Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Transductional targeting of adenovirus vectors for gene therapy

Abstract

Cancer gene therapy approaches will derive considerable benefit from adenovirus (Ad) vectors capable of self-directed localization to neoplastic disease or immunomodulatory targets in vivo. The ablation of native Ad tropism coupled with active targeting modalities has demonstrated that innate gene delivery efficiency may be retained while circumventing Ad dependence on its primary cellular receptor, the coxsackie and Ad receptor. Herein, we describe advances in Ad targeting that are predicated on a fundamental understanding of vector/cell interplay. Further, we propose strategies by which existing paradigms, such as nanotechnology, may be combined with Ad vectors to form advanced delivery vehicles with multiple functions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Miller CR, Buchsbaum DJ, Reynolds PN, Douglas JT, Gillespie GY, Mayo MS et al. Differential susceptibility of primary and established human glioma cells to adenovirus infection: targeting via the epidermal growth factor receptor achieves fiber receptor-independent gene transfer. Cancer Res 1998; 58: 5738–5748.

    CAS  PubMed  Google Scholar 

  2. Li Y, Pong RC, Bergelson JM, Hall MC, Sagalowsky AI, Tseng CP et al. Loss of adenoviral receptor expression in human bladder cancer cells: a potential impact on the efficacy of gene therapy. Cancer Res 1999; 59: 325–330.

    CAS  PubMed  Google Scholar 

  3. Hemminki A, Alvarez RD . Adenoviruses in oncology: a viable option? BioDrugs 2002; 16: 77–87.

    PubMed  Google Scholar 

  4. Dmitriev I, Krasnykh V, Miller CR, Wang M, Kashentseva E, Mikheeva G et al. An adenovirus vector with genetically modified fibers demonstrates expanded tropism via utilization of a coxsackievirus and adenovirus receptor-independent cell entry mechanism. J Virol 1998; 72: 9706–9713.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Cripe TP, Dunphy EJ, Holub AD, Saini A, Vasi NH, Mahller YY et al. Fiber knob modifications overcome low, heterogeneous expression of the coxsackievirus-adenovirus receptor that limits adenovirus gene transfer and oncolysis for human rhabdomyosarcoma cells. Cancer Res 2001; 61: 2953–2960.

    CAS  PubMed  Google Scholar 

  6. Clinicals Trials Database. The Journal of Gene Medicine Clinical Trials Database 2004, http://www.wiley.co.uk/genmed/clinical.

  7. Davison AJ, Benko M, Harrach B . Genetic content and evolution of adenoviruses. J Gen Virol 2003; 84 (Part 11): 2895–2908.

    CAS  PubMed  Google Scholar 

  8. Mei YF, Wadell G . Epitopes and hemagglutination binding domain on subgenus B:2 adenovirus fibers. J Virol 1996; 70: 3688–3697.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Shenk T . Adenoviridae: and their replication. In: Fields B, Howley P, Knipe D (eds) (translator and editor). Virology. Raven Press: New York, 1996, pp 2111–2148.

    Google Scholar 

  10. Stewart PL, Burnett RM . Adenovirus structure by X-ray crystallography and electron microscopy. Curr Top Microbiol Immunol 1995; 199 (Part 1): 25–38.

    PubMed  Google Scholar 

  11. Rux JJ, Kuser PR, Burnett RM . Structural and phylogenetic analysis of adenovirus hexons by use of high-resolution x-ray crystallographic, molecular modeling, and sequence-based methods. J Virol 2003; 77: 9553–9566.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Roberts MM, White JL, Grutter MG, Burnett RM . Three-dimensional structure of the adenovirus major coat protein hexon. Science 1986; 232: 1148–1151.

    CAS  PubMed  Google Scholar 

  13. Zubieta C, Schoehn G, Chroboczek J, Cusack S . The structure of the human adenovirus 2 penton. Mol Cell 2005; 17: 121–135.

    CAS  PubMed  Google Scholar 

  14. van Raaij MJ, Louis N, Chroboczek J, Cusack S . Structure of the human adenovirus serotype 2 fiber head domain at 1.5 A resolution. Virology 1999; 262: 333–343.

    CAS  PubMed  Google Scholar 

  15. van Raaij MJ, Mitraki A, Lavigne G, Cusack S . A triple beta-spiral in the adenovirus fibre shaft reveals a new structural motif for a fibrous protein. Nature 1999; 401: 935–938.

    CAS  PubMed  Google Scholar 

  16. Stewart PL, Fuller SD, Burnett RM . Difference imaging of adenovirus: bridging the resolution gap between X-ray crystallography and electron microscopy. EMBO J 1993; 12: 2589–2599.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Fabry CM, Rosa-Calatrava M, Conway JF, Zubieta C, Cusack S, Ruigrok RW et al. A quasi-atomic model of human adenovirus type 5 capsid. EMBO J 2005; 24: 1645–1654.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Tomko RP, Xu R, Philipson L . HCAR and MCAR: the human and mouse cellular receptors for subgroup C adenoviruses and group B coxsackieviruses. Proc Natl Acad Sci USA 1997; 94: 3352–3356.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Bergelson JM, Cunningham JA, Droguett G, Kurt-Jones EA, Krithivas A, Hong JS et al. Isolation of a common receptor for Coxsackie B viruses and adenoviruses 2 and 5. Science 1997; 275: 1320–1323.

    CAS  PubMed  Google Scholar 

  20. Dechecchi MC, Melotti P, Bonizzato A, Santacatterina M, Chilosi M, Cabrini G . Heparan sulfate glycosaminoglycans are receptors sufficient to mediate the initial binding of adenovirus types 2 and 5. J Virol 2001; 75: 8772–8780.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Dechecchi MC, Tamanini A, Bonizzato A, Cabrini G . Heparan sulfate glycosaminoglycans are involved in adenovirus type 5 and 2-host cell interactions. Virology 2000; 268: 382–390.

    CAS  PubMed  Google Scholar 

  22. Hong SS, Karayan L, Tournier J, Curiel DT, Boulanger PA . Adenovirus type 5 fiber knob binds to MHC class I alpha2 domain at the surface of human epithelial and B lymphoblastoid cells. EMBO J 1997; 16: 2294–2306.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Chu Y, Heistad D, Cybulsky MI, Davidson BL . Vascular cell adhesion molecule-1 augments adenovirus-mediated gene transfer. Arterioscler Thromb Vasc Biol 2001; 21: 238–242.

    CAS  PubMed  Google Scholar 

  24. Wickham TJ, Mathias P, Cheresh DA, Nemerow GR . Integrins alpha v beta 3 and alpha v beta 5 promote adenovirus internalization but not virus attachment. Cell 1993; 73: 309–319.

    Article  CAS  PubMed  Google Scholar 

  25. Li E, Brown SL, Stupack DG, Puente XS, Cheresh DA, Nemerow GR . Integrin alpha(v)beta1 is an adenovirus coreceptor. J Virol 2001; 75: 5405–5409.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Davison E, Diaz RM, Hart IR, Santis G, Marshall JF . Integrin alpha5beta1-mediated adenovirus infection is enhanced by the integrin-activating antibody TS2/16. J Virol 1997; 71: 6204–6207.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Meier O, Boucke K, Hammer SV, Keller S, Stidwill RP, Hemmi S et al. Adenovirus triggers macropinocytosis and endosomal leakage together with its clathrin-mediated uptake. J Cell Biol 2002; 158: 1119–1131.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Okegawa T, Pong RC, Li Y, Bergelson JM, Sagalowsky AI, Hsieh JT . The mechanism of the growth-inhibitory effect of coxsackie and adenovirus receptor (CAR) on human bladder cancer: a functional analysis of car protein structure. Cancer Res 2001; 61: 6592–6600.

    CAS  PubMed  Google Scholar 

  29. Seidman MA, Hogan SM, Wendland RL, Worgall S, Crystal RG, Leopold PL . Variation in adenovirus receptor expression and adenovirus vector-mediated transgene expression at defined stages of the cell cycle. Mol Ther 2001; 4: 13–21.

    CAS  PubMed  Google Scholar 

  30. Hemminki A, Kanerva A, Liu B, Wang M, Alvarez RD, Siegal GP et al. Modulation of coxsackie-adenovirus receptor expression for increased adenoviral transgene expression. Cancer Res 2003; 63: 847–853.

    CAS  PubMed  Google Scholar 

  31. Fechner H, Haack A, Wang H, Wang X, Eizema K, Pauschinger M et al. Expression of coxsackie adenovirus receptor and alphav-integrin does not correlate with adenovector targeting in vivo indicating anatomical vector barriers. Gene Therapy 1999; 6: 1520–1535.

    CAS  PubMed  Google Scholar 

  32. Wood M, Perrotte P, Onishi E, Harper ME, Dinney C, Pagliaro L et al. Biodistribution of an adenoviral vector carrying the luciferase reporter gene following intravesical or intravenous administration to a mouse. Cancer Gene Ther 1999; 6: 367–372.

    CAS  PubMed  Google Scholar 

  33. Reynolds P, Dmitriev I, Curiel D . Insertion of an RGD motif into the HI loop of adenovirus fiber protein alters the distribution of transgene expression of the systemically administered vector. Gene Therapy 1999; 6: 1336–1339.

    CAS  PubMed  Google Scholar 

  34. Tao N, Gao GP, Parr M, Johnston J, Baradet T, Wilson JM et al. Sequestration of adenoviral vector by Kupffer cells leads to a nonlinear dose response of transduction in liver. Mol Ther 2001; 3: 28–35.

    CAS  PubMed  Google Scholar 

  35. Connelly S . Adenoviral vectors for liver-directed gene therapy. Curr Opin Mol Ther 1999; 1: 565–572.

    CAS  PubMed  Google Scholar 

  36. Lieber A, He CY, Meuse L, Schowalter D, Kirillova I, Winther B et al. The role of Kupffer cell activation and viral gene expression in early liver toxicity after infusion of recombinant adenovirus vectors. J Virol 1997; 71: 8798–8807.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Peeters MJ, Patijn GA, Lieber A, Meuse L, Kay MA . Adenovirus-mediated hepatic gene transfer in mice: comparison of intravascular and biliary administration. Hum Gene Ther 1996; 7: 1693–1699.

    CAS  PubMed  Google Scholar 

  38. Alemany R, Suzuki K, Curiel DT . Blood clearance rates of adenovirus type 5 in mice. J Gen Virol 2000; 81 (Part 11): 2605–2609.

    CAS  PubMed  Google Scholar 

  39. Worgall S, Wolff G, Falck-Pedersen E, Crystal RG . Innate immune mechanisms dominate elimination of adenoviral vectors following in vivo administration. Hum Gene Ther 1997; 8: 37–44.

    CAS  PubMed  Google Scholar 

  40. Alemany R, Curiel DT . CAR-binding ablation does not change biodistribution and toxicity of adenoviral vectors. Gene Therapy 2001; 8: 1347–1353.

    CAS  PubMed  Google Scholar 

  41. Smith TA, Idamakanti N, Marshall-Neff J, Rollence ML, Wright P, Kaloss M et al. Receptor interactions involved in adenoviral-mediated gene delivery after systemic administration in non-human primates. Hum Gene Ther 2003; 14: 1595–1604.

    CAS  PubMed  Google Scholar 

  42. Smith T, Idamakanti N, Kylefjord H, Rollence M, King L, Kaloss M et al. In vivo hepatic adenoviral gene delivery occurs independently of the coxsackievirus-adenovirus receptor. Mol Ther 2002; 5: 770–779.

    CAS  PubMed  Google Scholar 

  43. Martin K, Brie A, Saulnier P, Perricaudet M, Yeh P, Vigne E . Simultaneous CAR- and alpha V integrin-binding ablation fails to reduce Ad5 liver tropism. Mol Ther 2003; 8: 485–494.

    CAS  PubMed  Google Scholar 

  44. Mizuguchi H, Koizumi N, Hosono T, Ishii-Watabe A, Uchida E, Utoguchi N et al. CAR- or alphav integrin-binding ablated adenovirus vectors, but not fiber-modified vectors containing RGD peptide, do not change the systemic gene transfer properties in mice. Gene Therapy 2002; 9: 769–776.

    CAS  PubMed  Google Scholar 

  45. Nicklin SA, Wu E, Nemerow GR, Baker AH . The influence of adenovirus fiber structure and function on vector development for gene therapy. Mol Ther 2005; 12: 384–393.

    CAS  PubMed  Google Scholar 

  46. Vigne E, Dedieu JF, Brie A, Gillardeaux A, Briot D, Benihoud K et al. Genetic manipulations of adenovirus type 5 fiber resulting in liver tropism attenuation. Gene Therapy 2003; 10: 153–162.

    CAS  PubMed  Google Scholar 

  47. Breidenbach M, Rein DT, Wang M, Nettelbeck DM, Hemminki A, Ulasov I et al. Genetic replacement of the adenovirus shaft fiber reduces liver tropism in ovarian cancer gene therapy. Hum Gene Ther 2004; 15: 509–518.

    CAS  PubMed  Google Scholar 

  48. Smith TA, Idamakanti N, Rollence ML, Marshall-Neff J, Kim J, Mulgrew K et al. Adenovirus serotype 5 fiber shaft influences in vivo gene transfer in mice. Hum Gene Ther 2003; 14: 777–787.

    CAS  PubMed  Google Scholar 

  49. Shayakhmetov DM, Li ZY, Ni S, Lieber A . Analysis of adenovirus sequestration in the liver, transduction of hepatic cells, and innate toxicity after injection of fiber-modified vectors. J Virol 2004; 78: 5368–5381.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Douglas JT, Rogers BE, Rosenfeld ME, Michael SI, Feng M, Curiel DT . Targeted gene delivery by tropism-modified adenoviral vectors. Nat Biotechnol 1996; 14: 1574–1578.

    CAS  PubMed  Google Scholar 

  51. Goldman CK, Rogers BE, Douglas JT, Sosnowski BA, Ying W, Siegal GP et al. Targeted gene delivery to Kaposi's sarcoma cells via the fibroblast growth factor receptor. Cancer Res 1997; 57: 1447–1451.

    CAS  PubMed  Google Scholar 

  52. Gu DL, Gonzalez AM, Printz MA, Doukas J, Ying W, D'Andrea M et al. Fibroblast growth factor 2 retargeted adenovirus has redirected cellular tropism: evidence for reduced toxicity and enhanced antitumor activity in mice. Cancer Res 1999; 59: 2608–2614.

    CAS  PubMed  Google Scholar 

  53. Haisma HJ, Pinedo HM, Rijswijk A, der Meulen-Muileman I, Sosnowski BA, Ying W et al. Tumor-specific gene transfer via an adenoviral vector targeted to the pan-carcinoma antigen EpCAM. Gene Therapy 1999; 6: 1469–1474.

    CAS  PubMed  Google Scholar 

  54. Heideman DA, Snijders PJ, Craanen ME, Bloemena E, Meijer CJ, Meuwissen SG et al. Selective gene delivery toward gastric and esophageal adenocarcinoma cells via EpCAM-targeted adenoviral vectors. Cancer Gene Ther 2001; 8: 342–351.

    CAS  PubMed  Google Scholar 

  55. Kelly FJ, Miller CR, Buchsbaum DJ, Gomez-Navarro J, Barnes MN, Alvarez RD et al. Selectivity of TAG-72-targeted adenovirus gene transfer to primary ovarian carcinoma cells versus autologous mesothelial cells in vitro. Clin Cancer Res 2000; 6: 4323–4333.

    CAS  PubMed  Google Scholar 

  56. Reynolds PN, Zinn KR, Gavrilyuk VD, Balyasnikova IV, Rogers BE, Buchsbaum DJ et al. A targetable, injectable adenoviral vector for selective gene delivery to pulmonary endothelium in vivo. Mol Ther 2000; 2: 562–578.

    CAS  PubMed  Google Scholar 

  57. Tillman BW, de Gruijl TD, Luykx-de Bakker SA, Scheper RJ, Pinedo HM, Curiel TJ et al. Maturation of dendritic cells accompanies high-efficiency gene transfer by a CD40-targeted adenoviral vector. J Immunol 1999; 162: 6378–6383.

    CAS  PubMed  Google Scholar 

  58. Hakkarainen T, Hemminki A, Pereboev AV, Barker SD, Asiedu CK, Strong TV et al. CD40 is expressed on ovarian cancer cells and can be utilized for targeting adenoviruses. Clin Cancer Res 2003; 9: 619–624.

    CAS  PubMed  Google Scholar 

  59. Pereboev AV, Asiedu CK, Kawakami Y, Dong SS, Blackwell JL, Kashentseva EA et al. Coxsackievirus-adenovirus receptor genetically fused to anti-human CD40 scFv enhances adenoviral transduction of dendritic cells. Gene Therapy 2002; 9: 1189–1193.

    CAS  PubMed  Google Scholar 

  60. Dmitriev I, Kashentseva E, Rogers BE, Krasnykh V, Curiel DT . Ectodomain of coxsackievirus and adenovirus receptor genetically fused to epidermal growth factor mediates adenovirus targeting to epidermal growth factor receptor-positive cells. J Virol 2000; 74: 6875–6884.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Kashentseva EA, Seki T, Curiel DT, Dmitriev IP . Adenovirus targeting to c-erbB-2 oncoprotein by single-chain antibody fused to trimeric form of adenovirus receptor ectodomain. Cancer Res 2002; 62: 609–616.

    CAS  PubMed  Google Scholar 

  62. Itoh A, Okada T, Mizuguchi H, Hayakawa T, Mizukami H, Kume A et al. A soluble CAR–SCF fusion protein improves adenoviral vector-mediated gene transfer to c-Kit-positive hematopoietic cells. J Gene Med 2003; 5: 929–940.

    CAS  PubMed  Google Scholar 

  63. Kim J, Smith T, Idamakanti N, Mulgrew K, Kaloss M, Kylefjord H et al. Targeting adenoviral vectors by using the extracellular domain of the coxsackie-adenovirus receptor: improved potency via trimerization. J Virol 2002; 76: 1892–1903.

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Krasnykh VN, Mikheeva GV, Douglas JT, Curiel DT . Generation of recombinant adenovirus vectors with modified fibers for altering viral tropism. J Virol 1996; 70: 6839–6846.

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Havenga MJ, Lemckert AA, Ophorst OJ, van Meijer M, Germeraad WT, Grimbergen J et al. Exploiting the natural diversity in adenovirus tropism for therapy and prevention of disease. J Virol 2002; 76: 4612–4620.

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Gaggar A, Shayakhmetov DM, Lieber A . CD46 is a cellular receptor for group B adenoviruses. Nat Med 2003; 9: 1408–1412.

    CAS  PubMed  Google Scholar 

  67. Segerman A, Arnberg N, Erikson A, Lindman K, Wadell G . There are two different species B adenovirus receptors: sBAR, common to species B1 and B2 adenoviruses, and sB2AR, exclusively used by species B2 adenoviruses. J Virol 2003; 77: 1157–1162.

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Segerman A, Atkinson JP, Marttila M, Dennerquist V, Wadell G, Arnberg N . Adenovirus type 11 uses CD46 as a cellular receptor. J Virol 2003; 77: 9183–9191.

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Sirena D, Lilienfeld B, Eisenhut M, Kalin S, Boucke K, Beerli RR et al. The human membrane cofactor CD46 is a receptor for species B adenovirus serotype 3. J Virol 2004; 78: 4454–4462.

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Short JJ, Pereboev AV, Kawakami Y, Vasu C, Holterman MJ, Curiel DT . Adenovirus serotype 3 utilizes CD80 (B7.1) and CD86 (B7.2) as cellular attachment receptors. Virology 2004; 322: 349–359.

    CAS  PubMed  Google Scholar 

  71. Arnberg N, Edlund K, Kidd AH, Wadell G . Adenovirus type 37 uses sialic acid as a cellular receptor. J Virol 2000; 74: 42–48.

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Arnberg N, Kidd AH, Edlund K, Nilsson J, Pring-Akerblom P, Wadell G . Adenovirus type 37 binds to cell surface sialic acid through a charge-dependent interaction. Virology 2002; 302: 33–43.

    CAS  PubMed  Google Scholar 

  73. Wu E, Trauger SA, Pache L, Mullen TM, von Seggern DJ, Siuzdak G et al. Membrane cofactor protein is a receptor for adenoviruses associated with epidemic keratoconjunctivitis. J Virol 2004; 78: 3897–3905.

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Kanerva A, Zinn KR, Chaudhuri TR, Suzuki K, Uil T, Hakkarainen T et al. Enhanced therapeutic efficacy for ovarian cancer with a serotype 3 receptor targeted oncolytic virus. Mol Ther 2003; 8: 449–458.

    CAS  PubMed  Google Scholar 

  75. Kanerva A, Wang M, Bauerschmitz GJ, Lam JT, Desmond RA, Bhoola SM et al. Gene transfer to ovarian cancer versus normal tissues with fiber-modified adenoviruses. Mol Ther 2002b; 5: 695–704.

    CAS  PubMed  Google Scholar 

  76. Kanerva A, Mikheeva GV, Krasnykh V, Coolidge CJ, Lam JT, Mahasreshti PJ et al. Targeting adenovirus to the serotype 3 receptor increases gene transfer efficiency to ovarian cancer cells. Clin Cancer Res 2002; 8: 275–280.

    CAS  PubMed  Google Scholar 

  77. Zabner J, Chillon M, Grunst T, Moninger TO, Davidson BL, Gregory R et al. A chimeric type 2 adenovirus vector with a type 17 fiber enhances gene transfer to human airway epithelia. J Virol 1999; 73: 8689–8695.

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Rea D, Havenga MJ, van Den Assem M, Sutmuller RP, Lemckert A, Hoeben RC et al. Highly efficient transduction of human monocyte-derived dendritic cells with subgroup B fiber-modified adenovirus vectors enhances transgene-encoded antigen presentation to cytotoxic T cells. J Immunol 2001; 166: 5236–5244.

    CAS  PubMed  Google Scholar 

  79. Von Seggern DJ, Huang S, Fleck SK, Stevenson SC, Nemerow GR . Adenovirus vector pseudotyping in fiber-expressing cell lines: improved transduction of Epstein–Barr virus-transformed B cells. J Virol 2000; 74: 354–362.

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Shayakhmetov DM, Papayannopoulou T, Stamatoyannopoulos G, Lieber A . Efficient gene transfer into human CD34(+) cells by a retargeted adenovirus vector. J Virol 2000; 74: 2567–2583.

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Goossens PH, Havenga MJ, Pieterman E, Lemckert AA, Breedveld FC, Bout A et al. Infection efficiency of type 5 adenoviral vectors in synovial tissue can be enhanced with a type 16 fiber. Arthritis Rheum 2001; 44: 570–577.

    CAS  PubMed  Google Scholar 

  82. Havenga MJ, Lemckert AA, Grimbergen JM, Vogels R, Huisman LG, Valerio D et al. Improved adenovirus vectors for infection of cardiovascular tissues. J Virol 2001; 75: 3335–3342.

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Gall J, Kass-Eisler A, Leinwand L, Falck-Pedersen E . Adenovirus type 5 and 7 capsid chimera: fiber replacement alters receptor tropism without affecting primary immune neutralization epitopes. J Virol 1996; 70: 2116–2123.

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Chillon M, Bosch A, Zabner J, Law L, Armentano D, Welsh MJ et al. Group D adenoviruses infect primary central nervous system cells more efficiently than those from group C. J Virol 1999; 73: 2537–2540.

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Stoff-Khalili MA, Rivera AA, Glasgow JN, Le LP, Stoff A, Everts M et al. A human adenoviral vector with a chimeric fiber from canine adenovirus type 1 results in novel expanded tropism for cancer gene therapy. Gene Therapy 2005; 12: 1696–1706.

    CAS  PubMed  Google Scholar 

  86. Glasgow JN, Kremer EJ, Hemminki A, Siegal GP, Douglas JT, Curiel DT . An adenovirus vector with a chimeric fiber derived from canine adenovirus type 2 displays novel tropism. Virology 2004; 324: 103–116.

    CAS  PubMed  Google Scholar 

  87. Tsuruta Y, Pereboeva L, Glasgow JN, Luongo CL, Komarova S, Kawakami Y et al. Reovirus sigma1 fiber incorporated into adenovirus serotype 5 enhances infectivity via a CAR-independent pathway. Biochem Biophys Res Commun 2005; 335: 205–214.

    CAS  PubMed  Google Scholar 

  88. Mercier GT, Campbell JA, Chappell JD, Stehle T, Dermody TS, Barry MA . A chimeric adenovirus vector encoding reovirus attachment protein sigma1 targets cells expressing junctional adhesion molecule 1. Proc Natl Acad Sci USA 2004; 101: 6188–6193.

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Wickham TJ, Tzeng E, Shears LL, Roelvink II PW, Li Y, Lee GM et al. Increased in vitro and in vivo gene transfer by adenovirus vectors containing chimeric fiber proteins. J Virol 1997; 71: 8221–8229.

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Krasnykh V, Dmitriev I, Mikheeva G, Miller CR, Belousova N, Curiel DT . Characterization of an adenovirus vector containing a heterologous peptide epitope in the HI loop of the fiber knob. J Virol 1998; 72: 1844–1852.

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Belousova N, Krendelchtchikova V, Curiel DT, Krasnykh V . Modulation of adenovirus vector tropism via incorporation of polypeptide ligands into the fiber protein. J Virol 2002; 76: 8621–8631.

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Hemminki A, Wang M, Desmond RA, Strong TV, Alvarez RD, Curiel DT . Serum and ascites neutralizing antibodies in ovarian cancer patients treated with intraperitoneal adenoviral gene therapy. Hum Gene Ther 2002; 13: 1505–1514.

    CAS  PubMed  Google Scholar 

  93. Hemminki A, Belousova N, Zinn KR, Liu B, Wang M, Chaudhuri TR et al. An adenovirus with enhanced infectivity mediates molecular chemotherapy of ovarian cancer cells and allows imaging of gene expression. Mol Ther 2001; 4: 223–231.

    CAS  PubMed  Google Scholar 

  94. Bauerschmitz GJ, Barker SD, Hemminki A . Adenoviral gene therapy for cancer: from vectors to targeted and replication competent agents (review). Int J Oncol 2002; 21: 1161–1174.

    CAS  PubMed  Google Scholar 

  95. Wu H, Seki T, Dmitriev I, Uil T, Kashentseva E, Han T et al. Double modification of adenovirus fiber with RGD and polylysine motifs improves coxsackievirus-adenovirus receptor-independent gene transfer efficiency. Hum Gene Ther 2002; 13: 1647–1653.

    CAS  PubMed  Google Scholar 

  96. Contreras JL, Wu H, Smyth CA, Eckstein CP, Young CJ, Seki T et al. Double genetic modification of adenovirus fiber with RGD polylysine motifs significantly enhances gene transfer to isolated human pancreatic islets. Transplantation 2003; 76: 252–261.

    CAS  PubMed  Google Scholar 

  97. Wu H, Han T, Lam JT, Leath CA, Dmitriev I, Kashentseva E et al. Preclinical evaluation of a class of infectivity-enhanced adenoviral vectors in ovarian cancer gene therapy. Gene Therapy 2004; 11: 874–878.

    PubMed  Google Scholar 

  98. Rein DT, Breidenbach M, Wu H, Han T, Haviv YS, Wang M et al. Gene transfer to cervical cancer with fiber-modified adenoviruses. Int J Cancer 2004; 111: 698–704.

    CAS  PubMed  Google Scholar 

  99. Nicklin SA, White SJ, Watkins SJ, Hawkins RE, Baker AH . Selective targeting of gene transfer to vascular endothelial cells by use of peptides isolated by phage display. Circulation 2000; 102: 231–237.

    CAS  PubMed  Google Scholar 

  100. Nicklin SA, Dishart KL, Buening H, Reynolds PN, Hallek M, Nemerow GR et al. Transductional and transcriptional targeting of cancer cells using genetically engineered viral vectors. Cancer Lett 2003; 201: 165–173.

    CAS  PubMed  Google Scholar 

  101. Korokhov N, Mikheeva G, Krendelshchikov A, Belousova N, Simonenko V, Krendelshchikova V et al. Targeting of adenovirus via genetic modification of the viral capsid combined with a protein bridge. J Virol 2003; 77: 12931–12940.

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Volpers C, Thirion C, Biermann V, Hussmann S, Kewes H, Dunant P et al. Antibody-mediated targeting of an adenovirus vector modified to contain a synthetic immunoglobulin g-binding domain in the capsid. J Virol 2003; 77: 2093–2104.

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Henning P, Andersson KM, Frykholm K, Ali A, Magnusson MK, Nygren PA et al. Tumor cell targeted gene delivery by adenovirus 5 vectors carrying knobless fibers with antibody-binding domains. Gene Therapy 2005; 12: 211–224.

    CAS  PubMed  Google Scholar 

  104. Korokhov N, de Gruijl TD, Aldrich WA, Triozzi PL, Banerjee PT, Gillies SD et al. High efficiency transduction of dendritic cells by adenoviral vectors targeted to DC-SIGN. Cancer Biol Ther 2005; 4: 289–294.

    CAS  PubMed  Google Scholar 

  105. Breidenbach M, Rein DT, Everts M, Glasgow JN, Wang M, Passineau MJ et al. Mesothelin-mediated targeting of adenoviral vectors for ovarian cancer gene therapy. Gene Therapy 2005; 12: 187–193.

    CAS  PubMed  Google Scholar 

  106. Balyasnikova IV, Metzger R, Visintine DJ, Dimasius V, Sun ZL, Berestetskaya YV et al. Selective rat lung endothelial targeting with a new set of monoclonal antibodies to angiotensin I-converting enzyme. Pulm Pharmacol Ther 2005; 18: 251–267.

    CAS  PubMed  Google Scholar 

  107. Von Seggern DJ, Chiu CY, Fleck SK, Stewart PL, Nemerow GR . A helper-independent adenovirus vector with E1, E3, and fiber deleted: structure and infectivity of fiberless particles. J Virol 1999; 73: 1601–1608.

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Falgout B, Ketner G . Characterization of adenovirus particles made by deletion mutants lacking the fiber gene. J Virol 1988; 62: 622–625.

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Papanikolopoulou K, Forge V, Goeltz P, Mitraki A . Formation of highly stable chimeric trimers by fusion of an adenovirus fiber shaft fragment with the foldon domain of bacteriophage T4 fibritin. J Biol Chem 2004; 279: 8991–8998.

    CAS  PubMed  Google Scholar 

  110. Krasnykh V, Belousova N, Korokhov N, Mikheeva G, Curiel DT . Genetic targeting of an adenovirus vector via replacement of the fiber protein with the phage T4 fibritin. J Virol 2001; 75: 4176–4183.

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Magnusson MK, Hong SS, Boulanger P, Lindholm L . Genetic retargeting of adenovirus: novel strategy employing ‘deknobbing’ of the fiber. J Virol 2001; 75: 7280–7289.

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Gaden F, Franqueville L, Magnusson MK, Hong SS, Merten MD, Lindholm L et al. Gene transduction and cell entry pathway of fiber-modified adenovirus type 5 vectors carrying novel endocytic peptide ligands selected on human tracheal glandular cells. J Virol 2004; 78: 7227–7247.

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Belousova N, Korokhov N, Krendelshchikova V, Simonenko V, Mikheeva G, Triozzi PL et al. Genetically targeted adenovirus vector directed to CD40-expressing cells. J Virol 2003; 77: 11367–11377.

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Izumi M, Kawakami Y, Glasgow JN, Belousova N, Everts M, Kim-Park S et al. In vivo analysis of a genetically modified adenoviral vector targeted to human CD40 using a novel transient transgenic model. J Gene Med 2005; 7: 1517–1525.

    CAS  PubMed  Google Scholar 

  115. Pereboeva L, Komarova S, Mahasreshti PJ, Curiel DT . Fiber-mosaic adenovirus as a novel approach to design genetically modified adenoviral vectors. Virus Res 2004; 105: 35–46.

    CAS  PubMed  Google Scholar 

  116. Takayama K, Reynolds PN, Short JJ, Kawakami Y, Adachi Y, Glasgow JN et al. A mosaic adenovirus possessing serotype Ad5 and serotype Ad3 knobs exhibits expanded tropism. Virology 2003; 309: 282–293.

    CAS  PubMed  Google Scholar 

  117. Magnusson MK, Hong SS, Henning P, Boulanger P, Lindholm L . Genetic retargeting of adenovirus vectors: functionality of targeting ligands and their influence on virus viability. J Gene Med 2002; 4: 356–370.

    CAS  PubMed  Google Scholar 

  118. Hedley SJ, Auf der Maur A, Hohn S, Escher D, Barberis A, Glasgow JN et al. An adenovirus vector with a chimeric fiber incorporating stabilized single chain antibody achieves targeted gene delivery. Gene Therapy 2006; 13: 88–94.

    CAS  PubMed  Google Scholar 

  119. Athappilly FK, Murali R, Rux JJ, Cai Z, Burnett RM . The refined crystal structure of hexon, the major coat protein of adenovirus type 2, at 2.9 A resolution. J Mol Biol 1994; 242: 430–455.

    CAS  PubMed  Google Scholar 

  120. Crawford-Miksza L, Schnurr DP . Analysis of 15 adenovirus hexon proteins reveals the location and structure of seven hypervariable regions containing serotype-specific residues. J Virol 1996; 70: 1836–1844.

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Vigne E, Mahfouz I, Dedieu JF, Brie A, Perricaudet M, Yeh P . RGD inclusion in the hexon monomer provides adenovirus type 5-based vectors with a fiber knob-independent pathway for infection. J Virol 1999; 73: 5156–5161.

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Parks RJ . Adenovirus protein IX: a new look at an old protein. Mol Ther 2005; 11: 19–25.

    CAS  PubMed  Google Scholar 

  123. Vellinga J, van den Wollenberg DJ, van der Heijdt S, Rabelink MJ, Hoeben RC . The coiled-coil domain of the adenovirus type 5 protein IX is dispensable for capsid incorporation and thermostability. J Virol 2005; 79: 3206–3210.

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Ghosh-Choudhury G, Haj-Ahmad Y, Graham FL . Protein IX, a minor component of the human adenovirus capsid, is essential for the packaging of full length genomes. EMBO J 1987; 6: 1733–1739.

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Colby WW, Shenk T . Adenovirus type 5 virions can be assembled in vivo in the absence of detectable polypeptide IX. J Virol 1981; 39: 977–980.

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Boulanger P, Lemay P, Blair GE, Russell WC . Characterization of adenovirus protein IX. J Gen Virol 1979; 44: 783–800.

    CAS  PubMed  Google Scholar 

  127. Akalu A, Liebermann H, Bauer U, Granzow H, Seidel W . The subgenus-specific C-terminal region of protein IX is located on the surface of the adenovirus capsid. J Virol 1999; 73: 6182–6187.

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Rosa-Calatrava M, Grave L, Puvion-Dutilleul F, Chatton B, Kedinger C . Functional analysis of adenovirus protein IX identifies domains involved in capsid stability, transcriptional activity, and nuclear reorganization. J Virol 2001; 75: 7131–7141.

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Dmitriev IP, Kashentseva EA, Curiel DT . Engineering of adenovirus vectors containing heterologous peptide sequences in the C terminus of capsid protein IX. J Virol 2002; 76: 6893–6899.

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Vellinga J, Rabelink MJ, Cramer SJ, van den Wollenberg DJ, Van der Meulen H, Leppard KN et al. Spacers increase the accessibility of peptide ligands linked to the carboxyl terminus of adenovirus minor capsid protein IX. J Virol 2004; 78: 3470–3479.

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Campos SK, Parrott MB, Barry MA . Avidin-based targeting and purification of a protein IX-modified, metabolically biotinylated adenoviral vector. Mol Ther 2004; 9: 942–954.

    CAS  PubMed  Google Scholar 

  132. Meulenbroek RA, Sargent KL, Lunde J, Jasmin BJ, Parks RJ . Use of adenovirus protein IX (pIX) to display large polypeptides on the virion-generation of fluorescent virus through the incorporation of pIX-GFP. Mol Ther 2004; 9: 617–624.

    CAS  PubMed  Google Scholar 

  133. Le LP, Everts M, Dmitriev IP, Davydova JG, Yamamoto M, Curiel DT . Fluorescently labeled adenovirus with pIX-EGFP for vector detection. Mol Imaging 2004; 3: 105–116.

    CAS  PubMed  Google Scholar 

  134. Le LP, Dmitriev I, Davydova J, Yamamoto M, Curiel D . Genetic labeling of adenovirus with red fluorescent proteins on PIX for vector detection. Mol Ther 2004; 9 (S1): S296.

    Google Scholar 

  135. Le LP, Dmitriev I, Davydova J, Yamamoto M, Curiel D . Genetic labeling of adenovirus with luciferase on pIX for vector detection. Mol Ther 2004; 9 (S1): 297–298.

    Google Scholar 

  136. Li J, Le LP, Sibley DA, Mathis JM, Curiel DT . Genetic incorporation of HSV-1 thymidine kinase into the adenovirus protein ix for functioal display on the virion. Virology 2005; 338: 247–258.

    CAS  PubMed  Google Scholar 

  137. Vellinga J, Van der Heijdt S, Hoeben RC . The adenovirus capsid: major progress in minor proteins. J Gen Virol 2005; 86 (Part 6): 1581–1588.

    CAS  PubMed  Google Scholar 

  138. Dmitriev I, Kashentseva EA, Seki T, Curiel DT . Utilization of minor capsid polypeptides IX and IIIa for adenovirus targeting. Mol Ther 2001; 3: S167.

    Google Scholar 

  139. Curiel D . Capsid-modified recombinant adenovirus vectors and methods of use. United States patent 6555368. 2003.

  140. Welsh JB, Sapinoso LM, Su AI, Kern SG, Wang-Rodriguez J, Moskaluk CA et al. Analysis of gene expression identifies candidate markers and pharmacological targets in prostate cancer. Cancer Res 2001; 61: 5974–5978.

    CAS  PubMed  Google Scholar 

  141. Welsh JB, Zarrinkar PP, Sapinoso LM, Kern SG, Behling CA, Monk BJ et al. Analysis of gene expression profiles in normal and neoplastic ovarian tissue samples identifies candidate molecular markers of epithelial ovarian cancer. Proc Natl Acad Sci USA 2001; 98: 1176–1181.

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Omenn GS . The human proteome organization plasma proteome project pilot phase: reference specimens, technology platform comparisons, and standardized data submissions and analyses. Proteomics 2004; 4: 1235–1240.

    CAS  PubMed  Google Scholar 

  143. Nishizuka S, Chen ST, Gwadry FG, Alexander J, Major SM, Scherf U et al. Diagnostic markers that distinguish colon and ovarian adenocarcinomas: identification by genomic, proteomic, and tissue array profiling. Cancer Res 2003; 63: 5243–5250.

    CAS  PubMed  Google Scholar 

  144. Sahin U, Tureci O, Schmitt H, Cochlovius B, Johannes T, Schmits R et al. Human neoplasms elicit multiple specific immune responses in the autologous host. Proc Natl Acad Sci USA 1995; 92: 11810–11813.

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Li G, Miles A, Line A, Rees RC . Identification of tumour antigens by serological analysis of cDNA expression cloning. Cancer Immunol Immunother 2004; 53: 139–143.

    CAS  PubMed  Google Scholar 

  146. Smith GP . Filamentous fusion phage: novel expression vectors that display cloned antigens on the virion surface. Science 1985; 228: 1315–1317.

    CAS  PubMed  Google Scholar 

  147. Peletskaya EN, Glinsky VV, Glinsky GV, Deutscher SL, Quinn TP . Characterization of peptides that bind the tumor-associated Thomsen–Friedenreich antigen selected from bacteriophage display libraries. J Mol Biol 1997; 270: 374–384.

    CAS  PubMed  Google Scholar 

  148. Peletskaya EN, Glinsky G, Deutscher SL, Quinn TP . Identification of peptide sequences that bind the Thomsen–Friedenreich cancer-associated glycoantigen from bacteriophage peptide display libraries. Mol Divers 1996; 2: 13–18.

    CAS  PubMed  Google Scholar 

  149. Koivunen E, Gay DA, Ruoslahti E . Selection of peptides binding to the alpha 5 beta 1 integrin from phage display library. J Biol Chem 1993; 268: 20205–20210.

    CAS  PubMed  Google Scholar 

  150. Schiffelers RM, Koning GA, ten Hagen TL, Fens MH, Schraa AJ, Janssen AP et al. Anti-tumor efficacy of tumor vasculature-targeted liposomal doxorubicin. J Control Release 2003; 91: 115–122.

    CAS  PubMed  Google Scholar 

  151. Shi W, Bartlett JS . RGD inclusion in VP3 provides adeno-associated virus type 2 (AAV2)-based vectors with a heparan sulfate-independent cell entry mechanism. Mol Ther 2003; 7: 515–525.

    CAS  PubMed  Google Scholar 

  152. Pereboev A, Pereboeva L, Curiel DT . Phage display of adenovirus type 5 fiber knob as a tool for specific ligand selection and validation. J Virol 2001; 75: 7107–7113.

    CAS  PubMed  PubMed Central  Google Scholar 

  153. Zhu ZB, Makhija SK, Lu B, Wang M, Rivera AA, Preuss M et al. Transport across a polarized monolayer of Caco-2 cells by transferrin receptor-mediated adenovirus transcytosis. Virology 2004; 325: 116–128.

    CAS  PubMed  Google Scholar 

  154. Moroo I, Ujiie M, Walker BL, Tiong JW, Vitalis TZ, Karkan D et al. Identification of a novel route of iron transcytosis across the mammalian blood–brain barrier. Microcirculation 2003; 10: 457–462.

    CAS  PubMed  Google Scholar 

  155. Mostov KE . Transepithelial transport of immunoglobulins. Annu Rev Immunol 1994; 12: 63–84.

    CAS  PubMed  Google Scholar 

  156. McIntosh DP, Tan XY, Oh P, Schnitzer JE . Targeting endothelium and its dynamic caveolae for tissue-specific transcytosis in vivo: a pathway to overcome cell barriers to drug and gene delivery. Proc Natl Acad Sci USA 2002; 99: 1996–2001.

    CAS  PubMed  PubMed Central  Google Scholar 

  157. van Dillen IJ, Mulder NH, Vaalburg W, de Vries EF, Hospers GA . Influence of the bystander effect on HSV-tk/GCV gene therapy. A review. Curr Gene Ther 2002; 2: 307–322.

    CAS  PubMed  Google Scholar 

  158. Jordan A, Scholz R, Wust P, Fahling H, Krause J, Wlodarczyk W et al. Effects of magnetic fluid hyperthermia (MFH) on C3H mammary carcinoma in vivo. Int J Hyperthermia 1997; 13: 587–605.

    CAS  PubMed  Google Scholar 

  159. Brigger I, Dubernet C, Couvreur P . Nanoparticles in cancer therapy and diagnosis. Adv Drug Deliv Rev 2002; 54: 631–651.

    CAS  PubMed  Google Scholar 

  160. Ito A, Kuga Y, Honda H, Kikkawa H, Horiuchi A, Watanabe Y et al. Magnetite nanoparticle-loaded anti-HER2 immunoliposomes for combination of antibody therapy with hyperthermia. Cancer Lett 2004; 212: 167–175.

    CAS  PubMed  Google Scholar 

  161. Hergt R, Andra W, d’Ambly CG, Hilger I, Kaiser WA, Richter U et al. Physical limits of hyperthermia using magnetite fine particles. IEEE Trans Mag 1998; 34: 3745–3754.

    CAS  Google Scholar 

  162. Hilger I, Hergt R, Kaiser WA . Towards breast cancer treatment by magnetic heating. J Magn Magn Mater 2005; 293: 314–319.

    CAS  Google Scholar 

  163. Neuberger T, Schöpf B, Hofmann HMH, von Rechenberg B . Superparamagnetic nanoparticles for biomedical applications: possibilities and limitations of a new drug delivery system. J Magn Magn E 2005; 293: 483–496.

    CAS  Google Scholar 

  164. Xu H, Song T, Bao X, Hu L . Site research of magnetic nanoparticles in magnetic drug targeting. J Magn Magn E 2005; 293: 514–519.

    CAS  Google Scholar 

  165. Alexiou C, Jurgons R, Schmid R, Hilpert A, Bergemann C, Parak F et al. In vitro and in vivo investigations of targeted chemotherapy with magnetic nanoparticles. J Magn Magn Mater 2005; 293: 389–393.

    CAS  Google Scholar 

  166. Pankhurst QA, Connolly J, Jones SK, Dobson J . Applications of magnetic nanoparticles in biomedicine. J Phys D Appl Phys 2003; 36: R167–R181.

    CAS  Google Scholar 

  167. Choi H, Choi SR, Zhou R, Kung HF, Chen IW . Iron oxide nanoparticles as magnetic resonance contrast agent for tumor imaging via folate receptor-targeted delivery. Acad Radiol 2004; 11: 996–1004.

    PubMed  Google Scholar 

  168. Yang Y, Nunes FA, Berencsi K, Furth EE, Gonczol E, Wilson JM . Cellular immunity to viral antigens limits E1-deleted adenoviruses for gene therapy. Proc Natl Acad Sci USA 1994; 91: 4407–4411.

    CAS  PubMed  PubMed Central  Google Scholar 

  169. Yang Y, Li Q, Ertl HC, Wilson JM . Cellular and humoral immune responses to viral antigens create barriers to lung-directed gene therapy with recombinant adenoviruses. J Virol 1995; 69: 2004–2015.

    CAS  PubMed  PubMed Central  Google Scholar 

  170. Morral N, Parks RJ, Zhou H, Langston C, Schiedner G, Quinones J et al. High doses of a helper-dependent adenoviral vector yield supraphysiological levels of alpha1-antitrypsin with negligible toxicity. Hum Gene Ther 1998; 9: 2709–2716.

    CAS  PubMed  Google Scholar 

  171. Morsy MA, Gu M, Motzel S, Zhao J, Lin J, Su Q et al. An adenoviral vector deleted for all viral coding sequences results in enhanced safety and extended expression of a leptin transgene. Proc Natl Acad Sci USA 1998; 95: 7866–7871.

    CAS  PubMed  PubMed Central  Google Scholar 

  172. Thomas CE, Schiedner G, Kochanek S, Castro MG, Lowenstein PR . Peripheral infection with adenovirus causes unexpected long-term brain inflammation in animals injected intracranially with first-generation, but not with high-capacity, adenovirus vectors: toward realistic long-term neurological gene therapy for chronic diseases. Proc Natl Acad Sci USA 2000; 97: 7482–7487.

    CAS  PubMed  PubMed Central  Google Scholar 

  173. Schiedner G, Morral N, Parks RJ, Wu Y, Koopmans SC, Langston C et al. Genomic DNA transfer with a high-capacity adenovirus vector results in improved in vivo gene expression and decreased toxicity. Nat Genet 1998; 18: 180–183.

    CAS  PubMed  Google Scholar 

  174. Parks RJ, Graham FL . A helper-dependent system for adenovirus vector production helps define a lower limit for efficient DNA packaging. J Virol 1997; 71: 3293–3298.

    CAS  PubMed  PubMed Central  Google Scholar 

  175. Hardy S, Kitamura M, Harris-Stansil T, Dai Y, Phipps ML . Construction of adenovirus vectors through Cre-lox recombination. J Virol 1997; 71: 1842–1849.

    CAS  PubMed  PubMed Central  Google Scholar 

  176. Umana P, Gerdes CA, Stone D, Davis JR, Ward D, Castro MG et al. Efficient FLPe recombinase enables scalable production of helper-dependent adenoviral vectors with negligible helper-virus contamination. Nat Biotechnol 2001; 19: 582–585.

    CAS  PubMed  Google Scholar 

  177. Biermann V, Volpers C, Hussmann S, Stock A, Kewes H, Schiedner G et al. Targeting of high-capacity adenoviral vectors. Hum Gene Ther 2001; 12: 1757–1769.

    CAS  PubMed  Google Scholar 

  178. Stilwell JL, McCarty DM, Negishi A, Superfine R, Samulski RJ . Development and characterization of novel empty adenovirus capsids and their impact on cellular gene expression. J Virol 2003; 77: 12881–12885.

    CAS  PubMed  PubMed Central  Google Scholar 

  179. Stilwell JL, Samulski RJ . Role of viral vectors and virion shells in cellular gene expression. Mol Ther 2004; 9: 337–346.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the National Institutes of Health: R01 CA083821, R01 CA094084 and R01 CA111569-01A1, and grant W81XWH-05-1-0035 from the US Department of Defense. We wish to thank Dr Long P Le for assistance with graphic images.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D T Curiel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Glasgow, J., Everts, M. & Curiel, D. Transductional targeting of adenovirus vectors for gene therapy. Cancer Gene Ther 13, 830–844 (2006). https://doi.org/10.1038/sj.cgt.7700928

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.cgt.7700928

Keywords

This article is cited by

Search

Quick links