Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Article
  • Published:

Generation of high-titer retroviral vector-producing macrophages as vehicles for in vivo gene transfer

Abstract

The goal of this project was to develop a novel gene transfer system based on macrophages (Mφ) as shuttles of recombinant retroviral vectors carrying therapeutic or marker genes. The murine Mφ cell line WGL5 was used as a source of Mφ for this study. We generated retrovirus-producing Mφ by transducing the WGL5 cells with a replication-defective retroviral vector carrying the enhanced green fluorescent protein (EGFP) reporter gene and the Moloney murine leukemia virus (MoMLV) as helper virus. We demonstrated stable integration of the recombinant retrovirus in the Mφ genome, efficient recombinant retrovirus production, and EGFP gene delivery to different cell lines in vitro. To evaluate Mφ-mediated EGFP gene transfer in vivo, allogeneic mice were injected s.c. with the retrovirus-producing WGL5 Mφ, that gave rise to solid tumor masses at the injection site, highly infiltrated with host leukocytes. We observed EGFP fluorescence in tumor-infiltrating CD4+ and CD8+ host T lymphocytes, providing direct evidence of the ability of engineered Mφ to mediate EGFP gene delivery to host cells in vivo. Moreover, we showed that retrovirus-producing Mφ could home to different organs in vivo following i.v. injection into mice. These data demonstrate that Mφ can be engineered as cellular vehicles for recombinant retroviruses carrying heterologous genes and suggest potential applications of this novel vector system for gene therapy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Verma IM, Somia N . Gene therapy-promises, problems and prospects Nature 1997 389: 239–242

    Article  CAS  PubMed  Google Scholar 

  2. Uckert W, Walther W . Retrovirus-mediated gene transfer in cancer therapy Pharmac Ther 1994 63: 323–347

    Article  CAS  Google Scholar 

  3. Robbins PD et al. Retroviral vectors for use in human gene therapy for cancer, Gaucher disease, and arthritis Ann NY Acad Sci 1994 716: 72–89

    Article  CAS  PubMed  Google Scholar 

  4. Bordignon C et al. Gene therapy in peripheral blood lymphocytes and bone marrow for ADA-immunodeficient patients Science 1995 270: 470–475

    Article  CAS  PubMed  Google Scholar 

  5. Cavazzana-Calvo M et al. Gene therapy of human severed combined immunodeficiency (SCID)-XI disease Science 2000 288: 669–672

    Article  CAS  PubMed  Google Scholar 

  6. Bunnell BA et al. High-efficiency retroviral-mediated gene transfer into human and nonhuman primate peripheral blood lymphocytes Proc Natl Acad Sci USA 1995 92: 7739–7743

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Roth JA, Cristiano RJ . Gene therapy for cancer: what have we done and where are we going? J Natl Cancer Inst 1997 89: 21–39

    Article  CAS  PubMed  Google Scholar 

  8. Culver KW et al. In vivo gene transfer with retroviral vector producer cells for treatment of experimental brain tumors Science 1992 256: 1550–1552

    Article  CAS  PubMed  Google Scholar 

  9. Ram Z et al. Therapy of malignant brain tumors by intratumoral implantation of retroviral vector-producing cells Nature Med 1997 3: 1354–1361

    Article  CAS  PubMed  Google Scholar 

  10. Tamura M et al. Transduction of glioma cells using a high-titer retroviral vector system and their subsequent migration in brain tumors Gene Therapy 1998 5: 1698–1704

    Article  CAS  PubMed  Google Scholar 

  11. Blasi E, Mathieson BJ, Varesio L . Selective immortalization of murine macrophages from fresh bone marrow by a raf/myc recombinant murine retrovirus Nature 1985 318: 667–670

    Article  CAS  PubMed  Google Scholar 

  12. Blasi E et al. A murine macrophage cell line, immortalized by v-raf and v-myc oncogene exhibited normal macrophage differentiated functions Eur J Immunol 1987 17: 1491–1498

    Article  CAS  PubMed  Google Scholar 

  13. Gandino L, Varesio L . Immortalization of macrophages from mouse bone marrow and fetal liver Exp Cell Res 1990 188: 192–198

    Article  CAS  PubMed  Google Scholar 

  14. Whitworth PW et al. Macrophages and cancer Cancer Met Rev 1990 8: 319–351

    Article  CAS  Google Scholar 

  15. Gendelman HE, Morahan PS . Macrophages in viral infections. In: Lewis CE, McGee JO (eds) The Macrophage IRL PRESS: Oxford 1994 pp 157–213

    Google Scholar 

  16. Varesio L et al. Role of cytokines in the activation of monocytes. In: Aggarwal BB, Puri RK (eds) Human Cytokines: Their Role in Disease and Therapy Blackwell Scientific Publication: Cambridge 1995 pp 55–70

    Google Scholar 

  17. Bonta IL, Ben-Efraim S . Involvement of inflammatory mediators in macrophage antitumor activity J Leuk Biol 1993 54: 613–625

    Article  CAS  Google Scholar 

  18. Mantovani A et al. The origin and function of tumor-associated macrophages Immunol Today 1992 13: 265–270

    Article  CAS  PubMed  Google Scholar 

  19. Unanue ER, Allen PM . The basis for the immunoregulatory role of macrophages and other accessory cells Science 1987 236: 551–557

    Article  CAS  PubMed  Google Scholar 

  20. Lei H et al. Induction of potent antitumor response by vaccination with tumor lysate-pulsed macrophages engineered to secrete macrophages colony-stimulating factor and interferon-γ Gene Therapy 2000 7: 707–713

    Article  CAS  PubMed  Google Scholar 

  21. Hennemann B et al. Phase I trial of adoptive immunotherapy of cancer patients using monocytes-derived macrophages activated with interferon-γ and LPS Cancer Immunol Immunother 1997 456: 250–256

    Article  Google Scholar 

  22. Andreesen R, Hennemann B, Krause W . Adoptive immunotherapy of cancer using monocyte-derived macrophages: rationale, current status, and perspective J Leuk Biol 1998 64: 419–425

    Article  CAS  Google Scholar 

  23. Kaplan JM et al. Induction of antitumor immunity with dendritic cells transduced with adenovirus vector-encoding endogenous tumor-associated antigens J Immunol 1999 163: 699–707

    CAS  PubMed  Google Scholar 

  24. Nishihara K et al. Increased in vitro and in vivo tumoricidal activity of a macrophage cell line genetically engineered to express INFγ, IL4, IL6, or TNFα Cancer Gene Ther 1995 2: 113–124

    CAS  PubMed  Google Scholar 

  25. Melero I et al. Intratumoral injection of bone-marrow derived dendritic cells engineered to produce interleukin-12 induces complete regression of established murine transplantable colon adenocarcinomas Gene Therapy 1999 6: 1779–1784

    Article  CAS  PubMed  Google Scholar 

  26. Henderson RA et al. Human dendritic cells genetically engineered to express high levels of the human epithelial tumor antigen mucin (MUC-1) Cancer Res 1996 56: 3763–3770

    CAS  PubMed  Google Scholar 

  27. Cremer I, Vieillard V, Maeyer ED . Retrovirally mediated IFN-β transduction of macrophages induces resistance to HIV, correlated with up-regulation of RANTES production and down-regulation of C-C chemokine receptor-5 expression J Immunol 2000 164: 1582–1587

    Article  CAS  PubMed  Google Scholar 

  28. Levy JP, Muldoon RR, Zolotukhin S et al. Retroviral transfer and expression of a humanized, red-shifted green fluorescent protein gene into human tumor cells Nat Biotechnol 1996 14: 610–614

    Article  CAS  PubMed  Google Scholar 

  29. Morgenstern JP, Land H . Advanced mammalian gene transfer: high titre retroviral vectors with multiple drug selection markers and a complementary helper-free packaging cell line Nucleic Acids Res 1990 18: 3587–3596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Cepko C, Pear W . Introduction of DNA into mammalian cells. In: Ausubel FM et al (eds) Current Protocols in Molecular Biology John Wiley & Sons: New York, USA 1997 9.0.1–9.13.7

    Google Scholar 

  31. Hanazono Y et al. Green fluorescent protein retroviral vectors: low titer and high recombination frequency suggest a selective disvantage Hum Gene Ther 1997 8: 1313–1319

    Article  CAS  PubMed  Google Scholar 

  32. Challita PM, Kohn DB . Lack of expression from a retroviral vector after transduction of murine hematopoietic cells is associated with methylation Proc Natl Acad Sci USA 1994 91: 2567–2571

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Palmer TD et al. Genetically modified skin fibroblast persist long after transplantation but gradually inactivate introduced genes Proc Natl Acad Sci USA 1991 88: 1330–1334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Pear WS, Scott ML, Nolan GP . Generation of high titre, helper-free retroviruses by transient transfection. In: Robbins PD (ed) Methods in Molecular Medicine: Gene Therapy Protocols Humana Press: Totowa 1996 pp 41–57

    Google Scholar 

  35. Miller AD . Cell-surface receptors for retroviruses and implications for gene transfer Proc Natl Acad Sci USA 1996 93: 11407–11413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Miller DG, Adam MA, Miller AD . Gene transfer by retrovirus vector occurs only in cells that are actively replicating at the time of infection Mol Cell Biol 1990 10: 4239–4242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Bosco MC et al. Selective transformation of host lymphocytes in vivo by retrovirus-producing macrophages J Immunol 1993 150: 278–289

    CAS  PubMed  Google Scholar 

  38. Diamond AS, Gill RG . An essential contribution by IFN-γ to CD8+ T cell-mediated rejection of pancreatic islet allografts J Immunol 2000 165: 247–255

    Article  CAS  PubMed  Google Scholar 

  39. Ram Z et al. In situ retroviral-mediated gene transfer for the treatment of brain tumors in rats Cancer Res 1993 53: 83–88

    CAS  PubMed  Google Scholar 

  40. Takamiya Y et al. An experimental model of retrovirus gene therapy for malignant brain tumors J Neurosurg 1993 79: 104–110

    Article  CAS  PubMed  Google Scholar 

  41. Ram Z et al. Intrathecal gene therapy for malignant leptomeningeal neoplasia Cancer Res 1994 54: 2141–2145

    CAS  PubMed  Google Scholar 

  42. Kaneko Y, Tsukamoto A . Gene therapy of hepatoma: bystander effects and non-apoptotic cell death induced by thymidine kinase and ganciclovir Cancer Lett 1995 96: 105–110

    Article  CAS  PubMed  Google Scholar 

  43. Mavria G, Jäger U, Porter CD . Generation of a high retroviral vector for endothelial cell-specific gene expression in vivo Gene Therapy 2000 7: 368–376

    Article  CAS  PubMed  Google Scholar 

  44. Fassati A et al. Transplantation of retroviral producer cells for in vivo gene transfer into mouse skeletal muscle Hum Gene Ther 1996 7: 595–602

    Article  CAS  PubMed  Google Scholar 

  45. Wiltrout RH et al. Distribution of peritoneal macrophage populations after intravenous injection in mice J Reticuloendotel Soc 1983 34: 253–269

    CAS  Google Scholar 

  46. Morse MA et al. Migration of human dendritic cells after injection in patients with metastatic malignancies Cancer Res 1999 59: 56–58

    CAS  PubMed  Google Scholar 

  47. Kennedy DW, Abkowitz JJ . Mature monocytic cells enter tissues and engraft Proc Natl Acad Sci USA 1999 95: 14944–14949

    Article  Google Scholar 

  48. Parrish EP et al. Targeting widespread sites of damage in dystrophic muscle:engrafted macrophages as potential shuttles Gene Therapy 1996 3: 13–20

    CAS  PubMed  Google Scholar 

  49. Melillo G et al. A hypoxia-responsive element mediates a novel pathway of activation of the inducible nitric oxide synthase promoter J Immunol 1995 182: 1683–1693

    CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr H Land (Imperial Cancer Research Fund, London, UK), Dr J Pierce (NIH, Bethesda, MD, USA) and Dr GP Nolan (Stanford University, Stanford, CA, USA) for kindly providing the pBabe-Puro construct, the MoMLV-producer SNU19 cells and the ΦNix packaging cell line, respectively. We also thank M Puppo (G Gaslini Institute, Genova, Italy) for her excellent technical support, and Dr M Lapide (IST, Genova, Italy) for in vivo experiments. This work was supported in part by grants from the Italian Telethon Foundation (project A75), the Associazione Italiana per la Ricerca sul Cancro (AIRC), the Centro Nazionale Ricerche (CNR) and Associazione Italiana per la Lotta al Neuroblastoma. Dr S Pastorino is supported by a fellowship from the Fondazione Italiana per la Ricerca sul Cancro (FIRC).

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pastorino, S., Massazza, S., Cilli, M. et al. Generation of high-titer retroviral vector-producing macrophages as vehicles for in vivo gene transfer. Gene Ther 8, 431–441 (2001). https://doi.org/10.1038/sj.gt.3301405

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gt.3301405

Keywords

This article is cited by

Search

Quick links