, Vaughan WP . Chemotherapy of leukemia in mice, rats, and humans relating time of humoral stimulation, tumor growth, and clinical response. J Natl Cancer Inst 1981; 67: 529–538.

    CAS  PubMed  Google Scholar 

  205. Colly LP, van Bekkum DW . A recommendation for high-dose Ara-C interval treatment based on studies in a slow-growing leukemia model (BNML). Med Pediatr Oncol 1982; 10 (Suppl 1): 209–219.

    PubMed  Google Scholar 

  206. Vaughan WP, Karp JE, Burke PJ . Two-cycle timed-sequential chemotherapy for adult acute nonlymphocytic leukemia. Blood 1984; 64: 975–980.

    CAS  PubMed  Google Scholar 

  207. Vaughan WP, Burke PJ . Development of a cell kinetic approach to curative therapy of acute myelocytic leukemia in remission using the cell cycle-specific drug 1-beta-D-arabinofuranosylcytosine in a rat model. Cancer Res 1983; 43: 2005–2009.

    CAS  PubMed  Google Scholar 

  208. Smets LA, Taminiau J, Hahlen K, de Waal F, Behrendt H . Cell kinetic responses in childhood acute nonlymphocytic leukemia during high-dose therapy with cytosine arabinoside. Blood 1983; 61: 79–84.

    CAS  PubMed  Google Scholar 

  209. Hagenbeek A, Martens AC . AMSA: in vivo log cell kill for leukemic clonogenic cells versus toxicity for normal hematopoietic stem cells in a rat model for human acute myelocytic leukemia (BNML). Eur J Cancer Clin Oncol 1986; 22: 1255–1258.

    CAS  PubMed  Google Scholar 

  210. Ermens AA, Kroes AC, Lindemans J, Abels J . 5-Fluorouracil treatment of rat leukemia and a reappraisal of its application in human leukemia. Anticancer Res 1986; 6: 797–800.

    CAS  PubMed  Google Scholar 

  211. Kroes AC, Ermens AA, Lindemans J, Abels J . Effects of 5-fluorouracil treatment of rat leukemia with concomitant inactivation of cobalamin. Anticancer Res 1986; 6: 737–742.

    CAS  PubMed  Google Scholar 

  212. Hodgson GS, Bradley TR . Properties of haematopoietic stem cells surviving 5-fluorouracil treatment: evidence for a pre-CFU-S cell? Nature 1979; 281: 381–382.

    CAS  PubMed  Google Scholar 

  213. Sonneveld P, van Gelder TC, van Bekkum DW . Antileukemic effect of high-dose thymidine in a rat model for acute myeloid leukemia (BNML). Eur J Cancer 1981; 17: 89–92.

    CAS  PubMed  Google Scholar 

  214. Hagenbeek A, Weiershausen U, Martens AC . Dinaline: a new oral drug against leukemia? Preclinical studies in a relevant rat model for human acute myelocytic leukemia (BNML). Leukemia 1988; 2: 226–230.

    CAS  PubMed  Google Scholar 

  215. el-Beltagi HM, Martens AC, Dahab GM, Hagenbeek A . Efficacy of acetyldinaline for treatment of minimal residual disease (MRD): preclinical studies in the BNML rat model for human acute myelocytic leukemia. Leukemia 1993; 7: 1795–1800.

    CAS  PubMed  Google Scholar 

  216. Kroes AC, Lindemans J, Schoester M, Abels J . Enhanced therapeutic effect of methotrexate in experimental rat leukemia after inactivation of cobalamin (vitamin B12) by nitrous oxide. Cancer Chemother Pharmacol 1986; 17: 114–120.

    CAS  PubMed  Google Scholar 

  217. Kroes AC, Lindemans J, Hagenbeek A, Abels J . Nitrous oxide reduces growth of experimental rat leukemia. Leuk Res 1984; 8: 441–448.

    CAS  PubMed  Google Scholar 

  218. Kroes AC, Lindemans J, Abels J . Synergistic growth inhibiting effect of nitrous oxide and cycloleucine in experimental rat leukaemia. Br J Cancer 1984; 50: 793–800.

    CAS  PubMed  PubMed Central  Google Scholar 

  219. Abels J, Kroes AC, Ermens AA, van Kapel J, Schoester M, Spijkers LJ et al. Anti-leukemic potential of methyl-cobalamin inactivation by nitrous oxide. Am J Hematol 1990; 34: 128–131.

    CAS  PubMed  Google Scholar 

  220. Sonneveld P, Holcenberg JS, van Bekkum DW . Effect of succinylated Acinetobacter glutaminase-asparaginase treatment on an acute myeloid leukemia in the rat (BNML). Eur J Cancer 1979; 15: 1061–1063.

    CAS  PubMed  Google Scholar 

  221. Lopes Cardozo B, Martens AC, Zurcher C, Hagenbeek A . Secondary tumors after high-dose cyclophosphamide and total-body irradiation followed by bone marrow transplantation in a rat model for human acute myelocytic leukemia (BNML). Eur J Cancer Clin Oncol 1984; 20: 695–698.

    CAS  PubMed  Google Scholar 

  222. Zurcher C, Varekamp AE, Solleveld HA, Durham SK, De Vries AJ, Hagenbeek A . Late effects of cyclophosphamide and total body irradiation as a conditioning regimen for bone marrow transplantation in rats (a preliminary report). Int J Radiat Biol Relat Stud Phys Chem Med 1987; 51: 1059–1068.

    CAS  PubMed  Google Scholar 

  223. Martens AC, van den Engh GJ, Hagenbeek A . The fluorescence intensity of propidium iodide bound to DNA depends on the concentration of sodium chloride. Cytometry 1981; 2: 24–25.

    CAS  PubMed  Google Scholar 

  224. Hagenbeek A, Martens AC . Efficacy of piperazinedione prior to bone marrow transplantation: studies in a rat model for human acute myelocytic leukemia. Cancer Treat Rep 1981; 65: 575–582.

    CAS  PubMed  Google Scholar 

  225. Martens AC, Hagenbeek A . Amifostine (WR2721) for dose escalation in marrow-ablative treatment of leukemia. Eur J Cancer 1999; 35: 634–640.

    CAS  PubMed  Google Scholar 

  226. Chu J . Experimental studies on the elimination of minimal residual leukemia in vivo by alternate half body irradiation. Zhongguo Yi Xue Ke Xue Yuan Xue Bao 1993; 15: 12–16.

    CAS  PubMed  Google Scholar 

  227. Hagenbeek A, Martens AC . High-dose cyclophosphamide treatment of acute myelocytic leukemia. Studies in the BNML rat model. Eur J Cancer Clin Oncol 1982; 18: 763–769.

    CAS  PubMed  Google Scholar 

  228. Sharkis SJ, Santos GW . Bone marrow transplantation in a BN rat model for myelogenous leukemia. Leuk Res 1977; 1: 251–252.

    Google Scholar 

  229. Hagenbeek A, Martens ACM . Normal tissue protection by a small priming dose of cyclophosphamide prior to high dose chemo-radiotherapy in the BN acute myelocytic leukemia. In: Yohn DS, Blakeslee JR (eds). Comparative Research on Leukemia and Related Diseases. New York: Elsevier-Biomedical, 1982, pp 581–583.

    Google Scholar 

  230. Hagenbeek A, Martens ACM, Van Marrewijk C . Priming dose of cyclophosphamide treatment: studies in the rat model for acute myelocytic leukemia (BNML). In: Mc Vie G, Dalesio O, Smith IE (eds). Autologous Bone Marrow Transplantation Workshop, Amsterdam. EORTC. Monograph Series. New York: Raven Press, 1984, pp 41–47.

    Google Scholar 

  231. Martens ACM, Hagenbeek A . Tumor load reduction in the treatment of leukemia with high dose radio-chemotherapy and the enhancing effect of cyclophosphamide on the regeneration of transplanted bone marrow cells. In: Blakeslee JR, John DL, John DS (eds). Advances in Comparative Leukemia Research. New York: Elsevier-Biomedical, 1982, pp 597–598.

    Google Scholar 

  232. Wang JY, Prorok G, Vaughan WP . Cytotoxicity, DNA cross-linking, and DNA single-strand breaks induced by cyclophosphamide in a rat leukemia in vivo. Cancer Chemother Pharmacol 1993; 31: 381–386.

    CAS  PubMed  Google Scholar 

  233. Hagenbeek A, Martens AC, van Bekkum DW . Separation of normal hemopoietic stem cells from clonogenic leukemic cells in a rat model for human acute myelocytic leukemia – I. Velocity sedimentation. Leuk Res 1981; 5: 421–428.

    CAS  PubMed  Google Scholar 

  234. Hagenbeek A, Martens AC . Separation of normal hemopoietic stem cells from clonogenic leukemic cells in a rat model for human acute myelocytic leukemia. II. Velocity sedimentation in combination with density gradient separation. Exp Hematol 1981; 9: 573–580.

    CAS  PubMed  Google Scholar 

  235. Valet G, Fischer B, Sundergeld A, Hanser G, Kachel V, Ruhenstroth-Bauer G . Simultaneous flow cytometric DNA and volume measurements of bone marrow cells as sensitive indicator of abnormal proliferation patterns in rat leukemias. J Histochem Cytochem 1979; 27: 398–403.

    CAS  PubMed  Google Scholar 

  236. Sharkis SJ, Santos GW, Colvin M . Elimination of acute myelogenous leukemic cells from marrow and tumor suspensions in the rat with 4-hydroperoxycyclophosphamide. Blood 1980; 55: 521–523.

    CAS  PubMed  Google Scholar 

  237. Hagenbeek A, Martens AC . Toxicity of ASTA Z 7557 (INN mafosfamide) to normal- and leukemic stem cells: implications for autologous bone marrow transplantation. Invest New Drugs 1984; 2: 237–243.

    CAS  PubMed  Google Scholar 

  238. Martens AC, van Bekkum DW, Hagenbeek A . Heterogeneity within the spleen colony-forming cell population in rat bone marrow. Exp Hematol 1986; 14: 714–718.

    CAS  PubMed  Google Scholar 

  239. Kluin-Nelemans JC, Lowenberg B, Martens ACM, Hagenbeek A . In vitro chemotherapy with ASTA-Z-7557: studies in rat and human acute myeloid leukemia. In: McVie G, Dalesio O, Smith IE (eds). Autologous Bone Marrow Transplantation Workshop, Amsterdam. EORTC. Monograph Series. New York: Raven Press, 1984, p. 33.

    Google Scholar 

  240. Cardozo BL, Hagenbeek A . Interstitial pneumonitis following bone marrow transplantation: pathogenesis and therapeutic considerations. Eur J Cancer Clin Oncol 1985; 21: 43–51.

    CAS  PubMed  Google Scholar 

  241. Cardozo BL, Zoetelief H, van Bekkum DW, Zurcher C, Hagenbeek A . Lung damage following bone marrow transplantation: I. The contribution of irradiation. Int J Radiat Oncol Biol Phys 1985; 11: 907–914.

    CAS  PubMed  Google Scholar 

  242. Varekamp AE, de Vries AJ, Hagenbeek A . Lung damage in the rat after irradiation and treatment with cytotoxic drugs. Br J Cancer Suppl 1986; 7: 347–350.

    CAS  PubMed  PubMed Central  Google Scholar 

  243. Gowing H, Braakman E, Hagenbeek A, Lawler M, McCann SR, Pamphilon DH et al. Influence of ultraviolet-B irradiation on engraftment, graft-versus-host disease and graft-versus-leukemia effect in a rat model for allogeneic bone marrow transplantation. Bone Marrow Transplant 1998; 21: 801–807.

    CAS  PubMed  Google Scholar 

  244. Kloosterman TC, Martens AC, van Bekkum DW, Hagenbeek A . Graft-versus-leukemia in rat MHC-mismatched bone marrow transplantation is merely an allogeneic effect. Bone Marrow Transplant 1995; 15: 583–590.

    CAS  PubMed  Google Scholar 

  245. Kloosterman TC, Martens AC, Osterwalder B, Hagenbeek A . Interleukin-2 therapy after allogeneic bone marrow transplantation for acute myelocytic leukemia: studies in a relevant rat model for AML. Bone Marrow Transplant 1994; 14: 965–973.

    CAS  PubMed  Google Scholar 

  246. Kloosterman TC, Tielemans MJ, Martens AC, van Bekkum DW, Hagenbeek A . Quantitative studies on graft-versus-leukemia after allogeneic bone marrow transplantation in rat models for acute myelocytic and lymphocytic leukemia. Bone Marrow Transplant 1994; 14: 15–22.

    CAS  PubMed  Google Scholar 

  247. Varekamp AE, de Vries AJ, Zurcher C, Hagenbeek A . Lung damage following bone marrow transplantation: II. The contribution of cyclophosphamide. Int J Radiat Oncol Biol Phys 1987; 13: 1515–1521.

    CAS  PubMed  Google Scholar 

  248. Hightower JA, Earnest DL, Martens AC, Zurcher C, Brouwer A, Blauw E et al. Effects of acute graft-vs-host disease on the liver of the brown Norway rat. J Leukoc Biol 1987; 42: 128–143.

    CAS  PubMed  Google Scholar 

  249. Martens AC, van Bekkum DW, Hagenbeek A . Minimal residual disease in leukemia: studies in an animal model for acute myelocytic leukemia (BNML). Int J Cell Cloning 1990; 8: 27–38.

    CAS  PubMed  Google Scholar 

  250. Hagenbeek A, Martens AC . Minimal residual disease in acute leukaemia: preclinical studies in a relevant rat model (BNML). Baillieres Clin Haematol 1991; 4: 609–635.

    CAS  PubMed  Google Scholar 

  251. Hagenbeek A . Minimal residual disease in leukemia: state of the art 1991. Leukemia 1992; 6 (Suppl 2): 12–16.

    PubMed  Google Scholar 

  252. Hagenbeek A, Martens AC . Detection of minimal residual disease in acute leukemia: possibilities and limitations. Eur J Cancer Clin Oncol 1985; 21: 389–395.

    CAS  PubMed  Google Scholar 

  253. Martens AC, Van Bekkum DW, Hagenbeek A . The BN acute myelocytic leukemia (BNML) (a rat model for studying human acute myelocytic leukemia (AML)). Leukemia 1990; 4: 241–257.

    CAS  PubMed  Google Scholar 

  254. van Bekkum DW . The appearemce of the multipotential heamatopoietic stem cell. In: Baun SJ, Ledney GD (eds). Experimental Haematology Today. New York: Springer Verlag, 1977, pp 3–10.

    Google Scholar 

  255. Martens AC, Hagenbeek A . Detection of minimal disease in acute leukemia using flow cytometry: studies in a rat model for human acute leukemia. Cytometry 1985; 6: 342–347.

    CAS  PubMed  Google Scholar 

  256. Martens AC, Johnson RJ, Kaizer H, Hagenbeek A . Characteristics of a monoclonal antibody (RM124) against acute myelocytic leukemia cells. Exp Hematol 1984; 12: 667–671.

    CAS  PubMed  Google Scholar 

  257. Hagenbeek A, Martens ACM . Kinetics of minimal residual disease in a rat model for human acute myelocytic leukemia. In: Baum SJ, Ledney GD, van Bekkum DW (eds). Experimental Hematology Today. New York: Springer Verlag, 1980, pp 215–221.

    Google Scholar 

  258. Martens AC, Schultz FW, Hagenbeek A . Nonhomogeneous distribution of leukemia in the bone marrow during minimal residual disease. Blood 1987; 70: 1073–1078.

    CAS  PubMed  Google Scholar 

  259. Hagenbeek A, Martens AC . Reinfusion of leukemic cells with the autologous marrow graft: preclinical studies on lodging and regrowth of leukemia. Leuk Res 1985; 9: 1389–1395.

    CAS  PubMed  Google Scholar 

  260. Hagenbeek A, Martens ACM . The treatment of minimal residual disease in a rat model for human acute myelocytic leukemia. In: Yohn DS, Lapin BA, Blakeslee JR (eds). Advances in Comparative Leukemia Research. Amsterdam: Elsevier/North Holland, 1980, p. 531.

    Google Scholar 

  261. Hagenbeek A, Martens AC . BCG treatment of residual disease in acute leukemia: studies in a rat model for human acute myelocytic leukemia (BNML). Leuk Res 1983; 7: 547–555.

    CAS  PubMed  Google Scholar 

  262. Colly LP, Richel DJ, Arentsen-Honders MW, Kester MG, ter Riet PM, Willemze R . Increase in Ara-C sensitivity in Ara-C sensitive and -resistant leukemia by stimulation of the salvage and inhibition of the de novo pathway. Ann Hematol 1992; 65: 26–32.

    CAS  PubMed  Google Scholar 

  263. Colly LP, Richel DJ, Arentsen-Honders W, Starrenburg IW, Edelbroek PM, Willemze R . A simplified assay for measurement of cytosine arabinoside incorporation into DNA in Ara-C-sensitive and -resistant leukemic cells. Cancer Chemother Pharmacol 1990; 27: 151–156.

    CAS  PubMed  Google Scholar 

  264. Martens AC, de Groot CJ, Hagenbeek A . Development and characterisation of a cyclophosphamide resistant variant of the BNML rat model for acute myelocytic leukaemia. Eur J Cancer 1991; 27: 161–166.

    CAS  PubMed  Google Scholar 

  265. de Groot CJ, Martens AC, Hagenbeek A . Aldehyde dehydrogenase involvement in a variant of the brown Norway rat acute myelocytic leukaemia (BNML) that acquired cyclophosphamide resistance in vivo. Eur J Cancer 1994; 30A: 2137–2143.

    CAS  PubMed  Google Scholar 

  266. Brox A, Price G, Sullivan AK . An antigen related to the phenotype of multi-drug resistance can be induced in vivo and used as a target for immunotherapy of rat leukemia. Leuk Res 1985; 9: 987–992.

    CAS  PubMed  Google Scholar 

  267. el-Beltagi HM, Martens AC, Haroun EA, Hagenbeek A . In vivo development of an acetyldinaline resistant subline of the BN rat acute myelocytic leukemia (BNML). Leukemia 1993; 7: 1275–1280.

    CAS  PubMed  Google Scholar 

  268. Hermouet S, Lanotte M . Cholera toxin resistance associated with deficient adenylate-cyclase activity in a subclone of the rat promyelocytic leukemia (BNML). Leukemia 1989; 3: 289–293.

    CAS  PubMed  Google Scholar 

  269. Gaiser JF, Kloosterman TC, Martens AC, Hagenbeek A . In vitro resistance of the brown Norway rat acute myelocytic leukemia (BNML) to lymphokine-activated killer activity. Leukemia 1993; 7: 736–741.

    CAS  PubMed  Google Scholar 

  270. Xi YZ, Martens AC, Zsebo KM . Effects of recombinant stem cell factor on the proliferation in vitro of LT12 acute promyelocytic leukemic cell line. Zhonghua Zhong Liu Za Zhi 1994; 16: 93–97.

    CAS  PubMed  Google Scholar 

  271. Rozemuller H, Rombouts WJ, Touw IP, FitzGerald DJ, Kreitman RJ, Pastan I et al. Treatment of acute myelocytic leukemia with interleukin-6 Pseudomonas exotoxin fusion protein in a rat leukemia model. Leukemia 1996; 10: 1796–1803.

    CAS  PubMed  Google Scholar 

  272. Rozemuller H, Rombouts EJ, Touw IP, FitzGerald DJ, Kreitman RJ, Hagenbeek A et al. In vivo targeting of leukemic cells using diphtheria toxin fused to murine GM-CSF. Leukemia 1998; 12: 710–717.

    CAS  PubMed  Google Scholar 

  273. Guillemin MC, Raffoux E, Vitoux D, Kogan S, Soilihi H, Lallemand-Breitenbach V et al. In vivo activation of cAMP signaling induces growth arrest and differentiation in acute promyelocytic leukemia. J Exp Med 2002; 196: 1373–1380.

    CAS  PubMed  PubMed Central  Google Scholar 

  274. Tomblyn MR, Tallman MS . New developments in antibody therapy for acute myeloid leukemia. Semin Oncol 2003; 30: 502–508.

    CAS  PubMed  Google Scholar 

  275. Lowenberg B, van Putten W, Theobald M, Gmur J, Verdonck L, Sonneveld P et al. Effect of priming with granulocyte colony-stimulating factor on the outcome of chemotherapy for acute myeloid leukemia. N Engl J Med 2003; 349: 743–752.

    PubMed  Google Scholar 

  276. Iversen PO, Sorensen DR, Benestad HB . Inhibitors of angiogenesis selectively reduce the malignant cell load in rodent models of human myeloid leukemias. Leukemia 2002; 16: 376–381.

    CAS  PubMed  Google Scholar 

  277. Jensen PO, Mortensen BT, Hodgkiss RJ, Iversen PO, Christensen IJ, Helledie N et al. Increased cellular hypoxia and reduced proliferation of both normal and leukaemic cells during progression of acute myeloid leukaemia in rats. Cell Prolif 2000; 33: 381–395.

    CAS  PubMed  Google Scholar 

  278. Mortensen BT, Jensen PO, Helledie N, Iversen PO, Ralfkiaer E, Larsen JK et al. Changing bone marrow micro-environment during development of acute myeloid leukaemia in rats. Br J Haematol 1998; 102: 458–464.

    CAS  PubMed  Google Scholar 

  279. Iversen PO, Thing-Mortensen B, Nicolaysen G, Benestad HB . Decreased blood flow to rat bone marrow, bone, spleen, and liver in acute leukemia. Leuk Res 1993; 17: 663–668.

    CAS  PubMed  Google Scholar 

  280. Sawyers CL, Gishizky ML, Quan S, Golde DW, Witte ON . Propagation of human blastic myeloid leukemias in the SCID mouse. Blood 1992; 79: 2089–2098.

    CAS  PubMed  Google Scholar 

  281. Bruserud O, Gjertsen BT, Foss B, Huang TS . New strategies in the treatment of acute myelogenous leukemia (AML): in vitro culture of aml cells–the present use in experimental studies and the possible importance for future therapeutic approaches. Stem Cells 2001; 19: 1–11.

    CAS  PubMed  Google Scholar 

  282. Bruserud O, Gjertsen BT, von Volkman HL . In vitro culture of human acute myelogenous leukemia (AML) cells in serum-free media: studies of native AML blasts and AML cell lines. J Hematother Stem Cell Res 2000; 9: 923–932.

    CAS  PubMed  Google Scholar 

  283. Palu G, Selby P, Powles R, Alexander P . Spontaneous regression of human acute myeloid leukaemia xenografts and phenotypic evidence for maturation. Br J Cancer 1979; 40: 731–735.

    CAS  PubMed  PubMed Central  Google Scholar 

  284. Flanagan SP . ‘Nude’, a new hairless gene with pleiotropic effects in the mouse. Genet Res 1966; 8: 295–309.

    CAS  PubMed  Google Scholar 

  285. Segre JA, Nemhauser JL, Taylor BA, Nadeau JH, Lander ES . Positional cloning of the nude locus: genetic, physical, and transcription maps of the region and mutations in the mouse and rat. Genomics 1995; 28: 549–559.

    CAS  PubMed  Google Scholar 

  286. Nara N, Miyamoto T . Direct and serial transplantation of human acute myeloid leukaemia into nude mice. Br J Cancer 1982; 45: 778–782.

    CAS  PubMed  PubMed Central  Google Scholar 

  287. Caretto P, Forni M, d'Orazi G, Scarpa S, Feraiorni P, Jemma C et al. Xenotransplantation in immunosuppressed nude mice of human solid tumors and acute leukemias directly from patients or in vitro cell lines. Ric Clin Lab 1989; 19: 231–243.

    CAS  PubMed  Google Scholar 

  288. Watanabe S, Shimosato Y, Kuroki M, Sato Y, Nakajima T . Transplantability of human lymphoid cell line, lymphoma, and leukemia in splenectomized and/or irradiated nude mice. Cancer Res 1980; 40: 2588–2595.

    CAS  PubMed  Google Scholar 

  289. Fingert HJ, Chen Z, Mizrahi N, Gajewski WH, Bamberg MP, Kradin RL . Rapid growth of human cancer cells in a mouse model with fibrin clot subrenal capsule assay. Cancer Res 1987; 47: 3824–3829.

    CAS  PubMed  Google Scholar 

  290. Krishnaraju K, Hoffman B, Liebermann DA . The zinc finger transcription factor Egr-1 activates macrophage differentiation in M1 myeloblastic leukemia cells. Blood 1998; 92: 1957–1966.

    CAS  PubMed  Google Scholar 

  291. Machado EA, Gerard DA, Lozzio CB, Lozzio BB, Mitchell JR, Golde DW . Proliferation and differentiation of human myeloid leukemic cells in immunodeficient mice: electron microscopy and cytochemistry. Blood 1984; 63: 1015–1022.

    CAS  PubMed  Google Scholar 

  292. McCarthy DJ, Dollar GR, Hill DL . Toxicity and antitumor activity of liposome-entrapped retinoid Ro13-7410. Sel Cancer Ther 1991; 7: 151–157.

    CAS  PubMed  Google Scholar 

  293. Potter GK, Shen RN, Chiao JW . Nude mice as models for human leukemia studies. Am J Pathol 1984; 114: 360–366.

    CAS  PubMed  PubMed Central  Google Scholar 

  294. Yamada M, Mori M, Sugimura T . Myeloperoxidases of human myeloid leukemia cells HL-60 grown in culture and in nude mice. J Biochem (Tokyo) 1983; 93: 1661–1668.

    CAS  Google Scholar 

  295. Janssen JW, Steenvoorden AC, Losekoot M, Bartram CR . Novel transforming sequences in human acute myelocytic leukemia cell lines. Oncogene 1987; 1: 175–179.

    CAS  PubMed  Google Scholar 

  296. Thacker JD, Hogge DE . Cytokine-dependent engraftment of human myeloid leukemic cell lines in immunosuppressed nude mice. Leukemia 1994; 8: 871–877.

    CAS  PubMed  Google Scholar 

  297. Kiser M, McCubrey JA, Steelman LS, Shelton JG, Ramage J, Alexander RL et al. Oncogene-dependent engraftment of human myeloid leukemia cells in immunosuppressed mice. Leukemia 2001; 15: 814–818.

    CAS  PubMed  Google Scholar 

  298. Kelly LM, Yu JC, Boulton CL, Apatira M, Li J, Sullivan CM et al. CT53518, a novel selective FLT3 antagonist for the treatment of acute myelogenous leukemia (AML). Cancer Cell 2002; 1: 421–432.

    CAS  PubMed  Google Scholar 

  299. Weisberg E, Boulton C, Kelly LM, Manley P, Fabbro D, Meyer T et al. Inhibition of mutant FLT3 receptors in leukemia cells by the small molecule tyrosine kinase inhibitor PKC412. Cancer Cell 2002; 1: 433–443.

    CAS  PubMed  Google Scholar 

  300. Amanullah A, Hoffman B, Liebermann DA . Deregulated E2F-1 blocks terminal differentiation and loss of leukemogenicity of M1 myeloblastic leukemia cells without abrogating induction of p15(INK4B) and p16(INK4A). Blood 2000; 96: 475–482.

    CAS  PubMed  Google Scholar 

  301. Imaizumi M, Uozumi J, Breitman TR . Retinoic acid-induced monocytic differentiation of HL60/MRI, a cell line derived from a transplantable HL60 tumor. Cancer Res 1987; 47: 1434–1440.

    CAS  PubMed  Google Scholar 

  302. Kasukabe T, Honma Y, Hozumi M . Selection of mouse macrophage-like sublines that differ in leukemogenic potential and characterization. J Cell Physiol 1984; 118: 105–112.

    CAS  PubMed  Google Scholar 

  303. Kasukabe T, Okabe-Kado J, Honma Y . TRA1, a novel mRNA highly expressed in leukemogenic mouse monocytic sublines but not in nonleukemogenic sublines. Blood 1997; 89: 2975–2985.

    CAS  PubMed  Google Scholar 

  304. Tanuma N, Shima H, Shimada S, Kikuchi K . Reduced tumorigenicity of murine leukemia cells expressing protein-tyrosine phosphatase, PTPepsilon C. Oncogene 2003; 22: 1758–1762.

    CAS  PubMed  Google Scholar 

  305. Latif ZA, Lozzio BB, Wust CJ, Krauss S, Aggio MC, Lozzio CB . Evaluation of drug-antibody conjugates in the treatment of human myelosarcomas transplanted in nude mice. Cancer 1980; 45: 1326–1333.

    CAS  PubMed  Google Scholar 

  306. Xu Y, Scheinberg DA . Elimination of human leukemia by monoclonal antibodies in an athymic nude mouse leukemia model. Clin Cancer Res 1995; 1: 1179–1187.

    CAS  PubMed  Google Scholar 

  307. Foa R, Caretto P, Fierro MT, Bonferroni M, Cardona S, Guarini A et al. Interleukin 2 does not promote the in vitro and in vivo proliferation and growth of human acute leukaemia cells of myeloid and lymphoid origin. Br J Haematol 1990; 75: 34–40.

    CAS  PubMed  Google Scholar 

  308. Nilsson K, Giovanella BC, Stehlin JS, Klein G . Tumorigenicity of human hematopoietic cell lines in athymic nude mice. Int J Cancer 1977; 19: 337–344.

    CAS  PubMed  Google Scholar 

  309. Mule JJ, Jicha DL, Rosenberg SA . The use of congenitally immunodeficient mice to study human tumor metastases and immunotherapy. J Immunother 1992; 12: 196–198.

    CAS  PubMed  Google Scholar 

  310. Kamel-Reid S, Dick JE . Engraftment of immune-deficient mice with human hematopoietic stem cells. Science 1988; 242: 1706–1709.

    CAS  PubMed  Google Scholar 

  311. Dick JE, Kamel-Reid S, Murdoch B, Doedens M . Gene transfer into normal human hematopoietic cells using in vitro and in vivo assays. Blood 1991; 78: 624–634.

    CAS  PubMed  Google Scholar 

  312. Mombaerts P, Iacomini J, Johnson RS, Herrup K, Tonegawa S, Papaioannou VE . RAG-1-deficient mice have no mature B and T lymphocytes. Cell 1992; 68: 869–877.

    CAS  PubMed  Google Scholar 

  313. Shinkai Y, Rathbun G, Lam KP, Oltz EM, Stewart V, Mendelsohn M et al. RAG-2-deficient mice lack mature lymphocytes owing to inability to initiate V(D)J rearrangement. Cell 1992; 68: 855–867.

    CAS  PubMed  Google Scholar 

  314. Mosier DE, Gulizia RJ, Torbett BE, Baird SM, Wilson DB . Break for SCIDs. Nature 1991; 353: 509.

    CAS  PubMed  Google Scholar 

  315. Pollock PL, Germolec DR, Comment CE, Rosenthal GJ, Luster MI . Development of human lymphocyte-engrafted SCID mice as a model for immunotoxicity assessment. Fundam Appl Toxicol 1994; 22: 130–138.

    CAS  PubMed  Google Scholar 

  316. McCune JM, Namikawa R, Kaneshima H, Shultz LD, Lieberman M, Weissman IL . The SCID-hu mouse: murine model for the analysis of human hematolymphoid differentiation and function. Science 1988; 241: 1632–1639.

    CAS  PubMed  Google Scholar 

  317. Mosier DE, Gulizia RJ, Baird SM, Wilson DB . Transfer of a functional human immune system to mice with severe combined immunodeficiency. Nature 1988; 335: 256–259.

    CAS  PubMed  Google Scholar 

  318. Bosma GC, Custer RP, Bosma MJ . A severe combined immunodeficiency mutation in the mouse. Nature 1983; 301: 527–530.

    CAS  PubMed  Google Scholar 

  319. Kirchgessner CU, Patil CK, Evans JW, Cuomo CA, Fried LM, Carter T et al. DNA-dependent kinase (p350) as a candidate gene for the murine SCID defect. Science 1995; 267: 1178–1183.

    CAS  PubMed  Google Scholar 

  320. Blunt T, Gell D, Fox M, Taccioli GE, Lehmann AR, Jackson SP et al. Identification of a nonsense mutation in the carboxyl-terminal region of DNA-dependent protein kinase catalytic subunit in the scid mouse. Proc Natl Acad Sci USA 1996; 93: 10285–10290.

    CAS  PubMed  PubMed Central  Google Scholar 

  321. Fried LM, Koumenis C, Peterson SR, Green SL, van Zijl P, Allalunis-Turner J et al. The DNA damage response in DNA-dependent protein kinase-deficient SCID mouse cells: replication protein A hyperphosphorylation and p53 induction. Proc Natl Acad Sci USA 1996; 93: 13825–13830.

    CAS  PubMed  PubMed Central  Google Scholar 

  322. Jeggo PA, Jackson SP, Taccioli GE . Identification of the catalytic subunit of DNA dependent protein kinase as the product of the mouse scid gene. Curr Top Microbiol Immunol 1996; 217: 79–89.

    CAS  PubMed  Google Scholar 

  323. Miller RD, Hogg J, Ozaki JH, Gell D, Jackson SP, Riblet R . Gene for the catalytic subunit of mouse DNA-dependent protein kinase maps to the scid locus. Proc Natl Acad Sci USA 1995; 92: 10792–10795.

    CAS  PubMed  PubMed Central  Google Scholar 

  324. Lieber MR, Hesse JE, Lewis S, Bosma GC, Rosenberg N, Mizuuchi K et al. The defect in murine severe combined immune deficiency: joining of signal sequences but not coding segments in V(D)J recombination. Cell 1988; 55: 7–16.

    CAS  PubMed  Google Scholar 

  325. Malynn BA, Blackwell TK, Fulop GM, Rathbun GA, Furley AJ, Ferrier P et al. The scid defect affects the final step of the immunoglobulin VDJ recombinase mechanism. Cell 1988; 54: 453–460.

    CAS  PubMed  Google Scholar 

  326. Bosma MJ, Carroll AM . The SCID mouse mutant: definition, characterization, and potential uses. Annu Rev Immunol 1991; 9: 323–350.

    CAS  PubMed  Google Scholar 

  327. Mazurier F, Doedens M, Gan OI, Dick JE . Characterization of cord blood hematopoietic stem cells. Ann NY Acad Sci 2003; 996: 67–71.

    PubMed  Google Scholar 

  328. Bonnet D . Haematopoietic stem cells. J Pathol 2002; 197: 430–440.

    PubMed  Google Scholar 

  329. Cowan MJ, Chou SH, Tarantal AF . Tolerance induction post in utero stem cell transplantation. Ernst Schering Res Found Workshop 2001, 145–171.

  330. Pei X . Who is hematopoietic stem cell: CD34+ or CD34-? Int J Hematol 1999; 70: 213–215.

    CAS  PubMed  Google Scholar 

  331. Marmont AM . Stem cell transplantation for severe autoimmune diseases: progress and problems. Haematologica 1998; 83: 733–743.

    CAS  PubMed  Google Scholar 

  332. Ploemacher RE . Stem cells: characterization and measurement. Baillieres Clin Haematol 1997; 10: 429–444.

    CAS  PubMed  Google Scholar 

  333. Murray LJ, Tsukamoto A, Hoffman R . CD34+Thy-1+Lin- stem cells from mobilized peripheral blood. Leuk Lymphoma 1996; 22: 37–42.

    CAS  PubMed  Google Scholar 

  334. De Lord C, Clutterbuck R, Titley J, Ormerod M, Gordon-Smith T, Millar J et al. Growth of primary human acute leukemia in severe combined immunodeficient mice. Exp Hematol 1991; 19: 991–993.

    CAS  PubMed  Google Scholar 

  335. Lapidot T, Sirard C, Vormoor J, Murdoch B, Hoang T, Caceres-Cortes J et al. A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature 1994; 367: 645–648.

    CAS  PubMed  Google Scholar 

  336. Pirruccello SJ, Jackson JD, Sharp JG . The leukemic myeloid cell line OMA-AML-1: an in vitro model of hematopoietic cell differentiation. Leuk Lymphoma 1994; 13: 169–178.

    CAS  PubMed  Google Scholar 

  337. Chelstrom LM, Gunther R, Simon J, Raimondi SC, Krance R, Crist WM et al. Childhood acute myeloid leukemia in mice with severe combined immunodeficiency. Blood 1994; 84: 20–26.

    CAS  PubMed  Google Scholar 

  338. Cesano A, Visonneau S, Cioe L, Clark SC, Rovera G, Santoli D . Reversal of acute myelogenous leukemia in humanized SCID mice using a novel adoptive transfer approach. J Clin Invest 1994; 94: 1076–1084.

    CAS  PubMed  PubMed Central  Google Scholar 

  339. Yan Y, Salomon O, McGuirk J, Dennig D, Fernandez J, Jagiello C et al. Growth pattern and clinical correlation of subcutaneously inoculated human primary acute leukemias in severe combined immunodeficiency mice. Blood 1996; 88: 3137–3146.

    CAS  PubMed  Google Scholar 

  340. Cesano A, Hoxie JA, Lange B, Nowell PC, Bishop J, Santoli D . The severe combined immunodeficient (SCID) mouse as a model for human myeloid leukemias. Oncogene 1992; 7: 827–836.

    CAS  PubMed  Google Scholar 

  341. Ratajczak MZ, Kant JA, Luger SM, Hijiya N, Zhang J, Zon G et al. In vivo treatment of human leukemia in a scid mouse model with c-myb antisense oligodeoxynucleotides. Proc Natl Acad Sci USA 1992; 89: 11823–11827.

    CAS  PubMed  PubMed Central  Google Scholar 

  342. Namikawa R, Ueda R, Kyoizumi S . Growth of human myeloid leukemias in the human marrow environment of SCID-hu mice. Blood 1993; 82: 2526–2536.

    CAS  PubMed  Google Scholar 

  343. Lapidot T, Fajerman Y, Kollet O . Immune-deficient SCID and NOD/SCID mice models as functional assays for studying normal and malignant human hematopoiesis. J Mol Med 1997; 75: 664–673.

    CAS  PubMed  Google Scholar 

  344. Lapidot T, Pflumio F, Doedens M, Murdoch B, Williams DE, Dick JE . Cytokine stimulation of multilineage hematopoiesis from immature human cells engrafted in SCID mice. Science 1992; 255: 1137–1141.

    CAS  PubMed  Google Scholar 

  345. Goan SR, Fichtner I, Just U, Karawajew L, Schultze W, Krause KP et al. The severe combined immunodeficient-human peripheral blood stem cell (SCID-huPBSC) mouse: a xenotransplant model for huPBSC-initiated hematopoiesis. Blood 1995; 86: 89–100.

    CAS  PubMed  Google Scholar 

  346. Cashman JD, Lapidot T, Wang JC, Doedens M, Shultz LD, Lansdorp P et al. Kinetic evidence of the regeneration of multilineage hematopoiesis from primitive cells in normal human bone marrow transplanted into immunodeficient mice. Blood 1997; 89: 4307–4316.

    CAS  PubMed  Google Scholar 

  347. Hendrickson EA . The SCID mouse: relevance as an animal model system for studying human disease. Am J Pathol 1993; 143: 1511–1522.

    CAS  PubMed  PubMed Central  Google Scholar 

  348. Nonoyama S, Smith FO, Bernstein ID, Ochs HD . Strain-dependent leakiness of mice with severe combined immune deficiency. J Immunol 1993; 150: 3817–3824.

    CAS  PubMed  Google Scholar 

  349. Shultz LD, Schweitzer PA, Christianson SW, Gott B, Schweitzer IB, Tennent B et al. Multiple defects in innate and adaptive immunologic function in NOD/LtSz-scid mice. J Immunol 1995; 154: 180–191.

    CAS  PubMed  Google Scholar 

  350. Kudo T, Saijyo S, Saeki H, Sato N, Tachibana T, Habu S . Production of a human monoclonal antibody to a synthetic peptide by active in vivo immunization using a SCID mouse grafted with human lymphocytes. Tohoku J Exp Med 1993; 171: 327–338.

    CAS  PubMed  Google Scholar 

  351. Shpitz B, Chambers CA, Singhal AB, Hozumi N, Fernandes BJ, Roifman CM et al. High level functional engraftment of severe combined immunodeficient mice with human peripheral blood lymphocytes following pretreatment with radiation and anti-asialo GM1. J Immunol Methods 1994; 169: 1–15.

    CAS  PubMed  Google Scholar 

  352. Sandhu JS, Clark BR, Boynton EL, Atkins H, Messner H, Keating A et al. Human hematopoiesis in SCID mice implanted with human adult cancellous bone. Blood 1996; 88: 1973–1982.

    CAS  PubMed  Google Scholar 

  353. Sandhu JS, Boynton E, Gorczynski R, Hozumi N . The use of SCID mice in biotechnology and as a model for human disease. Crit Rev Biotechnol 1996; 16: 95–118.

    CAS  PubMed  Google Scholar 

  354. Larochelle A, Vormoor J, Hanenberg H, Wang JC, Bhatia M, Lapidot T et al. Identification of primitive human hematopoietic cells capable of repopulating NOD/SCID mouse bone marrow: implications for gene therapy. Nat Med 1996; 2: 1329–1337.

    CAS  PubMed  Google Scholar 

  355. Greiner DL, Shultz LD, Yates J, Appel MC, Perdrizet G, Hesselton RM et al. Improved engraftment of human spleen cells in NOD/LtSz-scid/scid mice as compared with C.B-17-scid/scid mice. Am J Pathol 1995; 146: 888–902.

    CAS  PubMed  PubMed Central  Google Scholar 

  356. Dick JE, Bhatia M, Gan O, Kapp U, Wang JC . Assay of human stem cells by repopulation of NOD/SCID mice. Stem Cells 1997; 15 (Suppl 1): 199–203.

    PubMed  Google Scholar 

  357. Blair A, Hogge DE, Ailles LE, Lansdorp PM, Sutherland HJ . Lack of expression of Thy-1 (CD90) on acute myeloid leukemia cells with long-term proliferative ability in vitro and in vivo. Blood 1997; 89: 3104–3112.

    CAS  PubMed  Google Scholar 

  358. Blair A, Sutherland HJ . Primitive acute myeloid leukemia cells with long-term proliferative ability in vitro and in vivo lack surface expression of c-kit (CD117). Exp Hematol 2000; 28: 660–671.

    CAS  PubMed  Google Scholar 

  359. Feuring-Buske M, Hogge DE . Hoechst 33342 efflux identifies a subpopulation of cytogenetically normal CD34(+)CD38(−) progenitor cells from patients with acute myeloid leukemia. Blood 2001; 97: 3882–3889.

    CAS  PubMed  Google Scholar 

  360. Dick JE . Normal and leukemic human stem cells assayed in SCID mice. Semin Immunol 1996; 8: 197–206.

    CAS  PubMed  Google Scholar 

  361. Dick JE . Human stem cell assays in immune-deficient mice. Curr Opin Hematol 1996; 3: 405–409.

    CAS  PubMed  Google Scholar 

  362. Bonnet D, Dick JE . Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med 1997; 3: 730–737.

    CAS  PubMed  Google Scholar 

  363. Rombouts WJ, Blokland I, Lowenberg B, Ploemacher RE . Biological characteristics and prognosis of adult acute myeloid leukemia with internal tandem duplications in the Flt3 gene. Leukemia 2000; 14: 675–683.

    CAS  PubMed  Google Scholar 

  364. Ailles LE, Gerhard B, Kawagoe H, Hogge DE . Growth characteristics of acute myelogenous leukemia progenitors that initiate malignant hematopoiesis in nonobese diabetic/severe combined immunodeficient mice. Blood 1999; 94: 1761–1772.

    CAS  PubMed  Google Scholar 

  365. Blair A, Hogge DE, Sutherland HJ . Most acute myeloid leukemia progenitor cells with long-term proliferative ability in vitro and in vivo have the phenotype CD34(+)/CD71(−)/HLA-DR. Blood 1998; 92: 4325–4335.

    CAS  PubMed  Google Scholar 

  366. Lumkul R, Gorin NC, Malehorn MT, Hoehn GT, Zheng R, Baldwin B et al. Human AML cells in NOD/SCID mice: engraftment potential and gene expression. Leukemia 2002; 16: 1818–1826.

    CAS  PubMed  Google Scholar 

  367. Marx J . Cancer research. Mutant stem cells may seed cancer. Science 2003; 301: 1308–1310.

    CAS  PubMed  Google Scholar 

  368. Yamamoto Y, Kiyoi H, Nakano Y, Suzuki R, Kodera Y, Miyawaki S et al. Activating mutation of D835 within the activation loop of FLT3 in human hematologic malignancies. Blood 2001; 97: 2434–2439.

    CAS  PubMed  Google Scholar 

  369. Kondo M, Horibe K, Takahashi Y, Matsumoto K, Fukuda M, Inaba J et al. Prognostic value of internal tandem duplication of the FLT3 gene in childhood acute myelogenous leukemia. Med Pediatr Oncol 1999; 33: 525–529.

    CAS  PubMed  Google Scholar 

  370. Rombouts WJ, Martens AC, Ploemacher RE . Identification of variables determining the engraftment potential of human acute myeloid leukemia in the immunodeficient NOD/SCID human chimera model. Leukemia 2000; 14: 889–897.

    CAS  PubMed  Google Scholar 

  371. Countouriotis A, Moore TB, Sakamoto KM . Cell surface antigen and molecular targeting in the treatment of hematologic malignancies. Stem Cells 2002; 20: 215–229.

    CAS  PubMed  Google Scholar 

  372. Raymakers R, Wittebol S, Pennings A, Linders E, Poddighe P, De Witte T . Residual normal, highly proliferative progenitors can be isolated from the CD34+/33− fraction of AML with a more differentiated phenotype (CD33+). Leukemia 1995; 9: 450–457.

    CAS  PubMed  Google Scholar 

  373. Turhan AG, Lemoine FM, Debert C, Bonnet ML, Baillou C, Picard F et al. Highly purified primitive hematopoietic stem cells are PML-RARA negative and generate nonclonal progenitors in acute promyelocytic leukemia. Blood 1995; 85: 2154–2161.

    CAS  PubMed  Google Scholar 

  374. Wierenga PK, Setroikromo R, Kamps G, Kampinga HH, Vellenga E . Differences in heat sensitivity between normal and acute myeloid leukemic stem cells: feasibility of hyperthermic purging of leukemic cells from autologous stem cell grafts. Exp Hematol 2003; 31: 421–427.

    PubMed  Google Scholar 

  375. Guzman ML, Swiderski CF, Howard DS, Grimes BA, Rossi RM, Szilvassy SJ et al. Preferential induction of apoptosis for primary human leukemic stem cells. Proc Natl Acad Sci USA 2002; 99: 16220–16225.

    CAS  PubMed  PubMed Central  Google Scholar 

  376. Gojo I, Karp JE . The impact of biology on the treatment of secondary AML. Cancer Treat Res 2001; 108: 231–255.

    CAS  PubMed  Google Scholar 

  377. Zhong RK, van de Winkel JG, Thepen T, Schultz LD, Ball ED . Cytotoxicity of anti-CD64-ricin a chain immunotoxin against human acute myeloid leukemia cells in vitro and in SCID mice. J Hematother Stem Cell Res 2001; 10: 95–105.

    CAS  PubMed  Google Scholar 

  378. Nieda M, Nicol A, Koezuka Y, Kikuchi A, Lapteva N, Tanaka Y et al. TRAIL expression by activated human CD4(+)V alpha 24NKT cells induces in vitro and in vivo apoptosis of human acute myeloid leukemia cells. Blood 2001; 97: 2067–2074.

    CAS  PubMed  Google Scholar 

  379. Plasilova M, Zivny J, Jelinek J, Neuwirtova R, Cermak J, Necas E et al. TRAIL (Apo2L) suppresses growth of primary human leukemia and myelodysplasia progenitors. Leukemia 2002; 16: 67–73.

    CAS  PubMed  Google Scholar 

  380. Zhu Z, Hattori K, Zhang H, Jimenez X, Ludwig DL, Dias S et al. Inhibition of human leukemia in an animal model with human antibodies directed against vascular endothelial growth factor receptor 2. Correlation between antibody affinity and biological activity. Leukemia 2003; 17: 604–611.

    CAS  PubMed  Google Scholar 

  381. Feuring-Buske M, Frankel AE, Alexander RL, Gerhard B, Hogge DE . A diphtheria toxin-interleukin 3 fusion protein is cytotoxic to primitive acute myeloid leukemia progenitors but spares normal progenitors. Cancer Res 2002; 62: 1730–1736.

    CAS  PubMed  Google Scholar 

  382. Feuring-Buske M, Frankel A, Gerhard B, Hogge D . Variable cytotoxicity of diphtheria toxin 388-granulocyte-macrophage colony-stimulating factor fusion protein for acute myelogenous leukemia stem cells. Exp Hematol 2000; 28: 1390–1400.

    CAS  PubMed  Google Scholar 

  383. O'Farrell AM, Abrams TJ, Yuen HA, Ngai TJ, Louie SG, Yee KW et al. SU11248 is a novel FLT3 tyrosine kinase inhibitor with potent activity in vitro and in vivo. Blood 2003; 101: 3597–3605.

    CAS  PubMed  Google Scholar 

  384. Bonnet D, Bhatia M, Wang JC, Kapp U, Dick JE . Cytokine treatment or accessory cells are required to initiate engraftment of purified primitive human hematopoietic cells transplanted at limiting doses into NOD/SCID mice. Bone Marrow Transplant 1999; 23: 203–209.

    CAS  PubMed  Google Scholar 

  385. Terpstra W, Leenen PJ, van den Bos C, Prins A, Loenen WA, Verstegen MM et al. Facilitated engraftment of human hematopoietic cells in severe combined immunodeficient mice following a single injection of Cl2MDP liposomes. Leukemia 1997; 11: 1049–1054.

    CAS  PubMed  Google Scholar 

  386. Nitsche A, Junghahn I, Thulke S, Aumann J, Radonic A, Fichtner I et al. Interleukin-3 promotes proliferation and differentiation of human hematopoietic stem cells but reduces their repopulation potential in NOD/SCID mice. Stem Cells 2003; 21: 236–244.

    CAS  PubMed  Google Scholar 

  387. Shultz LD, Schweitzer PA, Christianson SW, Gott B, Schweitzer IB, Tennent B et al. Multiple defects in innate and adaptive immunologic function in NOD/LtSz-scid mice. J Immunol 1995; 154: 180–191.

    CAS  PubMed  Google Scholar 

  388. Palmiter RD, Brinster RL . Germ-line transformation of mice. Annu Rev Genet 1986; 20: 465–499.

    CAS  PubMed  PubMed Central  Google Scholar 

  389. Brinster RL, Chen HY, Trumbauer ME, Yagle MK, Palmiter RD . Factors affecting the efficiency of introducing foreign DNA into mice by microinjecting eggs. Proc Natl Acad Sci USA 1985; 82: 4438–4442.

    CAS  PubMed  PubMed Central  Google Scholar 

  390. Gordon JW, Ruddle FH . Gene transfer into mouse embryos: production of transgenic mice by pronuclear injection. Methods Enzymol 1983; 101: 411–433.

    CAS  PubMed  Google Scholar 

  391. Doetschman TC, Eistetter H, Katz M, Schmidt W, Kemler R . The in vitro development of blastocyst-derived embryonic stem cell lines: formation of visceral yolk sac, blood islands and myocardium. J Embryol Exp Morphol 1985; 87: 27–45.

    CAS  PubMed  Google Scholar 

  392. Robertson E, Bradley A, Kuehn M, Evans M . Germ-line transmission of genes introduced into cultured pluripotential cells by retroviral vector. Nature 1986; 323: 445–448.

    CAS  PubMed  Google Scholar 

  393. Gossler A, Doetschman T, Korn R, Serfling E, Kemler R . Transgenesis by means of blastocyst-derived embryonic stem cell lines. Proc Natl Acad Sci USA 1986; 83: 9065–9069.

    CAS  PubMed  PubMed Central  Google Scholar 

  394. Jaenisch R . Retroviruses and embryogenesis: microinjection of Moloney leukemia virus into midgestation mouse embryos. Cell 1980; 19: 181–188.

    CAS  PubMed  Google Scholar 

  395. Jaenisch R, Jahner D, Nobis P, Simon I, Lohler J, Harbers K et al. Chromosomal position and activation of retroviral genomes inserted into the germ line of mice. Cell 1981; 24: 519–529.

    CAS  PubMed  Google Scholar 

  396. Soriano P, Jaenisch R . Retroviruses as probes for mammalian development: allocation of cells to the somatic and germ cell lineages. Cell 1986; 46: 19–29.

    CAS  PubMed  Google Scholar 

  397. Grisolano JL, Sclar GM, Ley TJ . Early myeloid cell-specific expression of the human cathepsin G gene in transgenic mice. Proc Natl Acad Sci USA 1994; 91: 8989–8993.

    CAS  PubMed  PubMed Central  Google Scholar 

  398. Grisolano JL, Wesselschmidt RL, Pelicci PG, Ley TJ . Altered myeloid development and acute leukemia in transgenic mice expressing PML-RAR alpha under control of cathepsin G regulatory sequences. Blood 1997; 89: 376–387.

    CAS  PubMed  Google Scholar 

  399. Cheng GX, Zhu XH, Men XQ, Wang L, Huang QH, Jin XL et al. Distinct leukemia phenotypes in transgenic mice and different corepressor interactions generated by promyelocytic leukemia variant fusion genes PLZF-RARalpha and NPM-RARalpha. Proc Natl Acad Sci USA 1999; 96: 6318–6323.

    CAS  PubMed  PubMed Central  Google Scholar 

  400. He LZ, Guidez F, Tribioli C, Peruzzi D, Ruthardt M, Zelent A et al. Distinct interactions of PML-RARalpha and PLZF-RARalpha with co-repressors determine differential responses to RA in APL. Nat Genet 1998; 18: 126–135.

    CAS  PubMed  Google Scholar 

  401. Sukhai MA, Wu X, Xuan Y, Zhang T, Reis PP, Dube K et al. Myeloid leukemia with promyelocytic features in transgenic mice expressing hCG-NuMA-RARalpha. Oncogene 2004; 23: 665–678.

    CAS  PubMed  Google Scholar 

  402. Liao C, Wang XY, Wei HQ, Li SQ, Merghoub T, Pandolfi PP et al. Altered myelopoiesis and the development of acute myeloid leukemia in transgenic mice overexpressing cyclin A1. Proc Natl Acad Sci USA 2001; 98: 6853–6858.

    CAS  PubMed  PubMed Central  Google Scholar 

  403. Brown D, Kogan S, Lagasse E, Weissman I, Alcalay M, Pelicci PG et al. A PMLRARalpha transgene initiates murine acute promyelocytic leukemia. Proc Natl Acad Sci USA 1997; 94: 2551–2556.

    CAS  PubMed  PubMed Central  Google Scholar 

  404. Early E, Moore MA, Kakizuka A, Nason-Burchenal K, Martin P, Evans RM et al. Transgenic expression of PML/RARalpha impairs myelopoiesis. Proc Natl Acad Sci USA 1996; 93: 7900–7904.

    CAS  PubMed  PubMed Central  Google Scholar 

  405. He LZ, Tribioli C, Rivi R, Peruzzi D, Pelicci PG, Soares V et al. Acute leukemia with promyelocytic features in PML/RARalpha transgenic mice. Proc Natl Acad Sci USA 1997; 94: 5302–5307.

    CAS  PubMed  PubMed Central  Google Scholar 

  406. He LZ, Merghoub T, Pandolfi PP . In vivo analysis of the molecular pathogenesis of acute promyelocytic leukemia in the mouse and its therapeutic implications. Oncogene 1999; 18: 5278–5292.

    CAS  PubMed  Google Scholar 

  407. Westervelt P, Ley TJ . Seed versus soil: the importance of the target cell for transgenic models of human leukemias. Blood 1999; 93: 2143–2148.

    CAS  PubMed  Google Scholar 

  408. Westervelt P, Lane AA, Pollock JL, Oldfather K, Holt MS, Zimonjic DB et al. High-penetrance mouse model of acute promyelocytic leukemia with very low levels of PML-RARalpha expression. Blood 2003; 102: 1857–1865.

    CAS  PubMed  Google Scholar 

  409. Yuan Y, Zhou L, Miyamoto T, Iwasaki H, Harakawa N, Hetherington CJ et al. AML1-ETO expression is directly involved in the development of acute myeloid leukemia in the presence of additional mutations. Proc Natl Acad Sci USA 2001; 98: 10398–10403.

    CAS  PubMed  PubMed Central  Google Scholar 

  410. Thorsteinsdottir U, Mamo A, Kroon E, Jerome L, Bijl J, Lawrence HJ et al. Overexpression of the myeloid leukemia-associated Hoxa9 gene in bone marrow cells induces stem cell expansion. Blood 2002; 99: 121–129.

    CAS  PubMed  Google Scholar 

  411. Lagasse E, Weissman IL . bcl-2 inhibits apoptosis of neutrophils but not their engulfment by macrophages. J Exp Med 1994; 179: 1047–1052.

    CAS  PubMed  Google Scholar 

  412. Traver D, Akashi K, Weissman IL, Lagasse E . Mice defective in two apoptosis pathways in the myeloid lineage develop acute myeloblastic leukemia. Immunity 1998; 9: 47–57.

    CAS  PubMed  Google Scholar 

  413. Kogan SC, Brown DE, Shultz DB, Truong BT, Lallemand-Breitenbach V, Guillemin MC et al. BCL-2 cooperates with promyelocytic leukemia retinoic acid receptor alpha chimeric protein (PMLRARalpha) to block neutrophil differentiation and initiate acute leukemia. J Exp Med 2001; 193: 531–543.

    CAS  PubMed  PubMed Central  Google Scholar 

  414. Yergeau DA, Hetherington CJ, Wang Q, Zhang P, Sharpe AH, Binder M et al. Embryonic lethality and impairment of haematopoiesis in mice heterozygous for an AML1–ETO fusion gene. Nat Genet 1997; 15: 303–306.

    CAS  PubMed  Google Scholar 

  415. Okuda T, Cai Z, Yang S, Lenny N, Lyu CJ, van Deursen JM et al. Expression of a knocked-in AML1-ETO leukemia gene inhibits the establishment of normal definitive hematopoiesis and directly generates dysplastic hematopoietic progenitors. Blood 1998; 91: 3134–3143.

    CAS  PubMed  Google Scholar 

  416. Castilla LH, Wijmenga C, Wang Q, Stacy T, Speck NA, Eckhaus M et al. Failure of embryonic hematopoiesis and lethal hemorrhages in mouse embryos heterozygous for a knocked-in leukemia gene CBFB-MYH11. Cell 1996; 87: 687–696.

    CAS  PubMed  Google Scholar 

  417. Kundu M, Chen A, Anderson S, Kirby M, Xu L, Castilla LH et al. Role of Cbfb in hematopoiesis and perturbations resulting from expression of the leukemogenic fusion gene Cbfb-MYH11. Blood 2002; 100: 2449–2456.

    CAS  PubMed  Google Scholar 

  418. Dobson CL, Warren AJ, Pannell R, Forster A, Lavenir I, Corral J et al. The mll-AF9 gene fusion in mice controls myeloproliferation and specifies acute myeloid leukaemogenesis. EMBO J 1999; 18: 3564–3574.

    CAS  PubMed  PubMed Central  Google Scholar 

  419. Castilla LH, Garrett L, Adya N, Orlic D, Dutra A, Anderson S et al. The fusion gene Cbfb-MYH11 blocks myeloid differentiation and predisposes mice to acute myelomonocytic leukaemia. Nat Genet 1999; 23: 144–146.

    CAS  PubMed  Google Scholar 

  420. Muller U . Ten years of gene targeting: targeted mouse mutants, from vector design to phenotype analysis. Mech Dev 1999; 82: 3–21.

    CAS  PubMed  Google Scholar 

  421. Yu Y, Bradley A . Engineering chromosomal rearrangements in mice. Nat Rev Genet 2001; 2: 780–790.

    CAS  PubMed  Google Scholar 

  422. Bockamp E, Maringer M, Spangenberg C, Fees S, Fraser S, Eshkind L et al. Of mice and models: improved animal models for biomedical research. Physiol Genomics 2002; 11: 115–132.

    CAS  PubMed  Google Scholar 

  423. van der Weyden L, Adams DJ, Bradley A . Tools for targeted manipulation of the mouse genome. Physiol Genomics 2002; 11: 133–164.

    CAS  PubMed  Google Scholar 

  424. Ryding AD, Sharp MG, Mullins JJ . Conditional transgenic technologies. J Endocrinol 2001; 171: 1–14.

    CAS  PubMed  Google Scholar 

  425. Testa G, Stewart AF . Creating a transloxation. Engineering interchromosomal translocations in the mouse. EMBO Rep 2000; 1: 120–121.

    CAS  PubMed  PubMed Central  Google Scholar 

  426. Gossen M, Bujard H . Tight control of gene expression in mammalian cells by tetracycline-responsive promoters. Proc Natl Acad Sci USA 1992; 89: 5547–5551.

    CAS  PubMed  PubMed Central  Google Scholar 

  427. Gossen M, Freundlieb S, Bender G, Muller G, Hillen W, Bujard H . Transcriptional activation by tetracyclines in mammalian cells. Science 1995; 268: 1766–1769.

    CAS  PubMed  Google Scholar 

  428. Jaisser F . Inducible gene expression and gene modification in transgenic mice. J Am Soc Nephrol 2000; 11 (Suppl 16): S95–S100.

    CAS  PubMed  Google Scholar 

  429. Buchholz F, Refaeli Y, Trumpp A, Bishop JM . Inducible chromosomal translocation of AML1 and ETO genes through Cre/loxP-mediated recombination in the mouse. EMBO Rep 2000; 1: 133–139.

    CAS  PubMed  PubMed Central  Google Scholar 

  430. Rhoades KL, Hetherington CJ, Harakawa N, Yergeau DA, Zhou L, Liu LQ et al. Analysis of the role of AML1-ETO in leukemogenesis, using an inducible transgenic mouse model. Blood 2000; 96: 2108–2115.

    CAS  PubMed  Google Scholar 

  431. Higuchi M, O'Brien D, Kumaravelu P, Lenny N, Yeoh EJ, Downing JR . Expression of a conditional AML1-ETO oncogene bypasses embryonic lethality and establishes a murine model of human t(8;21) acute myeloid leukemia. Cancer Cell 2002; 1: 63–74.

    CAS  PubMed  Google Scholar 

  432. Collins EC, Pannell R, Simpson EM, Forster A, Rabbitts TH . Inter-chromosomal recombination of Mll and Af9 genes mediated by cre-loxP in mouse development. EMBO Rep 2000; 1: 127–132.

    CAS  PubMed  PubMed Central  Google Scholar 

  433. Okuda T, van Deursen J, Hiebert SW, Grosveld G, Downing JR . AML1, the target of multiple chromosomal translocations in human leukemia, is essential for normal fetal liver hematopoiesis. Cell 1996; 84: 321–330.

    CAS  PubMed  Google Scholar 

  434. Wang Q, Stacy T, Miller JD, Lewis AF, Gu TL, Huang X et al. The CBFbeta subunit is essential for CBFalpha2 (AML1) function in vivo. Cell 1996; 87: 697–708.

    CAS  PubMed  Google Scholar 

  435. Wang ZG, Delva L, Gaboli M, Rivi R, Giorgio M, Cordon-Cardo C et al. Role of PML in cell growth and the retinoic acid pathway. Science 1998; 279: 1547–1551.

    CAS  PubMed  Google Scholar 

  436. de Guzman CG, Warren AJ, Zhang Z, Gartland L, Erickson P, Drabkin H et al. Hematopoietic stem cell expansion and distinct myeloid developmental abnormalities in a murine model of the AML1-ETO translocation. Mol Cell Biol 2002; 22: 5506–5517.

    CAS  PubMed  PubMed Central  Google Scholar 

  437. Schwieger M, Lohler J, Friel J, Scheller M, Horak I, Stocking C . AML1-ETO inhibits maturation of multiple lymphohematopoietic lineages and induces myeloblast transformation in synergy with ICSBP deficiency. J Exp Med 2002; 196: 1227–1240.

    CAS  PubMed  PubMed Central  Google Scholar 

  438. Holtschke T, Lohler J, Kanno Y, Fehr T, Giese N, Rosenbauer F et al. Immunodeficiency and chronic myelogenous leukemia-like syndrome in mice with a targeted mutation of the ICSBP gene. Cell 1996; 87: 307–317.

    CAS  PubMed  Google Scholar 

  439. Scheller M, Foerster J, Heyworth CM, Waring JF, Lohler J, Gilmore GL et al. Altered development and cytokine responses of myeloid progenitors in the absence of transcription factor, interferon consensus sequence binding protein. Blood 1999; 94: 3764–3771.

    CAS  PubMed  Google Scholar 

  440. Gabriele L, Phung J, Fukumoto J, Segal D, Wang IM, Giannakakou P et al. Regulation of apoptosis in myeloid cells by interferon consensus sequence-binding protein. J Exp Med 1999; 190: 411–421.

    CAS  PubMed  PubMed Central  Google Scholar 

  441. Grisolano JL, O'Neal J, Cain J, Tomasson MH . An activated receptor tyrosine kinase, TEL/PDGFbetaR, cooperates with AML1/ETO to induce acute myeloid leukemia in mice. Proc Natl Acad Sci USA 2003; 100: 9506–9511.

    CAS  PubMed  PubMed Central  Google Scholar 

  442. Dash AB, Williams IR, Kutok JL, Tomasson MH, Anastasiadou E, Lindahl K et al. A murine model of CML blast crisis induced by cooperation between BCR/ABL and NUP98/HOXA9. Proc Natl Acad Sci USA 2002; 99: 7622–7627.

    CAS  PubMed  PubMed Central  Google Scholar 

  443. Kelly LM, Kutok JL, Williams IR, Boulton CL, Amaral SM, Curley DP et al. PML/RARalpha and FLT3-ITD induce an APL-like disease in a mouse model. Proc Natl Acad Sci USA 2002; 99: 8283–8288.

    CAS  PubMed  PubMed Central  Google Scholar 

  444. Lavau C, Luo RT, Du C, Thirman MJ . Retrovirus-mediated gene transfer of MLL-ELL transforms primary myeloid progenitors and causes acute myeloid leukemias in mice. Proc Natl Acad Sci USA 2000; 97: 10984–10989.

    CAS  PubMed  PubMed Central  Google Scholar 

  445. Cuenco GM, Nucifora G, Ren R . Human AML1/MDS1/EVI1 fusion protein induces an acute myelogenous leukemia (AML) in mice: a model for human AML. Proc Natl Acad Sci USA 2000; 97: 1760–1765.

    CAS  PubMed  PubMed Central  Google Scholar 

  446. Cuenco GM, Ren R . Cooperation of BCR-ABL and AML1/MDS1/EVI1 in blocking myeloid differentiation and rapid induction of an acute myelogenous leukemia. Oncogene 2001; 20: 8236–8248.

    CAS  PubMed  Google Scholar 

  447. Kroon E, Krosl J, Thorsteinsdottir U, Baban S, Buchberg AM, Sauvageau G . Hoxa9 transforms primary bone marrow cells through specific collaboration with Meis1a but not Pbx1b. EMBO J 1998; 17: 3714–3725.

    CAS  PubMed  PubMed Central  Google Scholar 

  448. Thorsteinsdottir U, Krosl J, Kroon E, Haman A, Hoang T, Sauvageau G . The oncoprotein E2A-Pbx1a collaborates with Hoxa9 to acutely transform primary bone marrow cells. Mol Cell Biol 1999; 19: 6355–6366.

    CAS  PubMed  PubMed Central  Google Scholar 

  449. Spiegel A, Kollet O, Peled A, Abel L, Nagler A, Bielorai B et al. Unique SDF-1-induced activation of human precursor-B ALL cells as a result of altered CXCR4 expression and signaling. Blood 2004; 103: 2900–2907.

    CAS  PubMed  Google Scholar 

  450. Perez LE, Alpdogan O, Shieh JH, Wong D, Merzouk A, Salari H et al. Increased plasma levels of stromal-derived factor-1 (SDF-1/CXCL12) enhance human thrombopoiesis and mobilize human colony-forming cells (CFC) in NOD/SCID mice. Exp Hematol 2004; 32: 300–307.

    CAS  PubMed  Google Scholar 

  451. Avigdor A, Goichberg P, Shivtiel S, Dar A, Peled A, Samira S et al. CD44 and hyaluronic acid cooperate with SDF-1 in the trafficking of human CD34+ stem/progenitor cells to bone marrow. Blood 2004; 103: 2981–2989.

    CAS  PubMed  Google Scholar 

  452. Ahmed F, Ings SJ, Pizzey AR, Blundell MP, Thrasher AJ, Ye HT et al. Impaired bone marrow homing of cytokine activated CD34+ cells in the NOD/SCID model. Blood 2004; 103: 2079–2087.

    CAS  PubMed  Google Scholar 

  453. Nicolini FE, Cashman JD, Hogge DE, Humphries RK, Eaves CJ . NOD/SCID mice engineered to express human IL-3, GM-CSF and Steel factor constitutively mobilize engrafted human progenitors and compromise human stem cell regeneration. Leukemia 2004; 18: 341–347.

    CAS  PubMed  Google Scholar 

  454. Zhou Q, Renard JP, Le Friec G, Brochard V, Beaujean N, Cherifi Y et al. Generation of fertile cloned rats by regulating oocyte activation. Science 2003; 302: 1179.

    CAS  PubMed  Google Scholar 

  455. Fenske TS, Pengue G, Graubert TA . Dominant negative effects of the AML1/ETO fusion oncoprotein. Cell Cycle 2005; 4: 33–36.

    CAS  PubMed  Google Scholar 

  456. Wang Q, Stacy T, Binder M, Marin-Padilla M, Sharpe AH, Speck NA . Disruption of the Cbfa2 gene causes necrosis and hemorrhaging in the central nervous system and blocks definitive hematopoiesis. Proc Natl Acad Sci USA 1996; 93: 3444–3449.

    CAS  PubMed  PubMed Central  Google Scholar 

  457. de Guzman CG, Johnson A, Klug CA . The ETO domain is necessary for the developmental abnormalities associated with AML1-ETO expression in the hematopoietic stem cell compartment in vivo. Blood Cells Mol Dis 2003; 30: 201–206.

    CAS  PubMed  Google Scholar 

  458. Phan VT, Shultz DB, Truong BT, Blake TJ, Brown AL, Gonda TJ et al. Cooperation of cytokine signaling with chimeric transcription factors in leukemogenesis: PML-retinoic acid receptor alpha blocks growth factor-mediated differentiation. Mol Cell Biol 2003; 23: 4573–4585.

    CAS  PubMed  PubMed Central  Google Scholar 

  459. Truong BT, Lee YJ, Lodie TA, Park DJ, Perrotti D, Watanabe N et al. CCAAT/Enhancer binding proteins repress the leukemic phenotype of acute myeloid leukemia. Blood 2003; 101: 1141–1148.

    CAS  PubMed  Google Scholar 

  460. Le Beau MM, Bitts S, Davis EM, Kogan SC . Recurring chromosomal abnormalities in leukemia in PML-RARA transgenic mice parallel human acute promyelocytic leukemia. Blood 2002; 99: 2985–2991.

    CAS  PubMed  Google Scholar 

  461. Sohal J, Phan VT, Chan PV, Davis EM, Patel B, Kelly LM et al. A model of APL with FLT3 mutation is responsive to retinoic acid and a receptor tyrosine kinase inhibitor, SU11657. Blood 2003; 101: 3188–3197.

    CAS  PubMed  Google Scholar 

  462. Le Beau MM, Davis EM, Patel B, Phan VT, Sohal J, Kogan SC . Recurring chromosomal abnormalities in leukemia in PML-RARA transgenic mice identify cooperating events and genetic pathways to acute promyelocytic leukemia. Blood 2003; 102: 1072–1074.

    CAS  PubMed  Google Scholar 

  463. Kogan SC, Hong SH, Shultz DB, Privalsky ML, Bishop JM . Leukemia initiated by PMLRARalpha: the PML domain plays a critical role while retinoic acid-mediated transactivation is dispensable. Blood 2000; 95: 1541–1550.

    CAS  PubMed  Google Scholar 

  464. Pollock JL, Westervelt P, Kurichety AK, Pelicci PG, Grisolano JL, Ley TJ . A bcr-3 isoform of RARalpha-PML potentiates the development of PML-RARalpha-driven acute promyelocytic leukemia. Proc Natl Acad Sci USA 1999; 96: 15103–15108.

    CAS  PubMed  PubMed Central  Google Scholar 

  465. Zeisig BB, Garcia-Cuellar MP, Winkler TH, Slany RK . The oncoprotein MLL-ENL disturbs hematopoietic lineage determination and transforms a biphenotypic lymphoid/myeloid cell. Oncogene 2003; 22: 1629–1637.

    CAS  PubMed  Google Scholar 

  466. Luo RT, Lavau C, Du C, Simone F, Polak PE, Kawamata S et al. The elongation domain of ELL is dispensable but its ELL-associated factor 1 interaction domain is essential for MLL-ELL-induced leukemogenesis. Mol Cell Biol 2001; 21: 5678–5687.

    CAS  PubMed  PubMed Central  Google Scholar 

  467. Corral J, Lavenir I, Impey H, Warren AJ, Forster A, Larson TA et al. An Mll-AF9 fusion gene made by homologous recombination causes acute leukemia in chimeric mice: a method to create fusion oncogenes. Cell 1996; 85: 853–861.

    CAS  PubMed  Google Scholar 

  468. Calvo KR, Sykes DB, Pasillas MP, Kamps MP . Nup98-HoxA9 immortalizes myeloid progenitors, enforces expression of Hoxa9, Hoxa7 and Meis1, and alters cytokine-specific responses in a manner similar to that induced by retroviral co-expression of Hoxa9 and Meis1. Oncogene 2002; 21: 4247–4256.

    CAS  PubMed  Google Scholar 

  469. Kasper LH, Brindle PK, Schnabel CA, Pritchard CE, Cleary ML, van Deursen JM . CREB binding protein interacts with nucleoporin-specific FG repeats that activate transcription and mediate NUP98-HOXA9 oncogenicity. Mol Cell Biol 1999; 19: 764–776.

    CAS  PubMed  PubMed Central  Google Scholar 

  470. Senyuk V, Chakraborty S, Mikhail FM, Zhao R, Chi Y, Nucifora G . The leukemia-associated transcription repressor AML1/MDS1/EVI1 requires CtBP to induce abnormal growth and differentiation of murine hematopoietic cells. Oncogene 2002; 21: 3232–3240.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by the Norwegian Cancer Society (Kreftforeningen), Helse Vest HF research grant, and the Norwegian Research Council Functional Genomics Program (FUGE) grant no. 151859. Additionally, we thank Tore-Jacob Raa and Rolf Bjerkvig for enlightening discussions and help.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B T Gjertsen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mc Cormack, E., Bruserud, Ø. & Gjertsen, B. Animal models of acute myelogenous leukaemia – development, application and future perspectives. Leukemia 19, 687–706 (2005). https://doi.org/10.1038/sj.leu.2403670

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2403670

Keywords

This article is cited by

Search

Quick links