Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Programmed death ligand 1 promotes lymph node metastasis and glucose metabolism in cervical cancer by activating integrin β4/SNAI1/SIRT3 signaling pathway

Abstract

Although PD-L1 has been shown to play a well-characterized role in inhibiting antitumor immunity via engagement of its receptor PD-1 in T lymphocytes, little is known about the tumor cell-intrinsic function of PD-L1 and its association with prognosis. Here, we investigate this issue and dissect the molecular mechanisms underlying the role of PD-L1 in glucose metabolism, proliferation, migration, and invasion in human cervical cancer cells. As a result, we found that PD-L1 overexpression in cervical cancer cells increases glucose metabolism and metastasis-related behaviors. Mechanistically, PD-L1 bound directly to integrin β4 (ITGB4), activating the AKT/GSK3β signaling pathway and consequently inducing the expression of the transcriptional repressor SNAI1. SNAIL in turn influenced the expression of genes involved in the epithelial-to-mesenchymal transition and regulated glucose metabolism by inhibiting SIRT3 promoter activity. High expression of PD-L1 and ITGB4 in human cervical carcinomas was significantly associated with lymph node metastasis and poor prognosis. Finally, 18F-fluorodeoxyglucose microPET/CT and bioluminescence imaging analyses of cervical xenograft tumors in mice revealed that PD-L1 overexpression markedly increases tumor glucose uptake and promotes lymph node metastasis. Together, these results demonstrate that PD-L1 can promote the growth and metastasis of cervical cancer by activating the ITGB4/SNAI1/SIRT3 signaling pathway, and also suggest the possibility of targeting PD-L1 and its downstream effectors as a potential approach for interfering with cervical cancer growth and metastasis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Chen W, Zheng R, Baade PD, Zhang S, Zeng H, Bray F, et al. Cancer statistics in China, 2015. CA Cancer J Clin. 2016;66:115–32. https://doi.org/10.3322/caac.21338

    Article  PubMed  Google Scholar 

  2. Atahan IL, Onal C, Ozyar E, Yiliz F, Selek U, Kose F. Long-term outcome and prognostic factors in patients with cervical carcinoma: a retrospective study. Int J Gynecol Cancer. 2007;17:833–42. https://doi.org/10.1111/j.1525-1438.2007.00895.x

    Article  PubMed  CAS  Google Scholar 

  3. Nathanson SD, Shah R, Rosso K. Sentinel lymph node metastases in cancer: causes, detection and their role in disease progression. Semin Cell Dev Biol. 2015;38:106–16. https://doi.org/10.1016/j.semcdb.2014.10.002

    Article  PubMed  CAS  Google Scholar 

  4. Dong H, Zhu G, Tamada K, Chen L. B7-H1 a third member of the B7 family, co-stimulates T-cell proliferation and interleukin-10 secretion. Nat Med. 1999;5:1365–9. https://doi.org/10.1038/70932

    Article  PubMed  CAS  Google Scholar 

  5. Keir ME, Butte MJ, Freeman GJ, Sharpe AH. PD-1 and its ligands in tolerance and immunity. Annu Rev Immunol. 2008;26:677–704. https://doi.org/10.1146/annurev.immunol.26.021607.090331

    Article  PubMed  CAS  Google Scholar 

  6. Schreiner B, Bailey SL, Shin T, Chen L, Miller SD. PD-1 ligands expressed on myeloid-derived APC in the CNS regulate T-cell responses in EAE. Eur J Immunol. 2008;38:2706–17. https://doi.org/10.1002/eji.200838137

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Cai G, Karni A, Oliveira EM, Weiner HL, Hafler DA, Freeman GJ. PD-1 ligands, negative regulators for activation of naive, memory, and recently activated human CD4 + T cells. Cell Immunol. 2004;230:89–98. https://doi.org/10.1016/j.cellimm.2004.09.004

    Article  PubMed  CAS  Google Scholar 

  8. Dai S, Jia R, Zhang X, Fang Q, Huang L. The PD-1/PD-Ls pathway and autoimmune diseases. Cell Immunol. 2014;290:72–9. https://doi.org/10.1016/j.cellimm.2014.05.006

    Article  PubMed  CAS  Google Scholar 

  9. Sun Z, Fourcade J, Pagliano O, Chauvin JM, Sander C, Kirkwood JM, et al. IL10 and PD-1 cooperate to limit the activity of tumor-specific CD8 + T cells. Cancer Res. 2015;75:1635–44. https://doi.org/10.1158/0008-5472.CAN-14-3016

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Zou W, Wolchok JD, Chen L. PD-L1 (B7-H1) and PD-1 pathway blockade for cancer therapy: Mechanisms, response biomarkers, and combinations. Sci Transl Med. 2016;8:328rv4 https://doi.org/10.1126/scitranslmed.aad7118

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Bertsias GK, Nakou M, Choulaki C, Raptopoulou A, Papadimitraki E, Goulielmos G, et al. Genetic, immunologic, and immunohistochemical analysis of the programmed death 1/programmed death ligand 1 pathway in human systemic lupus erythematosus. Arthritis Rheum. 2009;60:207–18. https://doi.org/10.1002/art.24227

    Article  PubMed  CAS  Google Scholar 

  12. Zhang YH, Tian M, Tang MX, Liu ZZ, Liao AH. Recent insight into the role of the PD-1/PD-L1 pathway in feto-maternal tolerance and pregnancy. Am J Reprod Immunol. 2015;74:201–8. https://doi.org/10.1111/aji.12365

    Article  PubMed  CAS  Google Scholar 

  13. Chowdhury S, Veyhl J, Jessa F, Polyakova O, Alenzi A, MacMillan C, et al. Programmed death-ligand 1 overexpression is a prognostic marker for aggressive papillary thyroid cancer and its variants. Oncotarget. 2016;7:32318–28. https://doi.org/10.18632/oncotarget.8698

    Article  PubMed  PubMed Central  Google Scholar 

  14. Chen MF, Chen PT, Chen WC, Lu MS, Lin PY, Lee KD. The role of PD-L1 in the radiation response and prognosis for esophageal squamous cell carcinoma related to IL-6 and T-cell immunosuppression. Oncotarget. 2016;7:7913–24. https://doi.org/10.18632/oncotarget.6861

    Article  PubMed  PubMed Central  Google Scholar 

  15. Qin T, Zeng YD, Qin G, Xu F, Lu JB, Fang WF, et al. High PD-L1 expression was associated with poor prognosis in 870 Chinese patients with breast cancer. Oncotarget. 2015;6:33972–81. https://doi.org/10.18632/oncotarget.5583

    Article  PubMed  PubMed Central  Google Scholar 

  16. Gao Q, Wang XY, Qiu SJ, Yamato I, Sho M, Nakajima Y, et al. Overexpression of PD-L1 significantly associates with tumor aggressiveness and postoperative recurrence in human hepatocellular carcinoma. Clin Cancer Res. 2009;15:971–9. https://doi.org/10.1158/1078-0432.CCR-08-1608

    Article  PubMed  CAS  Google Scholar 

  17. Wu S, Shi X, Sun J, Liu Y, Luo Y, Liang Z, et al. The significance of programmed cell death ligand 1 expression in resected lung adenocarcinoma. Oncotarget. 2017;8:16421–9. https://doi.org/10.18632/oncotarget.14851

    Article  PubMed  PubMed Central  Google Scholar 

  18. Wu P, Wu D, Li L, Chai Y, Huang J. PD-L1 and survival in solid tumors: a meta-analysis. PLoS ONE. 2015;10:e0131403 https://doi.org/10.1371/journal.pone.0131403.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Casey SC, Tong L, Li Y, Do R, Walz S, Fitzgerald KN, et al. MYC regulates the antitumor immune response through CD47 and PD-L1. Science. 2016;352:227–31. https://doi.org/10.1126/science.aac9935

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Noman MZ, Desantis G, Janji B, Hasmim M, Karray S, Dessen P, et al. PD-L1 is a novel direct target of HIF-1alpha, and its blockade under hypoxia enhanced MDSC-mediated T cell activation. J Exp Med. 2014;211:781–90. https://doi.org/10.1084/jem.20131916

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Clark CA, Gupta HB, Sareddy G, Pandeswara S, Lao S, Yuan B, et al. Tumor-intrinsic PD-L1 signals regulate cell growth, pathogenesis, and autophagy in ovarian cancer and melanoma. Cancer Res. 2016;76:6964–74. https://doi.org/10.1158/0008-5472.can-16-0258

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Qorraj M, Bruns H, Bottcher M, Weigand L, Saul D, Mackensen A, et al. The PD-1/PD-L1 axis contributes to immune metabolic dysfunctions of monocytes in chronic lymphocytic leukemia. Leukemia. 2017;31:470–8. https://doi.org/10.1038/leu.2016.214

    Article  PubMed  CAS  Google Scholar 

  23. Hoshino A, Costa-Silva B, Shen TL, Rodrigues G, Hashimoto A, Tesic Mark M, et al. Tumour exosome integrins determine organotropic metastasis. Nature. 2015;527:329–35. https://doi.org/10.1038/nature15756

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Seguin L, Desgrosellier JS, Weis SM, Cheresh DA. Integrins and cancer: regulators of cancer stemness, metastasis, and drug resistance. Trends Cell Biol. 2015;25:234–40. https://doi.org/10.1016/j.tcb.2014.12.006

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Paul NR, Allen JL, Chapman A, Morlan-Mairal M, Zindy E, Jacquemet G, et al. Alpha5beta1 integrin recycling promotes Arp2/3-independent cancer cell invasion via the formin FHOD3. J Cell Biol. 2015;210:1013–31. https://doi.org/10.1083/jcb.201502040

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Chang CH, Qiu J, O’Sullivan D, Buck MD, Noguchi T, Curtis JD, et al. Metabolic competition in the tumor microenvironment is a driver of cancer progression. Cell. 2015;162:1229–41. https://doi.org/10.1016/j.cell.2015.08.016

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Ata R, Antonescu CN. Integrins and cell metabolism: an intimate relationship impacting cancer. Int J Mol Sci. 2017;18:P13. https://doi.org/10.3390/ijms18010189.

  28. Verdin E, Hirschey MD, Finley LW, Haigis MC. Sirtuin regulation of mitochondria: energy production, apoptosis, and signaling. Trends Biochem Sci. 2010;35:669–75. https://doi.org/10.1016/j.tibs.2010.07.003

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Leong SP, Tseng WW. Micrometastatic cancer cells in lymph nodes, bone marrow, and blood: clinical significance and biologic implications. CA Cancer J Clin. 2014;64:195–206. https://doi.org/10.3322/caac.21217

    Article  PubMed  Google Scholar 

  30. Heeren AM, de Boer E, Bleeker MC, Musters RJ, Buist MR, Kenter GG, et al. Nodal metastasis in cervical cancer occurs in clearly delineated fields of immune suppression in the pelvic lymph catchment area. Oncotarget. 2015;6:32484–93. https://doi.org/10.18632/oncotarget.5398

    Article  PubMed  PubMed Central  Google Scholar 

  31. Heeren AM, Koster BD, Samuels S, Ferns DM, Chondronasiou D, Kenter GG, et al. High and interrelated rates of PD-L1 + CD14 + antigen-presenting cells and regulatory T cells mark the microenvironment of metastatic lymph nodes from patients with cervical. Cancer Cancer Immunol Res. 2015;3:48–58. https://doi.org/10.1158/2326-6066.CIR-14-0149

    Article  PubMed  CAS  Google Scholar 

  32. Gao Q, Wang XY, Qiu SJ, Yamato I, Sho M, Nakajima Y, et al. Overexpression of PD-L1 significantly associates with tumor aggressiveness and postoperative recurrence in human hepatocellular carcinoma. Clin Cancer Res. 2009;15:971–9. https://doi.org/10.1158/1078-0432.CCR-08-1608

    Article  PubMed  CAS  Google Scholar 

  33. Cao Y, Zhang L, Kamimura Y, Ritprajak P, Hashiguchi M, Hirose S, et al. B7-H1 overexpression regulates epithelial-mesenchymal transition and accelerates carcinogenesis in skin. Cancer Res. 2011;71:1235–43. https://doi.org/10.1158/0008-5472.can-10-2217

    Article  PubMed  CAS  Google Scholar 

  34. Wang Y, Wang H, Zhao Q, Xia Y, Hu X, Guo J. PD-L1 induces epithelial-to-mesenchymal transition via activating SREBP-1c in renal cell carcinoma. Med Oncol. 2015;32:655 https://doi.org/10.1007/s12032-015-0655-2

    Article  CAS  Google Scholar 

  35. Guo W, Pylayeva Y, Pepe A, Yoshioka T, Muller WJ, Inghirami G, et al. Beta 4 integrin amplifies ErbB2 signaling to promote mammary tumorigenesis. Cell. 2006;126:489–502. https://doi.org/10.1016/j.cell.2006.05.047

    Article  PubMed  CAS  Google Scholar 

  36. Schumacker PT. SIRT3 controls cancer metabolic reprogramming by regulating ROS and HIF. Cancer Cell. 2011;19:299–300. https://doi.org/10.1016/j.ccr.2011.03.001

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Kim HS, Patel K, Muldoon-Jacobs K, Bisht KS, Aykin-Burns N, Pennington JD, et al. SIRT3 is a mitochondria-localized tumor suppressor required for maintenance of mitochondrial integrity and metabolism during stress. Cancer Cell. 2010;17:41–52. https://doi.org/10.1016/j.ccr.2009.11.023

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Finley LW, Carracedo A, Lee J, Souza A, Egia A, Zhang J, et al. SIRT3 opposes reprogramming of cancer cell metabolism through HIF1alpha destabilization. Cancer Cell. 2011;19:416–28. https://doi.org/10.1016/j.ccr.2011.02.014

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Udager AM, Liu TY, Skala SL, Magers MJ, McDaniel AS, Spratt DE, et al. Frequent PD-L1 expression in primary and metastatic penile squamous cell carcinoma: potential opportunities for immunotherapeutic approaches. Ann Oncol. 2016;27:1706–12. https://doi.org/10.1093/annonc/mdw216

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Enyu L, Na W, Chuanzong Z, Ben W, Xiaojuan W, Yan W, et al. The clinical significance and underlying correlation of pStat-3 and integrin alphavbeta6 expression in gallbladder cancer. Oncotarget. 2017;8:19467–77. https://doi.org/10.18632/oncotarget.14444

    Article  PubMed  PubMed Central  Google Scholar 

  41. Bouvier C, Macagno N, Nguyen Q, Loundou A, Jiguet-Jiglaire C, Gentet JC, et al. Prognostic value of the Hippo pathway transcriptional coactivators YAP/TAZ and beta1-integrin in conventional osteosarcoma. Oncotarget. 2016;7:64702–10. https://doi.org/10.18632/oncotarget.11876

    Article  PubMed  PubMed Central  Google Scholar 

  42. Liu F, Tong D, Li H, Liu M, Li J, Wang Z, et al. Bufalin enhances antitumor effect of paclitaxel on cervical tumorigenesis via inhibiting the integrin alpha2/beta5/FAK signaling pathway. Oncotarget. 2016;7:8896–907. https://doi.org/10.18632/oncotarget.6840

    Article  PubMed  PubMed Central  Google Scholar 

  43. Wang S, Xie J, Li J, Liu F, Wu X, Wang Z. Cisplatin suppresses the growth and proliferation of breast and cervical cancer cell lines by inhibiting integrin beta5-mediated glycolysis. Am J Cancer Res. 2016;6:1108–17.

    PubMed  PubMed Central  CAS  Google Scholar 

  44. Kang T, Zhu Q, Wei D, Feng J, Yao J, Jiang T, et al. Nanoparticles coated with neutrophil membranes can effectively treat cancer metastasis. ACS Nano. 2017;11:1397–411. https://doi.org/10.1021/acsnano.6b06477

    Article  PubMed  CAS  Google Scholar 

  45. Ji S, Qin Y, Liang C, Huang R, Shi S, Liu J, et al. FBW7 (F-box and WD Repeat Domain-Containing 7) negatively regulates glucose metabolism by targeting the c-Myc/TXNIP (thioredoxin-binding protein) axis in pancreatic cancer. Clin Cancer Res. 2016;22:3950–60. https://doi.org/10.1158/1078-0432.ccr-15-2380

    Article  PubMed  CAS  Google Scholar 

  46. Wang Z, Liu Y, Lu L, Yang L, Yin S, Wang Y, et al. Fibrillin-1, induced by Aurora-A but inhibited by BRCA2, promotes ovarian cancer metastasis. Oncotarget. 2015;6:6670–83. https://doi.org/10.18632/oncotarget.3118

    Article  PubMed  PubMed Central  Google Scholar 

  47. Howitt BE, Sun HH, Roemer MG, Kelley A, Chapuy B, Aviki E, et al. Genetic basis for PD-L1 expression in squamous cell carcinomas of the cervix and vulva. JAMA Oncol. 2016;2:518–22. https://doi.org/10.1001/jamaoncol.2015.6326

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank RuiBi for the samples for the TMA study, Guangqi Qin for manufacturing the TMAs, and Jun Chen and Jianping Zhang for help with animal imaging. This work was supported in part by grants from the National Nature Science Foundation of China (81672569 to X.W.) and the National Nature Science Young Foundation of China (81502235 to Z.W.).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ziliang Wang or Xiaohua Wu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

These authors contributed equally: Shaojia Wang, Jiajia Li, and Jie Xie.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, S., Li, J., Xie, J. et al. Programmed death ligand 1 promotes lymph node metastasis and glucose metabolism in cervical cancer by activating integrin β4/SNAI1/SIRT3 signaling pathway. Oncogene 37, 4164–4180 (2018). https://doi.org/10.1038/s41388-018-0252-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-018-0252-x

This article is cited by

Search

Quick links