Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Retroviral vectors: new applications for an old tool

Abstract

Retroviral vectors (RVs) have been used for stable gene transfer into mammalian cells for more than 20 years. The most popular RVs are those derived from the Moloney murine leukaemia virus (MoMLV). One of their main limitations is their inability to transduce noncycling cells. However, they have a relatively simple genome and structure, are easy to use, and are relatively safe for in vivo applications. For the last two decades, the artificial evolution of RVs has paralleled evolution in their applications, which now include those as diverse as the generation of transgenic animals, the stable delivery of small interfering RNA (siRNA) and gene therapy clinical trials. Recent reports of two successful gene therapy clinical trials in patients with severe immunodeficiency disease in France and Italy, and the development of T-cell acute leukaemia in two of 10 children participating in one of these clinical trials, demonstrate the great potential of RVs, but also some potential risks which may be intrinsically associated with their use. Basic aspects of RVs and vector production were reviewed in detail in a previous supplement of this journal. This article will first summarize some general aspects of retroviruses and RVs. Thereafter, recent developments in gene therapy using RVs, novel applications such as stable RNA interference and some other recent issues related to retroviral integration, including clonality studies after haematopoietic stem cell transplantation, retroviral tagging and insertional oncogenesis will be discussed.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Pages JC, Bru T . Toolbox for retrovectorologists. J Gene Med 2004; 6: S67–S82.

    Article  CAS  PubMed  Google Scholar 

  2. Cone RD, Mulligan RC . High-efficiency gene transfer into mammalian cells: generation of helper-free recombinant retrovirus with broad mammalian host range. Proc Natl Acad Sci USA 1984; 81: 6349–6353.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Anderson WF . September 14, 1990: the beginning [editorial]. Hum Gene Ther 1990; 1: 371–372.

    Article  CAS  PubMed  Google Scholar 

  4. Cavazzana-Calvo M et al. Gene therapy of human severe combined immunodeficiency (SCID)-X1 disease. Science 2000; 288: 669–672.

    Article  CAS  PubMed  Google Scholar 

  5. Aiuti A et al. Correction of ADA-SCID by stem cell gene therapy combined with nonmyeloablative conditioning. Science 2002; 296: 2410–2413.

    Article  CAS  PubMed  Google Scholar 

  6. Hacein-Bey-Abina S et al. LMO2-associated clonal T cell proliferation in two patients after gene therapy for SCID-X1. Science 2003; 302: 415–419.

    Article  CAS  PubMed  Google Scholar 

  7. Pringle CR . Virus taxonomy – 1999. The universal system of virus taxonomy, updated to include the new proposals ratified by the International Committee on Taxonomy of Viruses during 1998. Arch Virol 1999; 144: 421–429.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Friedmann T, Roblin R . Gene therapy for human genetic disease? Science 1972; 175: 949–955.

    Article  CAS  PubMed  Google Scholar 

  9. Anderson WF, Fletcher JC . Sounding boards. Gene therapy in human beings: when is it ethical to begin? N Engl J Med 1980; 303: 1293–1297.

    Article  CAS  PubMed  Google Scholar 

  10. Baum C et al. Novel retroviral vectors for efficient expression of the multidrug resistance (mdr-1) gene in early hematopoietic cells. J Virol 1995; 69: 7541–7547.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Challita PM et al. Multiple modifications in cis elements of the long terminal repeat of retroviral vectors lead to increased expression and decreased DNA methylation in embryonic carcinoma cells. J Virol 1995; 69: 748–755.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. van Hennik PB et al. Highly efficient transduction of the green fluorescent protein gene in human umbilical cord blood stem cells capable of cobblestone formation in long-term cultures and multilineage engraftment of immunodeficient mice. Blood 1998; 92: 4013–4022.

    CAS  PubMed  Google Scholar 

  13. Van Der Loo JC et al. Optimization of gene transfer into primitive human hematopoietic cells of granulocyte-colony stimulating factor-mobilized peripheral blood using low-dose cytokines and comparison of a gibbon ape leukemia virus versus an RD114-pseudotyped retroviral vector. Hum Gene Ther 2002; 13: 1317–1330.

    Article  CAS  PubMed  Google Scholar 

  14. Yee JK, Friedmann T, Burns JC . Generation of high-titer pseudotyped retroviral vectors with very broad host range. Methods Cell Biol 1994; 43: 99–112.

    Article  CAS  PubMed  Google Scholar 

  15. Yu SF et al. Self-inactivating retroviral vectors designed for transfer of whole genes into mammalian cells. Proc Natl Acad Sci USA 1986; 83: 3194–3198.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Muul LM et al. Persistence and expression of the adenosine deaminase gene for 12 years and immune reaction to gene transfer components: long-term results of the first clinical gene therapy trial. Blood 2003; 101: 2563–2569.

    Article  CAS  PubMed  Google Scholar 

  17. Engel BC, Kohn DB . Gene therapy for inborn and acquired immune deficiency disorders. Acta Haematol 2003; 110: 60–70.

    Article  PubMed  Google Scholar 

  18. Aiuti A et al. Gene therapy for adenosine deaminase deficiency. Curr Opin Allergy Clin Immunol 2003; 3: 461–466.

    Article  CAS  PubMed  Google Scholar 

  19. Strom TS et al. Defects in T-cell-mediated immunity to influenza virus in murine Wiskott–Aldrich syndrome are corrected by oncoretroviral vector-mediated gene transfer into repopulating hematopoietic cells. Blood 2003; 102: 3108–3116.

    Article  CAS  PubMed  Google Scholar 

  20. Bunting KD, Lu T, Kelly PF, Sorrentino BP . Self-selection by genetically modified committed lymphocyte precursors reverses the phenotype of JAK3-deficient mice without myeloablation. Hum Gene Ther 2000; 11: 2353–2364.

    Article  CAS  PubMed  Google Scholar 

  21. Yates F et al. Gene therapy of RAG-2−/− mice: sustained correction of the immunodeficiency. Blood 2002; 100: 3942–3949.

    Article  CAS  PubMed  Google Scholar 

  22. Elbashir SM et al. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 2001; 411: 494–498.

    Article  CAS  PubMed  Google Scholar 

  23. Yu JY, DeRuiter SL, Turner DL . RNA interference by expression of short-interfering RNAs and hairpin RNAs in mammalian cells. Proc Natl Acad Sci USA 2002; 99: 6047–6052.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. McManus MT, Sharp PA . Gene silencing in mammals by small interfering RNAs. Nat Rev Genet 2002; 3: 737–747.

    Article  CAS  PubMed  Google Scholar 

  25. Barton GM, Medzhitov R . Retroviral delivery of small interfering RNA into primary cells. Proc Natl Acad Sci USA 2002; 99: 14943–14945.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Rubinson DA et al. A lentivirus-based system to functionally silence genes in primary mammalian cells, stem cells and transgenic mice by RNA interference. Nat Genet 2003; 33: 401–406.

    Article  CAS  PubMed  Google Scholar 

  27. Lemischka IR, Raulet DH, Mulligan RC . Developmental potential and dynamic behavior of hematopoietic stem cells. Cell 1986; 45: 917–927.

    Article  CAS  PubMed  Google Scholar 

  28. Barquinero J et al. Efficient transduction of human hematopoietic repopulating cells generating stable engraftment of transgene-expressing cells in NOD/SCID mice. Blood 2000; 95: 3085–3093.

    CAS  PubMed  Google Scholar 

  29. Guenechea G, Gan OI, Dorrell C, Dick JE . Distinct classes of human stem cells that differ in proliferative and self-renewal potential. Nat Immunol 2001; 2: 75–82.

    Article  CAS  PubMed  Google Scholar 

  30. Nolta JA et al. Transduction of pluripotent human hematopoietic stem cells demonstrated by clonal analysis after engraftment in immune-deficient mice. Proc Natl Acad Sci USA 1996; 93: 2414–2419.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Laufs S et al. Retroviral vector integration occurs in preferred genomic targets of human bone marrow-repopulating cells. Blood 2003; 101: 2191–2198.

    Article  CAS  PubMed  Google Scholar 

  32. Gentner B et al. Rapid detection of retroviral vector integration sites in colony-forming human peripheral blood progenitor cells using PCR with arbitrary primers. Gene Therapy 2003; 10: 789–794.

    Article  CAS  PubMed  Google Scholar 

  33. Schmidt M et al. Polyclonal long-term repopulating stem cell clones in a primate model. Blood 2002; 100: 2737–2743.

    Article  CAS  PubMed  Google Scholar 

  34. Schmidt M et al. Clonality analysis after retroviral-mediated gene transfer to CD34(+) cells from the cord blood of ADA-deficient SCID neonates. Nat Med 2003; 9: 463–468.

    Article  CAS  PubMed  Google Scholar 

  35. Wu X, Li Y, Crise B, Burgess SM . Transcription start regions in the human genome are favored targets for MLV integration. Science 2003; 300: 1749–1751.

    Article  CAS  PubMed  Google Scholar 

  36. Schroder AR et al. HIV-1 integration in the human genome favors active genes and local hotspots. Cell 2002; 110: 521–529.

    Article  CAS  PubMed  Google Scholar 

  37. Nakai H et al. AAV serotype 2 vectors preferentially integrate into active genes in mice. Nat Genet 2003; 34: 297–302.

    Article  CAS  PubMed  Google Scholar 

  38. Dudley JP . Tag, you’re hit: retroviral insertions identify genes involved in cancer. Trends Mol Med 2003; 9: 43–45.

    Article  CAS  PubMed  Google Scholar 

  39. Mikkers H, Berns A . Retroviral insertional mutagenesis: tagging cancer pathways. Adv Cancer Res 2003; 88: 53–99.

    CAS  PubMed  Google Scholar 

  40. Suzuki T et al. New genes involved in cancer identified by retroviral tagging. Nat Genet 2002; 32: 166–174.

    Article  CAS  PubMed  Google Scholar 

  41. Lund AH et al. Genome-wide retroviral insertional tagging of genes involved in cancer in Cdkn2a-deficient mice. Nat Genet 2002; 32: 160–165.

    Article  CAS  PubMed  Google Scholar 

  42. Mikkers H et al. High-throughput retroviral tagging to identify components of specific signaling pathways in cancer. Nat Genet 2002; 32: 153–159.

    Article  CAS  PubMed  Google Scholar 

  43. Akagi K et al. RTCGD: retroviral tagged cancer gene database. Nucleic Acids Res 2004; 32: Database issue D523–D527.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Li Z et al. Murine leukemia induced by retroviral gene marking. Science 2002; 296: 497.

    Article  CAS  PubMed  Google Scholar 

  45. Kohn DB et al. American Society of Gene Therapy (ASGT) ad hoc subcommittee on retroviral-mediated gene transfer to hematopoietic stem cells. Mol Ther 2003; 8: 180–187.

    Article  CAS  PubMed  Google Scholar 

  46. Baum C et al. Chance or necessity? Insertional mutagenesis in gene therapy and its consequences. Mol Ther 2004; 9: 5–13.

    Article  CAS  PubMed  Google Scholar 

  47. Bonini C et al. Safety of retroviral gene marking with a truncated NGF receptor. Nat Med 2003; 9: 367–369.

    Article  CAS  PubMed  Google Scholar 

  48. Dave UP, Jenkins NA, Copeland NG . Gene therapy insertional mutagenesis insights. Science 2004; 303: 333.

    Article  PubMed  Google Scholar 

  49. Berns A . Good news for gene therapy. N Engl J Med 2004; 350: 1679–1680.

    Article  CAS  PubMed  Google Scholar 

  50. Uchida N et al. HIV, but not murine leukemia virus, vectors mediate high efficiency gene transfer into freshly isolated G0/G1 human hematopoietic stem cells. Proc Natl Acad Sci USA 1998; 95: 11939–11944.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Blomer U et al. Highly efficient and sustained gene transfer in adult neurons with a lentivirus vector. J Virol 1997; 71: 6641–6649.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Woods NB et al. Lentiviral vector transduction of NOD/SCID repopulating cells results in multiple vector integrations per transduced cell: risk of insertional mutagenesis. Blood 2003; 101: 1284–1289.

    Article  CAS  PubMed  Google Scholar 

  53. Ivics Z et al. The Sleeping Beauty transposable element: evolution, regulation and genetic applications. Curr Issues Mol Biol 2004; 6: 43–55.

    CAS  PubMed  Google Scholar 

  54. Yant SR et al. Somatic integration and long-term transgene expression in normal and haemophilic mice using a DNA transposon system. Nat Genet 2000; 25: 35–41.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Ana Limón, Robert Tjin and Christine O’Hara for critical review of the manuscript. The group is supported by grants from the Ministerio de Ciencia y Technologia FIS, the Spanish Collaborative Network on Transplantation and the Vth Framework Programme of the European Commission (http://www.inherinet.org).

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barquinero, J., Eixarch, H. & Pérez-Melgosa, M. Retroviral vectors: new applications for an old tool. Gene Ther 11 (Suppl 1), S3–S9 (2004). https://doi.org/10.1038/sj.gt.3302363

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gt.3302363

Keywords

This article is cited by

Search

Quick links