Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Article
  • Published:

Effects of dose, intervention time, and radionuclide on sodium iodide symporter (NIS)-targeted radionuclide therapy

Abstract

The sodium iodide symporter (NIS) mediates iodide uptake into thyrocytes and is the molecular basis of thyroid radioiodine therapy. We previously have shown that NIS gene transfer into the F98 rat gliomas facilitated tumor imaging and increased survival by radioiodine. In this study, we show that: (1) the therapeutic effectiveness of 131I in prolonging the survival time of rats bearing F98/hNIS gliomas is dose- and treatment-time-dependent; (2) the number of remaining NIS-expressing tumor cells decreased greatly in RG2/hNIS gliomas post 131I treatment and was inversely related to survival time; (3) 8 mCi each of 125I/131I is as effective as 16 mCi 131I alone, despite a smaller tumor absorbed dose; (4) 188ReO4, a potent β emitter, is more efficient than 131I to enhance the survival of rats bearing F98/hNIS gliomas. These studies demonstrate the importance of radiopharmaceutical selection, dose, and timing of treatment to optimize the therapeutic effectiveness of NIS-targeted radionuclide therapy following gene transfer into gliomas.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 3
Figure 2

Similar content being viewed by others

References

  1. Dai G, Levy O, Carrasco N . Cloning and characterization of the thyroid iodide transporter. Nature 1996; 379: 458–460.

    Article  CAS  Google Scholar 

  2. Smanik PA et al. Cloning of the human sodium lodide symporter. Biochem Biophys Res Commun 1996; 226: 339–345.

    Article  CAS  Google Scholar 

  3. Shimura H et al. Iodide uptake and experimental 131I therapy in transplanted undifferentiated thyroid cancer cells expressing the Na+/I− symporter gene. Endocrinology 1997; 138: 4493–4496.

    Article  CAS  Google Scholar 

  4. Mandell RB, Mandell LZ, Link Jr CJ . Radioisotope concentrator gene therapy using the sodium/iodide symporter gene. Cancer Res 1999; 59: 661–668.

    CAS  Google Scholar 

  5. Cho JY et al. In vivo imaging and radioiodine therapy following sodium iodide symporter gene transfer in animal model of intracerebral gliomas. Gene Therapy 2002; 9: 1139–1145.

    Article  CAS  Google Scholar 

  6. La Perle KM et al. In vivo expression and function of the sodium iodide symporter following gene transfer in the MATLyLu rat model of metastatic prostate cancer. Prostate 2002; 50: 170–178.

    Article  CAS  Google Scholar 

  7. Boland A et al. Adenovirus-mediated transfer of the thyroid sodium/iodide symporter gene into tumors for a targeted radiotherapy. Cancer Res 2000; 60: 3484–3492.

    CAS  Google Scholar 

  8. Nakamoto Y et al. Establishment and characterization of a breast cancer cell line expressing Na+/I- symporters for radioiodide concentrator gene therapy. J Nucl Med 2000; 41: 1898–1904.

    CAS  Google Scholar 

  9. Haberkorn U et al. Transfer of the human NaI symporter gene enhances iodide uptake in hepatoma cells. J Nucl Med 2001; 42: 317–325.

    CAS  Google Scholar 

  10. Spitzweg C et al. Prostate-specific antigen (PSA) promoter-driven androgen-inducible expression of sodium iodide symporter in prostate cancer cell lines. Cancer Res 1999; 59: 2136–2141.

    CAS  Google Scholar 

  11. Carlin S et al. Experimental targeted radioiodide therapy following transfection of the sodium iodide symporter gene: effect on clonogenicity in both two- and three-dimensional models. Cancer Gene Ther 2000; 7: 1529–1536.

    Article  CAS  Google Scholar 

  12. Spitzweg C et al. In vivo sodium iodide symporter gene therapy of prostate cancer. Gene Therapy 2001; 8: 1524–1531.

    Article  CAS  Google Scholar 

  13. Prados MD, Levin V . Biology and treatment of malignant glioma. Semin Oncol 2000; 27: 1–10.

    CAS  Google Scholar 

  14. Brandes AA, Rigon A, Monfardini S . Radiotherapy of the brain in elderly patients. Contra Eur J Cancer 2000; 36: 447–451; discussion 451–442.

    Article  CAS  Google Scholar 

  15. Grau JJ, Verger E . Radiotherapy of the brain in elderly patients. Pro Eur J Cancer 2000; 36: 443–447.

    Article  CAS  Google Scholar 

  16. Wheldon TE . Radiation physics and genetic targeting: new directions for radiotherapy. The Douglas Lea Lecture 1999. Phys Med Biol 2000; 45: R77–R95.

    Article  CAS  Google Scholar 

  17. McDermott MW, Gutin PH, Larson DA, Sneed PK . Interstitial brachytherapy. Neurosurg Clin N Am 1990; 1: 801–824.

    Article  CAS  Google Scholar 

  18. Mann BD et al. Imaging of human tumor xenografts in nude mice with radiolabeled monoclonal antibodies. Limitations of specificity due to nonspecific uptake of antibody. Cancer 1984; 54: 1318–1327.

    Article  CAS  Google Scholar 

  19. Goodwin DA . Pharmacokinetics and antibodies. J Nucl Med 1987; 28: 1358–1362.

    CAS  PubMed  Google Scholar 

  20. Goodwin DA et al. Pre-targeted immunoscintigraphy of murine tumors with indium-111-labeled bifunctional haptens. J Nucl Med 1988; 29: 226–234.

    CAS  PubMed  Google Scholar 

  21. Riva P et al. Local application of radiolabeled monoclonal antibodies in the treatment of high grade malignant gliomas: a six-year clinical experience. Cancer 1997; 80: 2733–2742.

    Article  CAS  Google Scholar 

  22. Riva P et al. Loco-regional radioimmunotherapy of high-grade malignant gliomas using specific monoclonal antibodies labeled with 90Y: a phase I study. Clin Cancer Res 1999; 5: 3275s–3280s.

    CAS  PubMed  Google Scholar 

  23. Riva P et al. 131I radioconjugated antibodies for the locoregional radioimmunotherapy of high-grade malignant glioma – phase I and II study. Acta Oncol 1999; 38: 351–359.

    Article  CAS  Google Scholar 

  24. Riva P et al. Role of nuclear medicine in the treatment of malignant gliomas: the locoregional radioimmunotherapy approach. Eur J Nucl Med 2000; 27: 601–609.

    Article  CAS  Google Scholar 

  25. Weber DA . MIRD: Radionuclide Data and Decay Schemes. The Society of Nuclear Medicine: New York, 1989.

    Google Scholar 

  26. Laperriere N, Zuraw L, Cairncross G . Radiotherapy for newly diagnosed malignant glioma in adults: a systematic review. Radiother Oncol 2002; 64: 259–273.

    Article  Google Scholar 

  27. Maxon HR, Thomas SR, Samaratunga RC . Dosimetric considerations in the radioiodine treatment of macrometastases and micrometastases from differentiated thyroid cancer. Thyroid 1997; 7: 183–187.

    Article  CAS  Google Scholar 

  28. Loevinger R, Budinger TF, Watson EE . MIRD Primer For Absorbed Dose Calculation. The Society of Nuclear Medicine: New York, NY, 1991.

    Google Scholar 

  29. Casara D et al. Different features of pulmonary metastases in differentiated thyroid cancer: natural history and multivariate statistical analysis of prognostic variables. J Nucl Med 1993; 34: 1626–1631.

    CAS  PubMed  Google Scholar 

  30. Sherman SI . The management of metastatic differentiated thyroid carcinoma. Rev Endocr Metab Disord 2000; 1: 165–171.

    Article  CAS  Google Scholar 

  31. O'Donoghue JA, Bardies M, Wheldon TE . Relationships between tumor size and curability for uniformly targeted therapy with beta-emitting radionuclides. J Nucl Med 1995; 36: 1902–1909.

    CAS  PubMed  Google Scholar 

  32. de Jong M et al. Tumor response after [(90)Y-DOTA(0),Tyr(3)]octreotide radionuclide therapy in a transplantable rat tumor model is dependent on tumor size. J Nucl Med 2001; 42: 1841–1846.

    CAS  PubMed  Google Scholar 

  33. Knedlitschek G, Anderer U, Weibezahn KF, Dertinger H . Radioresistance of rat glioma cell lines cultured as multicellular spheroids. Correlation with electrical cell-to-cell-coupling. Strahlenther Onkol 1990; 166: 164–167.

    CAS  PubMed  Google Scholar 

  34. Bloomer WD, McLaughlin WH, Adelstein SJ, Wolf AP . Therapeutic applications of Auger and alpha emitting radionuclides. Strahlentherapie 1984; 160: 755–757.

    CAS  PubMed  Google Scholar 

  35. O'Donoghue JA, Wheldon TE . Targeted radiotherapy using Auger electron emitters. Phys Med Biol 1996; 41: 1973–1992.

    Article  CAS  Google Scholar 

  36. O'Donoghue JA . Strategies for selective targeting of Auger electron emitters to tumor cells. J Nucl Med 1996; 37: 3S–6S.

    CAS  PubMed  Google Scholar 

  37. Cunningham SH et al. Toxicity to neuroblastoma cells and spheroids of benzylguanidine conjugated to radionuclides with short-range emissions. Br J Cancer 1998; 77: 2061–2068.

    Article  CAS  Google Scholar 

  38. Dadachova E, Bouzahzah B, Zuckier LS, Pestell RG . Rhenium-188 as an alternative to Iodine-131 for treatment of breast tumors expressing the sodium/iodide symporter (NIS). Nucl Med Biol 2002; 29: 13–18.

    Article  CAS  Google Scholar 

  39. Knapp Jr FF et al. Endovascular beta irradiation for prevention of restenosis using solution radioisotopes: pharmacologic and dosimetric properties of rhenium-188 compounds. Cardiovasc Radiat Med 1999; 1: 86–97.

    Article  Google Scholar 

  40. Lin WY et al. A comprehensive study on the blockage of thyroid and gastric uptakes of 188Re-perrhenate in endovascular irradiation using liquid-filled balloon to prevent restenosis. Nucl Med Biol 2000; 27: 83–87.

    Article  CAS  Google Scholar 

  41. Josefsson M, Grunditz T, Ohlsson T, Ekblad E . Sodium/iodide-symporter: distribution in different mammals and role in entero-thyroid circulation of iodide. Acta Physiol Scand 2002; 175: 129–137.

    Article  CAS  Google Scholar 

  42. Knapp Jr FF . Rhenium-188 – a generator-derived radioisotope for cancer therapy. Cancer Biother Radiopharm 1998; 13: 337–349.

    Article  CAS  Google Scholar 

  43. Knapp Jr FF et al. Reactor-produced radioisotopes from ORNL for bone pain palliation. Appl Radiat Isot 1998; 49: 309–315.

    Article  CAS  Google Scholar 

  44. O'Donoghue J . Dosimetric Principles of Targeted Radiotherapy. In: Abrams PG FA (ed). Radioimmunotherapy of Cancer. Marcel Dekker: New York, 2000, pp 1–21.

    Google Scholar 

  45. Petrich T et al. Establishment of radioactive astatine and iodine uptake in cancer cell lines expressing the human sodium/iodide symporter. Eur J Nucl Med Mol Imaging 2002; 29: 842–854.

    Article  CAS  Google Scholar 

  46. Carlin S, Mairs RJ, Welsh P, Zalutsky MR . Sodium-iodide symporter (NIS)-mediated accumulation of [(211)At]astatide in NIS-transfected human cancer cells. Nucl Med Biol 2002; 29: 729–739.

    Article  CAS  Google Scholar 

  47. Kobayashi N, Allen N, Clendenon NR, Ko LW . An improved rat brain-tumor model. J Neurosurg 1980; 53: 808–815.

    Article  CAS  Google Scholar 

  48. Clendenon NR et al. Enhanced survival in a rat glioma model following BNCT. Strahlenther Onkol 1989; 165: 222–225.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are indebted to our Nuclear Medicine colleagues of The Ohio State University Hospital, including Ms Bonnie Williams, Mr Cowan Edwards, Mr Aaron Haynam, and Ms Mary Morgan for their preparation of radionuclides and providing gamma camera assistance. We also thank Dr FF Russ Knapp at the Oak Ridge National Lab for his consultation regarding use of the 188Tungsten/188Rhenium generator. This work was partly supported by DOD Prostate Cancer Research Program DAMD 17-02-0119 (to SMJ), and the statistical analyses were supported by NIH Grant #MO1 RR00034 (to HNN via OSU GCRC).

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shen, D., Marsee, D., Schaap, J. et al. Effects of dose, intervention time, and radionuclide on sodium iodide symporter (NIS)-targeted radionuclide therapy. Gene Ther 11, 161–169 (2004). https://doi.org/10.1038/sj.gt.3302147

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gt.3302147

Keywords

This article is cited by

Search

Quick links