Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Gene Therapy Progress and Prospects: Development of improved lentiviral and retroviral vectors – design, biosafety, and production

Abstract

Replication defective vectors derived from simple retroviruses or the more complex genomes of lentiviruses continue to offer the advantages of long-term expression, cell and tissue specific tropism, and large packaging capacity for the delivery of therapeutic genes. The occurrence of adverse events caused by insertional mutagenesis in three patients in a gene therapy trial for X-linked SCID emphasizes the potential for problems in translating this approach to the clinic. Several genome-wide studies of retroviral integration are now providing novel insights into the integration site preferences of different vector classes. We review recent developments in vector design, integration, biosafety, and production.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1

Similar content being viewed by others

References

  1. Delenda C . Lentiviral vectors: optimization of packaging, transduction and gene expression. J Gene Med 2004; 6 (Suppl 1): S125–S138.

    CAS  PubMed  Google Scholar 

  2. O’Rourke JP, Olsen JC, Bunnell BA . Optimization of equine infectious anemia derived vectors for hematopoietic cell lineage gene transfer. Gene Therapy 2005; 12: 22–29.

    PubMed  Google Scholar 

  3. Logan AC et al. Factors influencing the titer and infectivity of lentiviral vectors. Hum Gene Therapy 2004; 15: 976–988.

    CAS  Google Scholar 

  4. Brun S, Faucon-Biguet N, Mallet J . Optimization of transgene expression at the posttranscriptional level in neural cells: implications for gene therapy. Mol Ther 2003; 7: 782–789.

    CAS  PubMed  Google Scholar 

  5. Kingsman SM, Mitrophanous K, Olsen JC . Potential oncogene activity of the woodchuck hepatitis post-transcriptional regulatory element (WPRE). Gene Therapy 2005; 12: 3–4.

    Article  CAS  PubMed  Google Scholar 

  6. Azzouz M et al. Multicistronic lentiviral vector-mediated striatal gene transfer of aromatic L-amino acid decarboxylase, tyrosine hydroxylase, and GTP cyclohydrolase I induces sustained transgene expression, dopamine production, and functional improvement in a rat model of Parkinson’s disease. J Neurosci 2002; 22: 10302–10312.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Richard E et al. A bicistronic SIN-lentiviral vector containing G156A MGMT allows selection and metabolic correction of hematopoietic protoporphyric cell lines. J Gene Med 2003; 5: 737–747.

    CAS  PubMed  Google Scholar 

  8. Zielske SP, Gerson SL . Lentiviral transduction of P140K MGMT into human CD34(+) hematopoietic progenitors at low multiplicity of infection confers significant resistance to BG/BCNU and allows selection in vitro. Mol Ther 2002; 5: 381–387.

    CAS  PubMed  Google Scholar 

  9. Mitta B et al. Advanced modular self-inactivating lentiviral expression vectors for multigene interventions in mammalian cells and in vivo transduction. Nucleic Acids Res 2002; 30: e113.

    PubMed  PubMed Central  Google Scholar 

  10. Yu X et al. Lentiviral vectors with two independent internal promoters transfer high-level expression of multiple transgenes to human hematopoietic stem-progenitor cells. Mol Ther 2003; 7: 827–838.

    CAS  PubMed  Google Scholar 

  11. Zhu Y, Planelles V . A multigene lentiviral vector system based on differential splicing. Methods Mol Med 2003; 76: 433–448.

    CAS  PubMed  Google Scholar 

  12. Szymczak AL et al. Correction of multi-gene deficiency in vivo using a single ‘self-cleaving’ 2A peptide-based retroviral vector. Nat Biotechnol 2004; 22: 589–594; Epub 2004 Apr 2004.

    Article  CAS  PubMed  Google Scholar 

  13. Murthy RC et al. Corneal transduction to inhibit angiogenesis and graft failure. Invest Ophthalmol Vis Sci 2003; 44: 1837–1842.

    PubMed  Google Scholar 

  14. Lai Z, Brady RO . Gene transfer into the central nervous system in vivo using a recombinanat lentivirus vector. J Neurosci Res 2002; 67: 363–371.

    Article  CAS  PubMed  Google Scholar 

  15. Amendola M et al. Coordinate dual-gene transgenesis by lentiviral vectors carrying synthetic bidirectional promoters. Nat Biotechnol 2005; 23: 108–116.

    CAS  PubMed  Google Scholar 

  16. Sanders DA . No false start for novel pseudotyped vectors. Curr Opin Biotechnol 2002; 13: 437–442.

    CAS  PubMed  Google Scholar 

  17. Sena-Esteves M et al. Optimized large-scale production of high titer lentivirus vector pseudotypes. J Virol Methods 2004; 122: 131–139.

    CAS  PubMed  Google Scholar 

  18. Beyer WR, Westphal M, Ostertag W, von Laer D . Oncoretrovirus and lentivirus vectors pseudotyped with lymphocytic choriomeningitis virus glycoprotein: generation, concentration, and broad host range. J Virol 2002; 76: 1488–1495.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Sung VM, Lai MM . Murine retroviral pseudotype virus containing hepatitis B virus large and small surface antigens confers specific tropism for primary human hepatocytes: a potential liver-specific targeting system. J Virol 2002; 76: 912–917.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Hsu M et al. Hepatitis C virus glycoproteins mediate pH-dependent cell entry of pseudotyped retroviral particles. Proc Natl Acad Sci USA 2003; 100: 7271–7276.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Jung C et al. Lentiviral vectors pseudotyped with envelope glycoproteins derived from human parainfluenza virus type 3. Biotechnol Prog 2004; 20: 1810–1816.

    CAS  PubMed  Google Scholar 

  22. Kumar M, Bradow BP, Zimmerberg J . Large-scale production of pseudotyped lentiviral vectors using baculovirus GP64. Hum Gene Ther 2003; 14: 67–77.

    Article  CAS  PubMed  Google Scholar 

  23. Sinn PL et al. Lentivirus vectors pseudotyped with filoviral envelope glycoproteins transduce airway epithelia from the apical surface independently of folate receptor alpha. J Virol 2003; 77: 5902–5910.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Kang Y et al. In vivo gene transfer using a nonprimate lentiviral vector pseudotyped with Ross River Virus glycoprotein. J Virol 2002; 76: 9378–9388.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Kolokoltsov AA, Weaver SC, Davey RA . Efficient functional pseudotyping of oncoretroviral and lentiviral vectors by Venezuelan equine encephalitis virus envelope proteins. J Virol 2005; 79: 756–763.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Jeffers SA, Sanders DA, Sanchez A . Covalent modifications of the ebola virus glycoprotein. J Virol 2002; 76: 12463–12472.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Sandrin V et al. Lentiviral vectors pseudotyped with a modified RD114 envelope glycoprotein show increased stability in sera and augmented transduction of primary lymphocytes and CD34+ cells derived from human and nonhuman primates. Blood 2002; 100: 823–832.

    CAS  PubMed  Google Scholar 

  28. Merten CA et al. Directed evolution of retrovirus envelope protein cytoplasmic tails guided by functional incorporation into lentivirus particles. J Virol 2005; 79: 834–840.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Bupp K, Roth MJ . Targeting a retroviral vector in the absence of a known cell-targeting ligand. Hum Gene Ther 2003; 14: 1557–1564.

    CAS  PubMed  Google Scholar 

  30. Schneider RM et al. Directed evolution of retroviruses activatable by tumour-associated matrix metalloproteases. Gene Therapy 2003; 10: 1370–1380.

    CAS  PubMed  Google Scholar 

  31. Vigna E et al. Robust and efficient regulation of transgene expression in vivo by improved tetracycline-dependent lentiviral vectors. Mol Therapy 2002; 5: 252–261.

    CAS  Google Scholar 

  32. Koponen JK et al. Doxycycline-regulated lentiviral vector system with a novel reverse transactivator rtTA2S-M2 shows a tight control of gene expression in vitro and in vivo. Gene Therapy 2003; 10: 459–466.

    CAS  PubMed  Google Scholar 

  33. Vaillancourt P, Felts KA . Retroviral delivery of the ecdysone-regulatable gene expression system. Biotechnol Prog 2003; 19: 1750–1755.

    CAS  PubMed  Google Scholar 

  34. Galimi F et al. Development of ecdysone-regulated lentiviral vectors. Mol Ther 2005; 11: 142–148.

    CAS  PubMed  Google Scholar 

  35. Follenzi A et al. Efficient gene delivery and targeted expression to hepatocytes in vivo by improved lentiviral vectors. Hum Gene Ther 2002; 13: 243–260.

    Article  CAS  PubMed  Google Scholar 

  36. Pfeifer A, Ikawa M, Dayn Y, Verma IM . Transgenesis by lentiviral vectors: lack of gene silencing in mammalian embryonic stem cells and preimplantation embryos. Proc Natl Acad Sci USA 2002; 99: 2140–2145.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Lotti F et al. Transcriptional targeting of lentiviral vectors by long terminal repeat enhancer replacement. J Virol 2002; 76: 3996–4007.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. May C, Rivella S, Chadburn A, Sadelain M . Successful treatment of murine beta-thalassemia intermedia by transfer of the human beta-globin gene. Blood 2002; 99: 1902–1908.

    CAS  PubMed  Google Scholar 

  39. Recillas-Targa F et al. Position-effect protection and enhancer blocking by the chicken beta-globin insulator are separable activities. Proc Natl Acad Sci USA 2002; 99: 6883–6888.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. West AG et al. Recruitment of histone modifications by USF proteins at a vertebrate barrier element. Mol Cell 2004; 16: 453–463.

    CAS  PubMed  Google Scholar 

  41. West AG, Gaszner M, Felsenfeld G . Insulators: many functions, many mechanisms. Genes Dev 2002; 16: 271–288.

    PubMed  Google Scholar 

  42. Ramezani A, Hawley TS, Hawley RG . Performance- and safety-enhanced lentiviral vectors containing the human interferon-beta scaffold attachment region and the chicken beta-globin insulator. Blood 2003; 101: 4717–4724.

    CAS  PubMed  Google Scholar 

  43. Park F, Ohashi K, Kay MA . The effect of age on hepatic gene transfer with self-inactivating lentiviral vectors in vivo. Mol Ther 2003; 8: 314–323.

    CAS  PubMed  Google Scholar 

  44. Puthenveetil G et al. Successful correction of the human beta-thalassemia major phenotype using a lentiviral vector. Blood 2004; 104: 3445–3453.

    CAS  PubMed  Google Scholar 

  45. Li Z et al. Murine leukemia induced by retroviral gene marking. Science 2002; 296: 497.

    CAS  PubMed  Google Scholar 

  46. Hacein-Bey-Abina S et al. A serious adverse event after successful gene therapy for X-linked severe combined immunodeficiency. N Engl J Med 2003; 348: 255–256.

    PubMed  Google Scholar 

  47. Hacein-Bey-Abina S et al. LMO2-associated clonal T cell proliferation in two patients after gene therapy for SCID-X1. Science 2003; 302: 415–419.

    CAS  PubMed  Google Scholar 

  48. Gaspar HB et al. Gene therapy of X-linked severe combined immunodeficiency by use of a pseudotyped gammaretroviral vector. Lancet 2004; 364: 2181–2187.

    CAS  PubMed  Google Scholar 

  49. Schroder AR et al. HIV-1 integration in the human genome favors active genes and local hotspots. Cell 2002; 110: 521–529.

    CAS  PubMed  Google Scholar 

  50. Aiuti A et al. Correction of ADA-SCID by stem cell gene therapy combined with nonmyeloablative conditioning. Science 2002; 296: 2410–2413.

    CAS  PubMed  Google Scholar 

  51. Aiuti A et al. Immune reconstitution in ADA-SCID after PBL gene therapy and discontinuation of enzyme replacement. Nat Med 2002; 8: 423–425.

    CAS  PubMed  Google Scholar 

  52. Bonini C et al. Safety of retroviral gene marking with a truncated NGF receptor. Nat Med 2003; 9: 367–369.

    CAS  PubMed  Google Scholar 

  53. Kiem HP et al. Long-term clinical and molecular follow-up of large animals receiving retrovirally transduced stem and progenitor cells: no progression to clonal hematopoiesis or leukemia. Mol Ther 2004; 9: 389–395.

    CAS  PubMed  Google Scholar 

  54. Wu X, Li Y, Crise B, Burgess SM . Transcription start regions in the human genome are favored targets for MLV integration. Science 2003; 300: 1749–1751.

    CAS  PubMed  Google Scholar 

  55. Mitchell RS et al. Retroviral DNA integration: ASLV, HIV, and MLV show distinct target site preferences. PLoS Biol 2004; 2: E234, Epub 2004 Aug 2017.

    PubMed  PubMed Central  Google Scholar 

  56. Narezkina A et al. Genome-wide analyses of avian sarcoma virus integration sites. J Virol 2004; 78: 11656–11663.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Trono D . Virology. Picking the right spot. Science 2003; 300: 1670–1671.

    CAS  PubMed  Google Scholar 

  58. Logan AC, Haas DL, Kafri T, Kohn DB . Integrated self-inactivating lentiviral vectors produce full-length genomic transcripts competent for encapsidation and integration. J Virol 2004; 78: 8421–8436.

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Bushman FD . Integration site selection by lentiviruses: biology and possible control. Curr Top Microbiol Immunol 2002; 261: 165–177.

    CAS  PubMed  Google Scholar 

  60. Tan W et al. Fusion proteins consisting of human immunodeficiency virus type 1 integrase and the designed polydactyl zinc finger protein E2C direct integration of viral DNA into specific sites. J Virol 2004; 78: 1301–1313.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Zhu Y, Dai J, Fuerst PG, Voytas DF . From the cover: controlling integration specificity of a yeast retrotransposon. Proc Natl Acad Sci USA 2003; 100: 5891–5895.

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Bushman FD . Targeting survival: integration site selection by retroviruses and LTR-retrotransposons. Cell 2003; 115: 135–138.

    CAS  PubMed  Google Scholar 

  63. Sandmeyer S . Integration by design. Proc Natl Acad Sci USA 2003; 100: 5586–5588.

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Llano M et al. LEDGF/p75 determines cellular trafficking of diverse lentiviral but not murine oncoretroviral integrase proteins and is a component of functional lentiviral preintegration complexes. J Virol 2004; 78: 9524–9537.

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Dubensky Jr TW, Sauter SL . Generation of retroviral packaging and producer cell lines for large-scale vector production with improved safety and titer. Methods Mol Med 2003; 76: 309–330.

    CAS  PubMed  Google Scholar 

  66. Green BJ, Rasko JE . Rapid screening for high-titer retroviral packaging cell lines using an in situ fluorescence assay. Hum Gene Ther 2002; 13: 1005–1013.

    CAS  PubMed  Google Scholar 

  67. Loew R et al. Simplified generation of high-titer retrovirus producer cells for clinically relevant retroviral vectors by reversible inclusion of a lox-P-flanked marker gene. Mol Ther 2004; 9: 738–746.

    CAS  PubMed  Google Scholar 

  68. Kowolik CM, Yam P, Yu Y, Yee JK . HIV vector production mediated by Rev protein transduction. Mol Ther 2003; 8: 324–331.

    CAS  PubMed  Google Scholar 

  69. Sears JF, Khan AS . Single-tube fluorescent product-enhanced reverse transcriptase assay with Ampliwax (STF-PERT) for retrovirus quantitation. J Virol Methods 2003; 108: 139–142.

    CAS  PubMed  Google Scholar 

  70. Grunwald T, Pedersen FS, Wagner R, Uberla K . Reducing mobilization of simian immunodeficiency virus based vectors by primer complementation. J Gene Med 2004; 6: 147–154.

    CAS  PubMed  Google Scholar 

  71. Strang BL et al. Characterization of HIV-1 vectors with gammaretrovirus envelope glycoproteins produced from stable packaging cells. Gene Therapy 2004; 11: 591–598.

    CAS  PubMed  Google Scholar 

  72. Kuate S, Wagner R, Uberla K . Development and characterization of a minimal inducible packaging cell line for simian immunodeficiency virus-based lentiviral vectors. J Gene Med 2002; 4: 347–355.

    CAS  PubMed  Google Scholar 

  73. Ikeda Y et al. Continuous high-titer HIV-1 vector production. Nat Biotechnol 2003; 21: 569–572.

    CAS  PubMed  Google Scholar 

  74. Karolewski BA, Watson DJ, Parente MK, Wolfe JH . Comparison of transfection conditions for a lentivirus vector produced in large volumes. Hum Gene Ther 2003; 14: 1287–1296.

    CAS  PubMed  Google Scholar 

  75. Bajgelman MC, Costanzi-Strauss E, Strauss BE . Exploration of critical parameters for transient retrovirus production. J Biotechnol 2003; 103: 97–106.

    CAS  PubMed  Google Scholar 

  76. Coleman JE et al. Efficient large-scale production and concentration of HIV-1-based lentiviral vectors for use in vivo. Physiol Genomics 2003; 12: 221–228.

    CAS  PubMed  Google Scholar 

  77. Lu X et al. Safe two-plasmid production for the first clinical lentivirus vector that achieves >99% transduction in primary cells using a one-step protocol. J Gene Med 2004; 6: 963–973.

    CAS  PubMed  Google Scholar 

  78. Murphy SJ et al. Novel integrating adenoviral/retroviral hybrid vector for gene therapy. Hum Gene Ther 2002; 13: 745–760.

    CAS  PubMed  Google Scholar 

  79. Soifer H et al. A novel, helper-dependent, adenovirus-retrovirus hybrid vector: stable transduction by a two-stage mechanism. Mol Ther 2002; 5: 599–608.

    CAS  PubMed  Google Scholar 

  80. Roberts ML et al. Stable micro-dystrophin gene transfer using an integrating adeno-retroviral hybrid vector ameliorates the dystrophic pathology in mdx mouse muscle. Hum Mol Genet 2002; 11: 1719–1730.

    CAS  PubMed  Google Scholar 

  81. Kubo S, Mitani K . A new hybrid system capable of efficient lentiviral vector production and stable gene transfer mediated by a single helper-dependent adenoviral vector. J Virol 2003; 77: 2964–2971.

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Picard-Maureau M et al. Foamy virus – adenovirus hybrid vectors. Gene Therapy 2004; 11: 722–728.

    CAS  PubMed  Google Scholar 

  83. Zheng C, Wang J, Baum BJ . Integration efficiency of a hybrid adenoretroviral vector. Biochem Biophys Res Commun 2003; 300: 115–120.

    CAS  PubMed  Google Scholar 

  84. Wahlfors J, Morgan RA . Minigene-containing retroviral vectors using an alphavirus/retrovirus hybrid vector system. Production and use. Methods Mol Med 2002; 69: 173–186.

    CAS  PubMed  Google Scholar 

  85. Konetschny C et al. Generation of transduction-competent retroviral vectors by infection with a single hybrid vaccinia virus. J Virol 2003; 77: 7017–7025.

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Falkner FG, Holzer GW . Vaccinia viral/retroviral chimeric vectors. Curr Gene Ther 2004; 4: 417–426.

    CAS  PubMed  Google Scholar 

  87. Sena-Esteves M, Hampl JA, Camp SM, Breakefield XO . Generation of stable retrovirus packaging cell lines after transduction with herpes simplex virus hybrid amplicon vectors. J Gene Med 2002; 4: 229–239.

    PubMed  Google Scholar 

  88. Merten OW . State-of-the-art of the production of retroviral vectors. J Gene Med 2004; 6 (Suppl 1): S105–S124.

    CAS  PubMed  Google Scholar 

  89. Wikstrom K, Blomberg P, Islam KB . Clinical grade vector production: analysis of yield, stability, and storage of gmp-produced retroviral vectors for gene therapy. Biotechnol Prog 2004; 20: 1198–1203.

    PubMed  Google Scholar 

  90. Dolnikov A, Wotherspoon S, Millington M, Symonds G . Retrovirus vector production and transduction: modulation by the cell cycle. J Gen Virol 2003; 84: 3131–3141.

    CAS  PubMed  Google Scholar 

  91. Slepushkin V et al. Large-scale purification of a lentiviral by size exclusion chromatography of Mustang Q ion exchange capsule. BioProcessing J 2003; 2: 89–95.

    Google Scholar 

  92. Beer C, Meyer A, Muller K, Wirth M . The temperature stability of mouse retroviruses depends on the cholesterol levels of viral lipid shell and cellular plasma membrane. Virology 2003; 308: 137–146.

    CAS  PubMed  Google Scholar 

  93. Wu SC, Huang GY, Liu JH . Production of retrovirus and adenovirus vectors for gene therapy: a comparative study using microcarrier and stationary cell culture. Biotechnol Prog 2002; 18: 617–622.

    CAS  PubMed  Google Scholar 

  94. Warnock J, Price T, Slade A, Al-Rubeai M . Use of a fluidized-bed bioreactor for the production of retroviral vectors for gene therapy. BioProcessing 2004; 3: 41–45.

    Google Scholar 

  95. Baekelandt V et al. Optimized lentiviral vector production and purification procedure prevents immune response after transduction of mouse brain. Gene Therapy 2003; 10: 1933–1940.

    CAS  PubMed  Google Scholar 

  96. Yamada K, McCarty DM, Madden VJ, Walsh CE . Lentivirus vector purification using anion exchange HPLC leads to improved gene transfer. Biotechniques 2003; 34: 1074–1078; 1080.

    CAS  PubMed  Google Scholar 

  97. Scherr M et al. Efficient gene transfer into the CNS by lentiviral vectors purified by anion exchange chromatography. Gene Therapy 2002; 9: 1708–1714.

    CAS  PubMed  Google Scholar 

  98. Marion M et al. Development of scalable purification protocols for lentiviral vectors. Mol Ther 2003; 7: S178.

    Google Scholar 

  99. Zufferey R . Production of lentiviral vectors. Curr Top Microbiol Immunol 2002; 261: 107–119.

    CAS  PubMed  Google Scholar 

  100. Sastry L et al. Evaluation of plasmid DNA removal from lentiviral vectors by benzonase treatment. Hum Gene Ther 2004; 15: 221–226.

    CAS  PubMed  Google Scholar 

  101. Transfiguracion J et al. Size-exclusion chromatography purification of high-titer vesicular stomatitis virus G glycoprotein-pseudotyped retrovectors for cell and gene therapy applications. Hum Gene Ther 2003; 14: 1139–1153.

    CAS  PubMed  Google Scholar 

  102. Rohll JB et al. Design, production, safety, evaluation, and clinical applications of nonprimate lentiviral vectors. Methods Enzymol 2002; 346: 466–500.

    CAS  PubMed  Google Scholar 

  103. Sastry L et al. Certification assays for HIV-1-based vectors: frequent passage of gag sequences without evidence of replication-competent viruses. Mol Ther 2003; 8: 830–839.

    CAS  PubMed  Google Scholar 

  104. Schonely K et al. QC release testing of an HIV-1 based leniviral vector lot and transduced cellualr product. BioProcessing J 2003; 2: 39–47.

    Google Scholar 

  105. Escarpe P et al. Development of a sensitive assay for detection of replication-competent recombinant lentivirus in large-scale HIV-based vector preparations. Mol Ther 2003; 8: 332–341.

    CAS  PubMed  Google Scholar 

  106. Segall HI, Yoo E, Sutton RE . Characterization and detection of artificial replication-competent lentivirus of altered host range. Mol Ther 2003; 8: 118–129.

    CAS  PubMed  Google Scholar 

  107. Transfiguracion J, Coelho H, Kamen A . High-performance liquid chromatographic total particles quantification of retroviral vectors pseudotyped with vesicular stomatitis virus-G glycoprotein. J Chromatogr B Anal Technol Biomed Life Sci 2004; 813: 167–173.

    CAS  Google Scholar 

  108. Kwon YJ et al. Determination of infectious retrovirus concentration from colony-forming assay with quantitative analysis. J Virol 2003; 77: 5712–5720.

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Sastry L et al. Titering lentiviral vectors: comparison of DNA, RNA and marker expression methods. Gene Therapy 2002; 9: 1155–1162.

    CAS  PubMed  Google Scholar 

  110. Simek S, Byrnes A, Bauer S . FDA perspective of the use of adenovirus reference material. BioProcessing J 2002; 31: 40–42.

    Google Scholar 

  111. Lu X et al. Antisense-mediated inhibition of human immunodeficiency virus (HIV) replication by use of an HIV type 1-based vector results in severely attenuated mutants incapable of developing resistance. J Virol 2004; 78: 7079–7088.

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Humeau LM et al. Efficient lentiviral vector-mediated control of HIV-1 replication in CD4 lymphocytes from diverse HIV+ infected patients grouped according to CD4 count and viral load. Mol Ther 2004; 9: 902–913.

    CAS  PubMed  Google Scholar 

  113. Morris KV . VRX-496 (VIRxSYS). Curr Opin Invest Drugs 2005; 6: 209–215.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sinn, P., Sauter, S. & McCray, P. Gene Therapy Progress and Prospects: Development of improved lentiviral and retroviral vectors – design, biosafety, and production. Gene Ther 12, 1089–1098 (2005). https://doi.org/10.1038/sj.gt.3302570

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gt.3302570

Keywords

This article is cited by

Search

Quick links