Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Imaging progress of herpes simplex virus type 1 thymidine kinase suicide gene therapy in living subjects with positron emission tomography

Abstract

Molecular imaging of a suicide transgene's expression will aid the development of efficient and precise targeting strategies, and imaging for cancer cell viability may assess therapeutic efficacy. We used the PET reporter probe, 9-(4-[18F]fluoro-3-(hydroxymethyl)butyl)guanine ([18F]FHBG) to monitor the expression of a mutant Herpes Simplex Virus 1 thymidine kinase (HSV1-sr39tk) in C6 glioma tumors implanted subcutaneously in nude mice that were repetitively being treated with the pro-drug Ganciclovir (GCV). [18F]-Fluorodeoxyglucose ([18F]FDG), a metabolic tracer, was used to assess tumor cell viability and therapeutic efficacy. C6 glioma tumors stably expressing the HSV1-sr39tk gene (C6sr39) accumulated [18F]FHBG prior to GCV treatment. Significant declines in C6sr39 tumor volumes and [18F]FHBG and [18F]FDG accumulation were observed following 2 weeks of GCV treatment. However, 3 weeks after halting GCV treatment, the tumors re-grew and [18F]FDG accumulation increased significantly; in contrast, tumor [18F]FHBG concentrations remained at background levels. Therefore, [18F]FHBG can be used to detect tumors expressing HSV1-sr39tk, susceptible to regression in response to GCV exposure, and the effectiveness of GCV therapy in eradicating HSV1-sr39tk-expressing cells can be monitored by [18F]FHBG scanning. [18F]FHBG and [18F]FDG imaging data indicate that exposure of C6sr39 tumors to GCV causes the elimination of [18F]FHBG-accumulating C6sr39 cells and selects for re-growth of tumors unable to accumulate [18F]FHBG.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Hoekstra CJ, Paglianiti I, Hoekstra OS, et al. Monitoring response to therapy in cancer using [18F]-2-fluoro-2-deoxy-D-glucose and positron emission tomography: an overview of different analytical methods. Eur J Nucl Med. 2000;27:731–743.

    Article  CAS  PubMed  Google Scholar 

  2. Smith TAD . FDG uptake, tumour characteristics and response to therapy: a review. Nucl Med Commun. 1998;19:97–105.

    Article  CAS  PubMed  Google Scholar 

  3. Kitagawa Y, Sadato N, Azuma H, et al. FDG PET to evaluate combined intra-arterial chemotherapy and radiotherapy of head and neck neoplasms. J Nucl Med. 1999;40:1132–1137.

    CAS  PubMed  Google Scholar 

  4. Namba H, Iwadate Y, Iyo M, et al. Glucose and methionine uptake by rat brain tumor treated with pro-drug activated gene therapy. Nucl Med Biol. 1998;25:247–250.

    Article  CAS  PubMed  Google Scholar 

  5. Haberkorn U, Altmann A, Morr I, Germann C, Oberdorfer F, Van Kaick G . Multitracer studies during gene therapy of hepatoma cells with Herpes Simplex Virus Thymidine kinase and Ganciclovir. J Nucl Med. 1997;38:1048–1054.

    CAS  PubMed  Google Scholar 

  6. Dekker B, Keen H, Zweit J, et al. Detection of cell death using 124I-Annexin V (Abstract #256). J Nucl Med. 2002;43:71.

    Google Scholar 

  7. Sugawara Y, Zasadny KR, Grossman HB, Francis IR, Clarke MF, Wahl RL . Germ cell tumor: differentiation of viable tumor, mature teratoma, and necrotic tissue with FDG PET and kinetic modeling. Radiology. 1999;211:249–256.

    Article  CAS  PubMed  Google Scholar 

  8. Krohn KA, Mankoff DA, Eary JF . Imaging cellular proliferation as a measure of response to therapy. J Clin Pharmacol. 2001;41:96S–103S.

    Article  CAS  PubMed  Google Scholar 

  9. Yazawa K, Fisher WE, Brunicardi FC . Current progress in suicide gene therapy for cancer. World J Surg. 2002;26:783–789.

    Article  PubMed  Google Scholar 

  10. Chatziioannou AF, Cherry SR, Shao Y, et al. Performance evaluation of microPET: a high resolution lutetium oxyorthosilicate PET scanner for animal imaging. J Nucl Med. 1999;40:1164–1175.

    CAS  PubMed  Google Scholar 

  11. Chatziioannou AF . PET scanners dedicated to molecular imaging of small animal models. Mol Imag Biol. 2002;4:47–63.

    Article  Google Scholar 

  12. Gambhir SS, Barrio JR, Herschman HR, Phelps ME . Assays for noninvasive imaging of reporter gene expression. Nucl Med Biol. 1999;26:481–490.

    Article  CAS  PubMed  Google Scholar 

  13. Herschman HR, MacLaren DC, Iyer M, et al. Seeing is believing: non-invasive, quantitative and repetitive imaging of reporter gene expression in living animals, using positron emission tomography. J Neurosci Res. 2000;59:699–705.

    Article  CAS  PubMed  Google Scholar 

  14. Gambhir SS, Barrio J, Wu L, et al. Imaging of adenoviral directed herpes simplex virus type 1 thymidine kinase gene expression in mice with ganciclovir. J Nucl Med. 1998;39:2003–2011.

    CAS  PubMed  Google Scholar 

  15. Gambhir SS, Barrio JR, Phelps ME, et al. Imaging adenoviral-directed reporter gene expression in living animals with positron emission tomography. Proc Natl Acad Sci. 1999;96:2333–2338.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Iyer M, Barrio JR, Namavari M, et al. 8-[18F]Fluoropenciclovir: an improved reporter probe for imaging HSV1-tk reporter gene expression in vivo using PET. J Nucl Med. 2001;42:96–105.

    CAS  PubMed  Google Scholar 

  17. Tjuvajev JG, Avril N, Oku T, et al. Imaging herpes virus thymidine kinase gene transfer and expression by positron emission tomography. Cancer Res. 1998;58:4333–4341.

    CAS  PubMed  Google Scholar 

  18. Gambhir SS, Herschman HR, Cherry SR, et al. Imaging transgene expression with radionuclide imaging technologies. Neoplasia. 2000;2:118–138.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. MacLaren DC, Gambhir SS, Satyamurthy N, et al. Repetitive, non-invasive imaging of the dopamine D2 receptor as a reporter gene in living animals. Gene Therapy. 1999;6:785–791.

    Article  CAS  PubMed  Google Scholar 

  20. Groot-Wassink T, Aboagye EO, Wang Y, Lemoine NR, Reader AJ, Vassaux G . Quantitative imaging of Na/I symporter transgene expression using positron emission tomography in the living animal. Mol Ther. 2004;9:436–442.

    Article  CAS  PubMed  Google Scholar 

  21. Yu Y, Annala AJ, Barrio JR, et al. Quantification of target gene expression by imaging reporter gene expression in living animals. Nat Med. 2000;6:933–937.

    Article  CAS  PubMed  Google Scholar 

  22. Yaghoubi SS, Wu L, Liang Q, et al. Direct correlation between positron emission tomographic images of two reporter genes delivered by two distinct adenoviral vectors. Gene Therapy. 2001;8:1072–1080.

    Article  CAS  PubMed  Google Scholar 

  23. Sun X, Annala AJ, Yaghoubi SS, et al. Quantitative imaging of gene induction in living animals. Gene Therapy. 2001;8:1572–1579.

    Article  CAS  PubMed  Google Scholar 

  24. Ray P, Bauer E, Iyer M, et al. Monitoring gene therapy with reporter gene imaging. Semin Nucl Med. 2001;31:312–320.

    Article  CAS  PubMed  Google Scholar 

  25. Liang Q, Gotts J, Satyamurthy N, et al. Noninvasive, repetitive, quantitative measurement of gene expression from a bicistronic message by positron emission tomography, following gene transfer with adenovirus. Mol Ther. 2002;6:73–82.

    Article  CAS  PubMed  Google Scholar 

  26. Black ME, Kokoris MS, Sabo P . Herpes simplex virus-1 thymidine kinase mutants created by semi-random sequence mutagenesis improve prodrug-mediated tumor cell killing. Cancer Res. 2001;61:3022–3026.

    CAS  PubMed  Google Scholar 

  27. Gambhir SS, Bauer E, Black ME, et al. A Mutant herpes simplex virus type 1 thymidine kinase reporter gene shows improved sensitivity for imaging reporter gene expression with positron emission tomography. Proc Natl Acad Sci. 2000;97:2785–2790.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Alauddin MM, Conti PS . Synthesis and preliminary evaluation of 9-(4-[18F]-fluoro-3-hydroxymethylbutyl)guanine ([18F]FHBG): a new potential imaging agent for viral infection and gene therapy using PET. Nucl Med Biol. 1998;25:175–180.

    Article  CAS  PubMed  Google Scholar 

  29. Yaghoubi SS, Barrio JR, Dahlbom M, et al. Human pharmacokinetic and dosimetry studies of [18F]FHBG: a reporter probe for imaging herpes simplex virus type-1 thymidine kinase reporter gene expression. J Nucl Med. 2001;42:1225–1234.

    CAS  PubMed  Google Scholar 

  30. Min J, Iyer M, Gambhir SS . Comparison of [18F]FHBG and [14C]FIAU for imaging of HSV1-tk reporter gene expression: adenoviral infection vs stable transfection. Eur J Nucl Med Mol Imag. 2003;30:1547–1560.

    Article  CAS  Google Scholar 

  31. Kokoris MS, Sabo P, Adman ET, Black ME . Enhancement of tumor ablation by a selected HSV-1 thymidine kinase mutant. Gene Therapy. 1999;6:1415–1426.

    Article  CAS  PubMed  Google Scholar 

  32. Hamacher K, Coenen H, Stocklin G . Efficient stereospecific synthesis of no-carrier-added 2[18F]-fluoro-2-deoxy-D-glucose using amino polyether supported nucleophilic substitution. J Nucl Med. 1986;27:235–238.

    CAS  PubMed  Google Scholar 

  33. Qi J, Leahy RM, Hsu C, Farquhar TH, Cherry SR . Fully 3D Bayesian image reconstruction for the ECAT EXACT HR+. IEEE Trans Nucl Sci. 1998;45:1096–1103.

    Article  Google Scholar 

  34. Chatziioannou A, Qi J, Moore A, Annala A, Nguyen K, Leahy R . Comparison of 3-D maximum a posteriori and filtered back projection algorithms for high-resolution animal imaging with microPET. IEEE Trans Med Imag. 2000;19:507–512.

    Article  CAS  Google Scholar 

  35. Gambhir S . Quantitation of the Physical Factors Affecting the Tracer Kinetic Modeling of Cardiac Positron Emission Tomography Data. Biomathematics. Los Angeles: University of California; 1990: 353.

    Google Scholar 

  36. Sambrook J, Russel DW . Preparation and analysis of eukaryotic genomic DNA. In: Sambrook J, Russel DW, eds. Molecular Cloning: A Laboratory Manual. 3rd edn., vol 1. New York: Cold Spring Harbor Laboratory Press; 2001: 6.1–6.64.

    Google Scholar 

  37. Haberkorn U, Bellemann ME, Gerlach L, et al. Uncoupling of 2-fluoro-2-deoxyglucose transport and phosphorylation in rat hepatoma during gene therapy with HSV thymidine kinase. Gene Therapy. 1998;5:880–887.

    Article  CAS  PubMed  Google Scholar 

  38. Freeman SM, Ramesh R, Marrogi AJ . Immune system in suicide-gene therapy. Lancet. 1997;349:2–3.

    Article  CAS  PubMed  Google Scholar 

  39. Floeth FW, Shand N, Bojar H, et al. Local inflammation and devascularization—in vivo mechanisms of the “bystander effect” in VPC-mediated HSV-TK/GCV gene therapy for human malignant glioma. Cancer Gene Ther. 2001;8:843–851.

    Article  CAS  PubMed  Google Scholar 

  40. Ishimori T, Saga T, Mamede M, et al. Increased 18F-FDG uptake in a model of inflammation: Concanavalin A-mediated lymphocyte activation. J Nucl Med. 2002;43:658–663.

    CAS  PubMed  Google Scholar 

  41. Barba D, Hardin J, Jasodhara R, Gage FH . Thymidine kinase-mediated killing of rat brain tumors. J Neurosurg. 1993;79:729–735.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Ron Sumida, David Stout, Waldemar Ladno, and Judy Edwards for assistance with MicroPET imaging and the UCLA cyclotron crew for outstanding support in the synthesis of imaging tracers. This work was partially supported by funding from NIH Grants P50 CA86306, RO1 CA82214-01, and SAIRP R24 CA92865 DOE contract DE-FC03-87ER60615. This work was partially supported by funding from NIH Grants P50 CA86306, RO1 CA82214-01, and SAIRP R24 CA92865 DOE contract DE-FC03-87ER60615.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanjiv S Gambhir.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yaghoubi, S., Barrio, J., Namavari, M. et al. Imaging progress of herpes simplex virus type 1 thymidine kinase suicide gene therapy in living subjects with positron emission tomography. Cancer Gene Ther 12, 329–339 (2005). https://doi.org/10.1038/sj.cgt.7700795

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.cgt.7700795

Keywords

This article is cited by

Search

Quick links