Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Article
  • Published:

Monitoring adenoviral DNA delivery, using a mutant herpes simplex virus type 1 thymidine kinase gene as a PET reporter gene

Abstract

Current gene therapy protocols often suffer from an inability to monitor the site, level and persistence of gene expression following somatic DNA delivery. Herpes simplex virus 1 thymidine kinase (HSV1-tk) is currently under intensive investigation as a reporter gene for in vivo imaging of reporter gene expression. The presence of the HSV1-tk reporter gene is repetitively and non-invasively monitored by systemic injection of positron-emitting, radionuclide-labeled thymidine analogues or acycloguanosine HSV1-TK substrates and subsequent detection, by positron emission tomography, of trapped, phosphorylated product. To improve the efficacy of the HSV1-tk PET reporter gene system, both alternative substrates and mutations in the HSV1-tk gene have been described. We used a replication defective adenovirus to deliver the HSV1-sr39tk mutant enzyme and the wild-type HSV1-tk enzyme to mice. HSV1-sr39TK demonstrates greater sensitivity than wild-type HSV1-TK enzyme in vivo, using 9-[(4-[18F]fluoro-3-hydroxymethylbutyl)guanine as probe, following adenovirus-mediated hepatic expression in mice. Using this adenoviral delivery system, the location, magnitude and duration of HSV1-sr39tk PET reporter gene expression could be non-invasively, quantitatively and repetitively monitored for over 3 months by microPET.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Ray P et al. Monitoring gene therapy with reporter gene imaging Semin in Nucl Med 2001 31: 312–320

    Article  CAS  Google Scholar 

  2. Naylor LH . Reporter gene technology: the future looks bright Biochem Pharmacol 1999 58: 749–757

    Article  CAS  Google Scholar 

  3. Yang M et al. Whole-body optical imaging of green fluorescent protein-expressing tumors and metastases Proc Natl Acad Sci USA 2000 97: 1206–1211

    Article  CAS  Google Scholar 

  4. Contag CH, Jenkins D, Contag PR, Negrin RS . Use of reporter genes for optical measurements of neoplastic disease in vivo Neoplasia 2000 2: 41–52

    Article  CAS  Google Scholar 

  5. Rogers BE, Zinn KR, Buchsbaum DJ . Gene transfer strategies for improving radiolabeled peptide imaging and therapy Q J Nucl Med 2000 44: 208–223

    CAS  PubMed  Google Scholar 

  6. Zinn KR et al. Noninvasive monitoring of gene transfer using a reporter receptor imaged with a high-affinity peptide radiolabeled with 99mTc or 188Re J Nucl Med 2000 41: 887–895

    CAS  Google Scholar 

  7. Cherry SR et al. MicroPET: a high resolution PET scanner for imaging small animals IEEE Trans Nucl Sci 1997 44: 1161–1166

    Article  CAS  Google Scholar 

  8. MacLaren DC et al. Repetitive, non-invasive imaging of the dopamine D2 receptor as a reporter gene in living animals Gene Ther 1999 6: 785–791

    Article  CAS  Google Scholar 

  9. Gambhir SS et al. Imaging transgene expression with radionuclide imaging technologies Neoplasia 2000 2: 118–138

    Article  CAS  Google Scholar 

  10. Herschman HR et al. Seeing is believing: non-invasive, quantitative and repetitive imaging of reporter gene expression in living animals, using positron emission tomography J Neurosci Res 2000 59: 699–705

    Article  CAS  Google Scholar 

  11. Sadelain M, Blasberg RG . Imaging transgene expression for gene therapy J Clin Pharmacol 1999 39 (Suppl): 34S–39S

    Article  CAS  Google Scholar 

  12. Tjuvajev JG et al. A general approach to thenon-invasive imaging of transgenes using cis-linked herpes simples virus thymidine kinase Neoplasia 1999 1: 315–320

    Article  CAS  Google Scholar 

  13. Tjuvajev JG et al. Imaging herpes virus thymidine kinase gene transfer and expression by positron emission tomography Cancer Res 1998 58: 4333–4341

    CAS  Google Scholar 

  14. Gambhir SS et al. Imaging adenoviral-directed reporter gene expression in living animals with positron emission tomography Proc Natl Acad Sci USA 1999 96: 2333–2338

    Article  CAS  Google Scholar 

  15. Gambhir SS et al. Imaging of adenoviral directed herpes simplex virus Type 1 thymidine kinase reporter gene expression in mice with ganciclovir J Nucl Med 1998 39: 2003–2011

    CAS  Google Scholar 

  16. Green LA et al. Indirect monitoring of endogenous gene expression by Positron Emission Tomography (PET) imaging of reporter gene expression in transgenic mice Mol Imag Biol 2002 4: 71–81

    Article  Google Scholar 

  17. Black ME, Newcomb TG, Wilson H-MP, Loeb LA . Creation of drug-specific Herpes Simplex Virus type 1 thymidine kinase mutant for gene therapy Proc Natl Acad Sci USA 1996 93: 3525–3529

    Article  CAS  Google Scholar 

  18. Gambhir SS et al. A mutant herpes simplex virus Type 1 thymidine kinase reporter gene shows improved sensitivity for imaging reporter gene expression with positron emission tomography Proc Natl Acad Sci USA 2000 97: 2785–2790

    Article  CAS  Google Scholar 

  19. Alauddin MM, Conti PS . Synthesis and preliminary evaluation of 9-(4-[18F]-fluoro-3-hydroxymethylbutyl)guanine ([18F]FHBG): a new potential imaging agent for viral infection and gene therapy using PET Nucl Med Biol 1998 25: 175–180

    Article  CAS  Google Scholar 

  20. Liang Q et al. Noninvasive, quantitative imaging, in living animals, of a mutant dopamine D2 receptor reporter gene in which ligand binding is uncoupled from signal transduction Gene Ther 2001 8: 1490–1498

    Article  CAS  Google Scholar 

  21. Tjuvajev JG et al. Noninvasive imaging of herpes virus thymidine kinase transfer and expression: a potential method for monitoring clinical gene therapy Cancer Res 1996 56: 4087–4095

    CAS  Google Scholar 

  22. Jacobs A et al. Positron emission tomography-based imaging of transgene expression mediated by replication-conditional, oncolytic herpes simplex virus type 1 mutant vectors in vivo Cancer Res 2001 61: 2983–2995

    CAS  Google Scholar 

  23. Iyer M et al. 8-[18F]-Fluoropenciclovir: an improved reporter probe for imaging HSV1-tk reporter gene expression in vivo using positron emission tomography J Nucl Med 2001 42: 96–105

    CAS  Google Scholar 

  24. Alauddin MM et al. Synthesis of 9-[(3-[18F]fluoro-1-hydroxy-2-propoxy)methyl]guanine ([18F]FHPG): a potential imaging agent of viral infection and gene therapy using PET Nucl Med Biol 1996 23: 787–792

    Article  CAS  Google Scholar 

  25. Alauddin MM et al. Evaluation of 9-[(3-[18F]-fluoro-1-hydroxy-2-propoxy)methyl] guanine ([18F]-FHPG) in vitro and in vivo as a probe for PET imaging of gene incorporation and expression in tumors Nucl Med Biol 1999 26: 371–376

    Article  CAS  Google Scholar 

  26. Hospers GA et al. Monitoring of herpes simplex virus thymidine kinase enzyme activity using positron emission tomography Cancer Res 2000 60: 1488–1491

    CAS  Google Scholar 

  27. Hustinx R et al. Imaging in vivo herpes simplex virus thymidine kinase gene transfer to tumor-bearing rodents using positron emission tomography and [18F]FHPG Eur J Nucl Med 2001 28: 5–12

    Article  CAS  Google Scholar 

  28. Brust P et al. Comparison of [18F]FHPG and [124/125]IFIAU for imaging herpes simplex virus type 1 thymidine kinase gene expression Eur J Nucl Med 2001 28: 721–729

    Article  CAS  Google Scholar 

  29. Yaghoubi S et al. Human pharmacokinetic and dosimetry studies of [18F]-FHBG, a reporter probe for imaging herpes simplex virus type 1 thymidine kinase (HSV1-tk) reporter gene expression J Nucl Med 2001 42: 1225–1234

    CAS  PubMed  Google Scholar 

  30. Christians FC et al. Directed evolution of thymidine kinase for AZT phosphorylation using DNA family shuffling Nat Biotechnol 1999 17: 259–264

    Article  CAS  Google Scholar 

  31. Yu Y et al. Quantification of target gene expression by imaging reporter gene expression in living animals Nat Med 2000 6: 933–937

    Article  CAS  Google Scholar 

  32. Krestel HE, Mayford M, Seeburg PH, Sprengel R . A GFP-equipped bidirectional expression module well suited for monitoring tetracycline-regulated gene expression in mouse Nucleic Acids Res 2001 29: E39

    Article  CAS  Google Scholar 

  33. Gomez-Foix AM et al. Adenovirus-mediated transfer of the muscle glycogen phosphorylase gene into hepatocytes confers altered regulation of glycogen metabolism J Biol Chem 1992 267: 25 129–25 134

    Google Scholar 

  34. Graham FL, van der Eb AJ . A new technique for the assay of infectivity of human adenovirus 5 DNA Virology 1973 52: 456–467

    Article  CAS  Google Scholar 

  35. Qi J et al. High-resolution 3D Bayesian image reconstruction using the microPET small-animal scanner Phys Med Biol 1998 43: 1001–1013

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Art Catapang, Raymond Basconcillo, Judy Edwards, Waldemar Ladno and ManKit Ho for technical assistance and Richard Leahy for consultation. This work was supported by Department of Energy award DE-FC03-87ER60615 (HRH, MEP, SSG, JRB, NS), NIH award P50 CA86306 (HRH, MEP, SSG, JRB, NS), NIH award R0-1 CA84572 (HRH) and NIH award R0-1 CA82214-01 (SSG).

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liang, Q., Nguyen, K., Satyamurthy, N. et al. Monitoring adenoviral DNA delivery, using a mutant herpes simplex virus type 1 thymidine kinase gene as a PET reporter gene. Gene Ther 9, 1659–1666 (2002). https://doi.org/10.1038/sj.gt.3301899

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gt.3301899

Keywords

This article is cited by

Search

Quick links