Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Article
  • Published:

Folate-targeted, cationic liposome-mediated gene transfer into disseminated peritoneal tumors

Abstract

A folate-targeted, cationic lipid based transfection complex was developed and found to specifically transfect folate receptor-expressing cells and tumors. These liposomal vectors were comprised of protamine-condensed plasmid DNA, a mixture of cationic and neutral lipids, and a folic acid-cysteine-polyethyleneglycol-phosphatidylethanolamine (FA-Cys-PEG-PE) conjugate. Pre-optimization studies revealed that inclusion of low amounts (0.01 to 0.03%) of FA-Cys-PEG-PE yielded the highest binding activity of dioleoylphosphatidylcholine/cholesterol liposomes to folate receptor-bearing cells. In contrast, higher amounts (>0.5%) of FA-Cys-PEG-PE progressively decreased cellular binding of the liposomes. In vitro studies with cationic lipid/dioleoylphosphatidylethanolamine formulations indicated that as little as 0.01 to 0.3% of FA-Cys-PEG-PE was needed to produce optimal targeted expression of plasmid DNA. Similarly, using a disseminated intraperitoneal L1210A tumor model, maximum in vivo transfection activity occurred with intraperitoneally administered formulations that contained low amounts (0.01 mol%) of the FA-Cys-PEG-PE targeting lipid. Overall, folate-labeled formulations produced an eight- to 10-fold increase in tumor-associated luciferase expression, as compared with the corresponding non-targeted cationic lipid/DNA formulations. These results collectively indicate that transfection of widespread intraperitoneal cancers can be significantly enhanced using folate-targeted techniques.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Dass CR, Burton MA . Lipoplexes and tumours. A review J Pharm Pharmacol 1999 51: 755–770

    Article  CAS  PubMed  Google Scholar 

  2. Brigham KL et al. In vivo transfection of murine lungs with a functioning prokaryotic gene using a liposome vehicle Am J Med Sci 1989 298: 278–281

    Article  CAS  PubMed  Google Scholar 

  3. Felgner PL et al. Improved cationic lipid formulations for in vivo gene therapy Ann NY Acad Sci 1995 772: 126–139

    Article  CAS  PubMed  Google Scholar 

  4. Templeton NS, Lasic DD . New directions in liposome gene delivery Mol Biotechnol 1999 11: 175–180

    Article  CAS  PubMed  Google Scholar 

  5. Caplen NJ et al. Liposome-mediated CFTR gene transfer to the nasal epithelium of patients with cystic fibrosis Nat Med 1995 1: 39–46

    Article  CAS  PubMed  Google Scholar 

  6. Stephan DJ et al. A new cationic liposome DNA complex enhances the efficiency of arterial gene transfer in vivo Hum Gene Ther 1996 7: 1803–1812

    Article  CAS  PubMed  Google Scholar 

  7. Wheeler CJ et al. A novel cationic lipid greatly enhances plasmid DNA delivery and expression in mouse lung Proc Natl Acad Sci USA 1996 93: 11454–11459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Alton EW et al. Non-invasive liposome-mediated gene delivery can correct the ion transport defect in cystic fibrosis mutant mice Nat Genet 1993 5: 135–142

    Article  CAS  PubMed  Google Scholar 

  9. Parker SE et al. Plasmid DNA gene therapy: studies with the human interleukin-2 gene in tumor cells in vitro and in the murine B16 melanoma model in vivo Cancer Gene Ther 1996 3: 175–185

    CAS  PubMed  Google Scholar 

  10. Stopeck AT et al. Phase I study of direct gene transfer of an allogeneic histocompatibility antigen, HLA-B7, in patients with metastatic melanoma J Clin Oncol 1997 15: 341–349

    Article  CAS  PubMed  Google Scholar 

  11. Rubin J et al. Phase I study of immunotherapy of hepatic metastases of colorectal carcinoma by direct gene transfer of an allogeneic histocompatibility antigen, HLA-B7 Gene Therapy 1997 4: 419–425

    Article  CAS  PubMed  Google Scholar 

  12. Lee RJ, Huang L . Folate-targeted, anionic liposome-entrapped polylysine-condensed DNA for tumor cell-specific gene transfer J Biol Chem 1996 271: 8481–8487

    Article  CAS  PubMed  Google Scholar 

  13. Reddy JA, Low PS . Enhanced folate receptor mediated gene therapy using a novel pH-sensitive lipid formulation J Control Release 2000 64: 27–37

    Article  CAS  PubMed  Google Scholar 

  14. Reddy JA, Dean D, Kennedy MD, Low PS . Optimization of folate-conjugated liposomal vectors for folate receptor-mediated gene therapy J Pharm Sci 1999 88: 1112–1118

    Article  CAS  PubMed  Google Scholar 

  15. Xu L et al. Systemic p53 gene therapy in combination with radiation results in human tumor regression Tumor Targeting 1999 4: 92–104

    CAS  Google Scholar 

  16. Xu L et al. Transferrin-liposome-mediated systemic p53 gene therapy in combination with radiation results in regression of human head and neck cancer xenografts Hum Gene Ther 1999 10: 2941–2952

    Article  CAS  PubMed  Google Scholar 

  17. Hwang SH, Hayashi K, Takayama K, Maitani Y . Liver-targeted gene transfer into a human hepatoblastoma cell line and in vivo by sterylglucoside-containing cationic liposomes Gene Therapy 2001 8: 1276–1280

    Article  CAS  PubMed  Google Scholar 

  18. Leamon CP, Low PS . Folate-mediated targeting: from diagnostics to drug and gene delivery Drug Discov Today 2001 6: 44–51

    Article  CAS  PubMed  Google Scholar 

  19. Reddy JA, Low PS . Folate-mediated targeting of therapeutic and imaging agents to cancers Crit Rev Ther Drug Carrier Syst 1998 15: 587–627

    Article  CAS  PubMed  Google Scholar 

  20. Leamon CP, Pastan I, Low PS . Cytotoxicity of folate-Pseudomonas exotoxin conjugates toward tumor cells. Contribution of translocation domain J Biol Chem 1993 268: 24847–24854

    CAS  PubMed  Google Scholar 

  21. Lee RJ, Low PS . Delivery of liposomes into cultured KB cells via folate receptor-mediated endocytosis J Biol Chem 1994 269: 3198–3204

    CAS  PubMed  Google Scholar 

  22. Ciuchi F et al. Self-recognition and self-assembly of folic acid salts: columnar liquid crystalline polymorphism and the column growth process J Am Chem Soc 1994 116: 7064

    Article  CAS  Google Scholar 

  23. Antony AC, Utley C, Van Horne KC, Kolhouse JF . Isolation and characterization of a folate receptor from human placenta J Biol Chem 1981 256: 9684–9692

    CAS  PubMed  Google Scholar 

  24. Jeppesen C et al. Impact of polymer tether length on multiple ligand-receptor bond formation Science 2001 293: 465–468

    Article  CAS  PubMed  Google Scholar 

  25. Torchilin VP . Molecular mechanism of liposome and immunoliposome steric protection with poly(ethylene glycol): theoretical and experimental proofs of polymer chain flexibility Lasic DDaMF (eds); Stealth Liposomes CRC Press 1995 pp 51–62

  26. Torchilin VP . Molecular mechanism of liposome and immunoliposome steric protection with poly(ethylene glycol): theoretical and experimental proofs of polymer chain flexibility Byk G, Scherman D, Schwartz B, Dubertret C. Lipopolyamines as transfection agents and pharmaceutical uses thereof: U.S. patent, 2001.

  27. Torchilin VP . Molecular mechanism of liposome and immunoliposome steric protection with poly(ethylene glycol): theoretical and experimental proofs of polymer chain flexibility Pitard B. Sterically stabilized BGTC-based lipoplexes: structural features and gene transfection into the mouse airways in vivo. J Gene Med 2001 (in press).

  28. Zhu N, Liggitt D, Liu Y, Debs R . Systemic gene expression after intravenous DNA delivery into adult mice Science 1993 261: 209–211

    Article  CAS  PubMed  Google Scholar 

  29. Liu Y et al. Factors influencing the efficiency of cationic liposome-mediated intravenous gene delivery Nat Biotechnol 1997 15: 167–173

    Article  CAS  PubMed  Google Scholar 

  30. Ishida O, Maruyama K, Sasaki K, Iwatsuru M . Size-dependent extravasation and interstitial localization of polyethyleneglycol liposomes in solid tumor-bearing mice Int J Pharm 1999 190: 49–56

    Article  CAS  PubMed  Google Scholar 

  31. Straubinger RM, Hong K, Friend DS, Papahadjopoulos D . Endocytosis of liposomes and intracellular fate of encapsulated molecules: encounter with a low pH compartment after internalization in coated vesicles Cell 1983 32: 1069–1079

    Article  CAS  PubMed  Google Scholar 

  32. Watts C, Marsh M . Endocytosis: what goes in and how? J Cell Sci 1992 103: 1–8

    PubMed  Google Scholar 

  33. Mounkes LC et al. Proteoglycans mediate cationic liposome-DNA complex-based gene delivery in vitro and in vivo J Biol Chem 1998 273: 26164–26170

    Article  CAS  PubMed  Google Scholar 

  34. Zelphati O, Uyechi LS, Barron LG, Szoka FC Jr . Effect of serum components on the physico-chemical properties of cationic lipid/oligonucleotide complexes and on their interactions with cells Biochim Biophys Acta 1998 1390: 119–133

    Article  CAS  PubMed  Google Scholar 

  35. Gao X, Huang L . Cationic liposome-mediated gene transfer Gene Therapy 1995 2: 710–722

    CAS  PubMed  Google Scholar 

  36. Fasbender A et al. Effect of co-lipids in enhancing cationic lipid-mediated gene transfer in vitro and in vivo Gene Therapy 1997 4: 716–725

    Article  CAS  PubMed  Google Scholar 

  37. Leamon CP, DePrince RB, Hendren RW . Folate-mediated drug delivery: effect of alternative conjugation chemistry J Drug Target 1999 7: 157–169

    Article  CAS  PubMed  Google Scholar 

  38. Aoki K et al. Gene therapy for peritoneal dissemination of pancreatic cancer by liposome-mediated transfer of herpes simplex virus thymidine kinase gene Hum Gene Ther 1997 8: 1105–1113

    Article  CAS  PubMed  Google Scholar 

  39. Kikuchi A et al. Development of novel cationic liposomes for efficient gene transfer into peritoneal disseminated tumor Hum Gene Ther 1999 10: 947–955

    Article  CAS  PubMed  Google Scholar 

  40. Kiyasu Y, Kaneshima S, Koga S . Morphogenesis of peritoneal metastasis in human gastric cancer Cancer Res 1981 41: 1236–1239

    CAS  PubMed  Google Scholar 

  41. Niedbala MJ, Crickard K, Bernacki RJ . Interactions of human ovarian tumor cells with human mesothelial cells grown on extracellular matrix. An in vitro model system for studying tumor cell adhesion and invasion Exp Cell Res 1985 160: 499–513

    Article  CAS  PubMed  Google Scholar 

  42. Takeshita S et al. Increased gene expression after liposome-mediated arterial gene transfer associated with intimal smooth muscle cell proliferation. In vitro and in vivo findings in a rabbit model of vascular injury J Clin Invest 1994 93: 652–661

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Chan SY et al. Folate receptor-alpha is a cofactor for cellular entry by Marburg and Ebola viruses Cell 2001 106: 117–126

    Article  CAS  PubMed  Google Scholar 

  44. Deen WM, Bridges CR, Brenner BM . Biophysical basis of glomerular permselectivity J Membr Biol 1983 71: 1–10

    Article  CAS  PubMed  Google Scholar 

  45. Li S, Huang L . In vivo gene transfer via intravenous administration of cationic lipid-protamine-DNA (LPD) complexes Gene Therapy 1997 4: 891–900

    Article  CAS  PubMed  Google Scholar 

  46. Mathias CJ et al. Tumor-selective radiopharmaceutical targeting via receptor-mediated endocytosis of gallium-67-deferoxamine-folate J Nucl Med 1996 37: 1003–1008

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We wish to thank Dr Philip S Low and Dr George Chou for their valuable discussions. We also thank Marilynn Vetzel, Nikki Douglas, Marc Frederic and Shaff Iginla for their technical help.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reddy, J., Abburi, C., Hofland, H. et al. Folate-targeted, cationic liposome-mediated gene transfer into disseminated peritoneal tumors. Gene Ther 9, 1542–1550 (2002). https://doi.org/10.1038/sj.gt.3301833

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gt.3301833

Keywords

This article is cited by

Search

Quick links