Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Challenging the axiom: does the occurrence of oncogenic mutations truly limit cancer development with age?

Abstract

A widely accepted paradigm in cancer research holds that the development of cancers is rate limited by the occurrence of oncogenic mutations. In particular, the exponential rise in the incidence of most cancers with age is thought to reflect the time required for cells to accumulate the multiple oncogenic mutations needed to confer the cancer phenotype. Here I will argue against the axiom that the occurrence of oncogenic mutations limits cancer incidence with age, based on several observations, including that the rate of mutation accumulation is maximal during ontogeny, oncogenic mutations are frequently detected in normal tissues, the evolution of complex multicellularity was not accompanied by reductions in mutation rates, and that many oncogenic mutations have been shown to impair stem cell activity. Moreover, although evidence that has been used to support the current paradigm includes increased cancer incidence in individuals with inherited DNA repair deficiencies or exposed to mutagens, the pleotropic effects of these contexts could enhance tumorigenesis at multiple levels. I will further argue that age-dependent alteration of selection for oncogenic mutations provides a more plausible explanation for increased cancer incidence in the elderly. Although oncogenic mutations are clearly required for cancer evolution, together these observations counter the common view that age dependence of cancers is largely explained by the time required to accumulate sufficient oncogenic mutations.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Hanahan D, Weinberg RA . Hallmarks of cancer: the next generation. Cell 2011; 144: 646–674.

    Article  CAS  Google Scholar 

  2. Kennedy SR, Loeb LA, Herr AJ . Somatic mutations in aging, cancer and neurodegeneration. Mech Ageing Dev 2012; 133: 118–126.

    CAS  Google Scholar 

  3. Vogelstein B, Kinzler KW . Cancer genes and the pathways they control. Nat Med 2004; 10: 789–799.

    CAS  Google Scholar 

  4. Weinberg RA . The Biology of Cancer, Chapter 11. Garland Science: New York, 2007.

    Google Scholar 

  5. Serrano M, Blasco MA . Cancer and ageing: convergent and divergent mechanisms. Nat Rev Mol Cell Biol 2007; 8: 715–722.

    CAS  Google Scholar 

  6. Hoeijmakers JH . DNA damage, aging, and cancer. N Engl J Med. 2009; 361: 1475–1485.

    CAS  Google Scholar 

  7. Peto R, Roe FJ, Lee PN, Levy L, Clack J . Cancer and ageing in mice and men. Br J Cancer 1975; 32: 411–426.

    CAS  Google Scholar 

  8. Nowell PC . The clonal evolution of tumor cell populations. Science 1976; 194: 23–28.

    CAS  Google Scholar 

  9. Armitage P, Doll R . The age distribution of cancer and a multi-stage theory of carcinogenesis. Br J Cancer 1954; 8: 1–12.

    CAS  Google Scholar 

  10. Armitage P, Doll R . A two-stage theory of carcinogenesis in relation to the age distribution of human cancer. Br J Cancer 1957; 11: 161–169.

    CAS  Google Scholar 

  11. Lynch M . Evolution of the mutation rate. Trends Genet. 2010; 26: 345–352.

    CAS  Google Scholar 

  12. Vijg J, Busuttil RA, Bahar R, Dolle ME . Aging and genome maintenance. Ann NY Acad Sci 2005; 1055: 35–47.

    CAS  Google Scholar 

  13. Frank SA . Evolution in health and medicine Sackler colloquium: Somatic evolutionary genomics: mutations during development cause highly variable genetic mosaicism with risk of cancer and neurodegeneration. Proc Natl Acad Sci USA. 2010; 107 (Suppl 1): 1725–1730.

    CAS  Google Scholar 

  14. Weng NP, Hathcock KS, Hodes RJ . Regulation of telomere length and telomerase in T and B cells: a mechanism for maintaining replicative potential. Immunity 1998; 9: 151–157.

    CAS  Google Scholar 

  15. Wilson A, Laurenti E, Oser G, van der Wath RC, Blanco-Bose W, Jaworski M et al. Hematopoietic stem cells reversibly switch from dormancy to self-renewal during homeostasis and repair. Cell 2008; 135: 1118–1129.

    CAS  Google Scholar 

  16. Li W, Vijg J . Measuring genome instability in aging—a mini-review. Gerontology 2012; 58: 129–138.

    CAS  Google Scholar 

  17. Dolle ME, Giese H, Hopkins CL, Martus HJ, Hausdorff JM, Vijg J . Rapid accumulation of genome rearrangements in liver but not in brain of old mice. Nat Genet 1997; 17: 431–434.

    CAS  Google Scholar 

  18. Freitas AA, de Magalhaes JP . A review and appraisal of the DNA damage theory of ageing. Mutat Res 2011; 728: 12–22.

    CAS  Google Scholar 

  19. Giese H, Snyder WK, van Oostrom C, van Steeg H, Dolle ME, Vijg J . Age-related mutation accumulation at a lacZ reporter locus in normal and tumor tissues of Trp53-deficient mice. Mutat Res 2002; 514: 153–163.

    CAS  Google Scholar 

  20. Frith CH, Ward JM, Chandra M . The morphology, immunohistochemistry, and incidence of hematopoietic neoplasms in mice and rats. Toxicol Pathol 1993; 21: 206–218.

    CAS  Google Scholar 

  21. Gatenby RA, Gillies RJ . A microenvironmental model of carcinogenesis. Nat Rev Cancer 2008; 8: 56–61.

    CAS  Google Scholar 

  22. Greaves M, Maley CC . Clonal evolution in cancer. Nature 2012; 481: 306–313.

    CAS  Google Scholar 

  23. Mutter GL, Ince TA, Baak JP, Kust GA, Zhou XP, Eng C . Molecular identification of latent precancers in histologically normal endometrium. Cancer Res 2001; 61: 4311–4314.

    CAS  Google Scholar 

  24. Crawford YG, Gauthier ML, Joubel A, Mantei K, Kozakiewicz K, Afshari CA et al. Histologically normal human mammary epithelia with silenced p16(INK4a) overexpress COX-2, promoting a premalignant program. Cancer Cell 2004; 5: 263–273.

    CAS  Google Scholar 

  25. Greaves MF, Wiemels J . Origins of chromosome translocations in childhood Leukemia. Nat Rev Cancer 2003; 3: 1–10.

    Google Scholar 

  26. Naumov GN, Akslen LA, Folkman J . Role of angiogenesis in human tumor dormancy: animal models of the angiogenic switch. Cell Cycle 2006; 5: 1779–1787.

    CAS  Google Scholar 

  27. Vickers M . Estimation of the number of mutations necessary to cause chronic myeloid leukaemia from epidemiological data. British Journal of Haematology 1996; 94: 1–4.

    CAS  Google Scholar 

  28. Bose S, Deininger M, Gora-Tybor J, Goldman JM, Melo JV . The presence of typical and atypical BCR-ABL fusion genes in leukocytes of normal individuals: biologic significance and implications for the assessment of minimal residual disease. Blood 1998; 92: 3362–3367.

    CAS  Google Scholar 

  29. Biernaux C, Loos M, Sels A, Huez G, Stryckmans P . Detection of major bcr-abl gene expression at a very low level in blood cells of some healthy individuals. Blood 1995; 86: 3118–3122.

    CAS  Google Scholar 

  30. Matioli GT . BCR-ABL insufficiency for the transformation of human stem cells into CML. Med Hypotheses 2002; 59: 588–589.

    CAS  Google Scholar 

  31. Mullighan CG, Miller CB, Radtke I, Phillips LA, Dalton J, Ma J et al. BCR-ABL1 lymphoblastic leukaemia is characterized by the deletion of Ikaros. Nature 2008.

  32. Henry CJ, Marusyk A, Zaberezhnyy V, Adane B, DeGregori J . Declining lymphoid progenitor fitness promotes aging-associated leukemogenesis. Proc Natl Acad Sci USA 2010; 107: 21713–21718.

    CAS  Google Scholar 

  33. Cortopassi GA, Wang E . There is substantial agreement among interspecies estimates of DNA repair activity. Mech Ageing Dev 1996; 91: 211–218.

    CAS  Google Scholar 

  34. Promislow DE . DNA repair and the evolution of longevity: a critical analysis. J Theor Biol 1994; 170: 291–300.

    CAS  Google Scholar 

  35. Tang JY, Hwang BJ, Ford JM, Hanawalt PC, Chu G . Xeroderma pigmentosum p48 gene enhances global genomic repair and suppresses UV-induced mutagenesis. Mol Cell 2000; 5: 737–744.

    CAS  Google Scholar 

  36. DeGregori J . Evolved tumor suppression: why are we so good at not getting cancer? Cancer Res 2011; 71: 3739–3744.

    CAS  Google Scholar 

  37. Thompson LH, Schild D . Recombinational DNA repair and human disease. Mutat Res 2002; 509: 49–78.

    CAS  Google Scholar 

  38. Bagley J, Cortes ML, Breakefield XO, Iacomini J . Bone marrow transplantation restores immune system function and prevents lymphoma in Atm-deficient mice. Blood 2004; 104: 572–578.

    CAS  Google Scholar 

  39. Bensimon A, Aebersold R, Shiloh Y . Beyond ATM: the protein kinase landscape of the DNA damage response. FEBS Lett 2011; 585: 1625–1639.

    CAS  Google Scholar 

  40. Westbrook AM, Schiestl RH . Atm-deficient mice exhibit increased sensitivity to dextran sulfate sodium-induced colitis characterized by elevated DNA damage and persistent immune activation. Cancer Res 2010; 70: 1875–1884.

    CAS  Google Scholar 

  41. Venkatesan RN, Treuting PM, Fuller ED, Goldsby RE, Norwood TH, Gooley TA et al. Mutation at the polymerase active site of mouse DNA polymerase delta increases genomic instability and accelerates tumorigenesis. Mol Cell Biol 2007; 27: 7669–7682.

    CAS  Google Scholar 

  42. Preston BD, Albertson TM, Herr AJ . DNA replication fidelity and cancer. Semin Cancer Biol 2010; 20: 281–293.

    CAS  Google Scholar 

  43. Fleenor CJ, Marusyk A, DeGregori J . Ionizing radiation and hematopoietic malignancies: altering the adaptive landscape. Cell Cycle 2010; 9: 3005–3011.

    CAS  Google Scholar 

  44. Laconi E, Doratiotto S, Vineis P . The microenvironments of multistage carcinogenesis. Semin Cancer Biol 2008; 18: 322–329.

    CAS  Google Scholar 

  45. Bagby GC, Fleischman AG . The stem cell fitness landscape and pathways of molecular leukemogenesis. Front Biosci (Schol Ed) 2011; 3: 487–500.

    Google Scholar 

  46. Bissell MJ, Hines WC . Why don’t we get more cancer? A proposed role of the microenvironment in restraining cancer progression. Nat Med 2011; 17: 320–329.

    CAS  Google Scholar 

  47. Blagosklonny MV . Carcinogenesis, cancer therapy and chemoprevention. Cell Death Differ 2005; 12: 592–602.

    CAS  Google Scholar 

  48. Marusyk A, DeGregori J . Declining cellular fitness with age promotes cancer initiation by selecting for adaptive oncogenic mutations. Biochim Biophys Acta 2008; 1785: 1–11.

    CAS  Google Scholar 

  49. Sieber OM, Tomlinson SR, Tomlinson IP . Tissue cell and stage specificity of (epi)mutations in cancers. Nat Rev Cancer 2005; 5: 649–655.

    CAS  Google Scholar 

  50. Henry CJ, Marusyk A, DeGregori J . Aging-associated changes in hematopoiesis and leukemogenesis: what's the connection? Aging (Albany NY) 2011; 3: 643–656.

    CAS  Google Scholar 

  51. Rando TA . Stem cells, ageing and the quest for immortality. Nature 2006; 441: 1080–1086.

    CAS  Google Scholar 

  52. Laurie CC, Laurie CA, Rice K, Doheny KF, Zelnick LR, McHugh CP et al. Detectable clonal mosaicism from birth to old age and its relationship to cancer. Nat Genet 2012; 44: 642–650.

    CAS  Google Scholar 

  53. Jacobs KB, Yeager M, Zhou W, Wacholder S, Wang Z, Rodriguez-Santiago B et al. Detectable clonal mosaicism and its relationship to aging and cancer. Nat Genet 2012; 44: 651–658.

    CAS  Google Scholar 

  54. Forsberg LA, Rasi C, Razzaghian HR, Pakalapati G, Waite L, Thilbeault KS et al. Age-related somatic structural changes in the nuclear genome of human blood cells. Am J Hum Genet 2012; 90: 217–228.

    CAS  Google Scholar 

  55. Rodriguez-Santiago B, Malats N, Rothman N, Armengol L, Garcia-Closas M, Kogevinas M et al. Mosaic uniparental disomies and aneuploidies as large structural variants of the human genome. Am J Hum Genet 2010; 87: 129–138.

    CAS  Google Scholar 

  56. Gomes NM, Ryder OA, Houck ML, Charter SJ, Walker W, Forsyth NR et al. Comparative biology of mammalian telomeres: hypotheses on ancestral states and the roles of telomeres in longevity determination. Aging Cell 2011; 10: 761–768.

    CAS  Google Scholar 

  57. Gorbunova V, Seluanov A . Coevolution of telomerase activity and body mass in mammals: from mice to beavers. Mech Ageing Dev 2009; 130: 3–9.

    CAS  Google Scholar 

  58. Yilmaz OH, Valdez R, Theisen BK, Guo W, Ferguson DO, Wu H et al. Pten dependence distinguishes haematopoietic stem cells from leukaemia-initiating cells. Nature 2006; 441: 475–482.

    CAS  Google Scholar 

  59. Zhang J, Grindley JC, Yin T, Jayasinghe S, He XC, Ross JT et al. PTEN maintains haematopoietic stem cells and acts in lineage choice and leukaemia prevention. Nature 2006; 441: 518–522.

    CAS  Google Scholar 

  60. Wilson A, Laurenti E, Trumpp A . Balancing dormant and self-renewing hematopoietic stem cells. Current Opinion in Genetics & Development 2009; 19: 461–468.

    CAS  Google Scholar 

  61. Reya T, Duncan AW, Ailles L, Domen J, Scherer DC, Willert K et al. A role for Wnt signalling in self-renewal of haematopoietic stem cells. Nature 2003; 423: 409–414.

    CAS  Google Scholar 

  62. Rathinam C, Thien CB, Langdon WY, Gu H, Flavell RA . The E3 ubiquitin ligase c-Cbl restricts development and functions of hematopoietic stem cells. Genes Dev 2008; 22: 992–997.

    CAS  Google Scholar 

  63. Ogawa S, Shih LY, Suzuki T, Otsu M, Nakauchi H, Koeffler HP et al. Deregulated intracellular signaling by mutated c-CBL in myeloid neoplasms. Clin Cancer Res 2010; 16: 3825–3831.

    CAS  Google Scholar 

  64. Rathinam C, Thien CB, Flavell RA, Langdon WY . Myeloid leukemia development in c-Cbl RING finger mutant mice is dependent on FLT3 signaling. Cancer Cell 2010; 18: 341–352.

    CAS  Google Scholar 

  65. Murphy MA, Schnall RG, Venter DJ, Barnett L, Bertoncello I, Thien CB et al. Tissue hyperplasia and enhanced T-cell signalling via ZAP-70 in c-Cbl-deficient mice. Mol Cell Biol 1998; 18: 4872–4882.

    CAS  Google Scholar 

  66. Sabnis AJ, Cheung LS, Dail M, Kang HC, Santaguida M, Hermiston ML et al. Oncogenic Kras initiates leukemia in hematopoietic stem cells. PLoS Biol 2009; 7: e59.

    Google Scholar 

  67. Reynaud D, Pietras E, Barry-Holson K, Mir A, Binnewies M, Jeanne M et al. IL-6 controls leukemic multipotent progenitor cell fate and contributes to chronic myelogenous leukemia development. Cancer Cell 2011; 20: 661–673.

    CAS  Google Scholar 

  68. Holyoake TL, Jiang X, Drummond MW, Eaves AC, Eaves CJ . Elucidating critical mechanisms of deregulated stem cell turnover in the chronic phase of chronic myeloid leukemia. Leukemia 2002; 16: 549–558.

    CAS  Google Scholar 

  69. Schemionek M, Elling C, Steidl U, Baumer N, Hamilton A, Spieker T et al. BCR-ABL enhances differentiation of long-term repopulating hematopoietic stem cells. Blood 2010; 115: 3185–3195.

    CAS  Google Scholar 

  70. Bilousova G, Marusyk A, Porter CC, Cardiff RD, DeGregori J . Impaired DNA replication within progenitor cell pools promotes leukemogenesis. PLoS Biology 2005; 3: e401.

    Google Scholar 

  71. Janzen V, Forkert R, Fleming HE, Saito Y, Waring MT, Dombkowski DM et al. Stem-cell ageing modified by the cyclin-dependent kinase inhibitor p16INK4a. Nature 2006; 443: 421–426.

    CAS  Google Scholar 

  72. Bondar T, Medzhitov R . p53-mediated hematopoietic stem and progenitor cell competition. Cell Stem Cell 2010; 6: 309–322.

    CAS  Google Scholar 

  73. Marusyk A, Porter CC, Zaberezhnyy V, DeGregori J . Irradiation selects for p53-deficient hematopoietic progenitors. PLoS Biol 2010; 8: e1000324.

    Google Scholar 

  74. Daria D, Filippi MD, Knudsen ES, Faccio R, Li Z, Kalfa T et al. The retinoblastoma tumor suppressor is a critical intrinsic regulator for hematopoietic stem and progenitor cells under stress. Blood 2008; 111: 1894–1902.

    CAS  Google Scholar 

  75. Walkley CR, Shea JM, Sims NA, Purton LE, Orkin SH . Rb regulates interactions between hematopoietic stem cells and their bone marrow microenvironment. Cell 2007; 129: 1081–1095.

    CAS  Google Scholar 

  76. Spike BT, Dirlam A, Dibling BC, Marvin J, Williams BO, Jacks T et al. The Rb tumor suppressor is required for stress erythropoiesis. EMBO J. 2004; 23: 4319–4329.

    CAS  Google Scholar 

  77. Cheng T, Rodrigues N, Shen H, Yang Y, Dombkowski D, Sykes M et al. Hematopoietic stem cell quiescence maintained by p21cip1/waf1. Science 2000; 287: 1804–1808.

    CAS  Google Scholar 

  78. Ito K, Hirao A, Arai F, Matsuoka S, Takubo K, Hamaguchi I et al. Regulation of oxidative stress by ATM is required for self-renewal of haematopoietic stem cells. Nature 2004; 431: 997–1002.

    CAS  Google Scholar 

  79. Huang J, Zhang Y, Bersenev A, O'Brien WT, Tong W, Emerson SG et al. Pivotal role for glycogen synthase kinase-3 in hematopoietic stem cell homeostasis in mice. J Clin Invest 2009; 119: 3519–3529.

    CAS  Google Scholar 

  80. Qian Z, Chen L, Fernald AA, Williams BO, Le Beau MM . A critical role for Apc in hematopoietic stem and progenitor cell survival. J Exp Med 2008; 205: 2163–2175.

    CAS  Google Scholar 

  81. Chen C, Liu Y, Liu R, Ikenoue T, Guan KL, Zheng P . TSC-mTOR maintains quiescence and function of hematopoietic stem cells by repressing mitochondrial biogenesis and reactive oxygen species. J Exp Med 2008; 205: 2397–2408.

    CAS  Google Scholar 

  82. Gan B, Sahin E, Jiang S, Sanchez-Aguilera A, Scott KL, Chin L et al. mTORC1-dependent and -independent regulation of stem cell renewal, differentiation, and mobilization. Proc Natl Acad Sci USA 2008; 105: 19384–19389.

    CAS  Google Scholar 

  83. Gan B, Hu J, Jiang S, Liu Y, Sahin E, Zhuang L et al. Lkb1 regulates quiescence and metabolic homeostasis of haematopoietic stem cells. Nature 2010; 468: 701–704.

    CAS  Google Scholar 

  84. Min IM, Pietramaggiori G, Kim FS, Passegue E, Stevenson KE, Wagers AJ . The transcription factor EGR1 controls both the proliferation and localization of hematopoietic stem cells. Cell Stem Cell 2008; 2: 380–391.

    CAS  Google Scholar 

  85. Thompson BJ, Jankovic V, Gao J, Buonamici S, Vest A, Lee JM et al. Control of hematopoietic stem cell quiescence by the E3 ubiquitin ligase Fbw7. J Exp Med 2008; 205: 1395–1408.

    CAS  Google Scholar 

  86. Matsuoka S, Oike Y, Onoyama I, Iwama A, Arai F, Takubo K et al. Fbxw7 acts as a critical fail-safe against premature loss of hematopoietic stem cells and development of T-ALL. Genes Dev 2008; 22: 986–991.

    CAS  Google Scholar 

  87. Maillard I, Chen YX, Friedman A, Yang Y, Tubbs AT, Shestova O et al. Menin regulates the function of hematopoietic stem cells and lymphoid progenitors. Blood 2009; 113: 1661–1669.

    CAS  Google Scholar 

  88. Papathanasiou P, Attema JL, Karsunky H, Hosen N, Sontani Y, Hoyne GF et al. Self-renewal of the long-term reconstituting subset of hematopoietic stem cells is regulated by Ikaros. Stem Cells 2009; 27: 3082–3092.

    CAS  Google Scholar 

  89. Nichogiannopoulou A, Trevisan M, Neben S, Friedrich C, Georgopoulos K . Defects in hemopoietic stem cell activity in Ikaros mutant mice. J Exp Med 1999; 190: 1201–1214.

    CAS  Google Scholar 

  90. Papathanasiou P, Perkins AC, Cobb BS, Ferrini R, Sridharan R, Hoyne GF et al. Widespread failure of hematolymphoid differentiation caused by a recessive niche-filling allele of the Ikaros transcription factor. Immunity 2003; 19: 131–144.

    CAS  Google Scholar 

  91. Perry JM, He XC, Sugimura R, Grindley JC, Haug JS, Ding S et al. Cooperation between both Wnt/{beta}-catenin and PTEN/PI3K/Akt signaling promotes primitive hematopoietic stem cell self-renewal and expansion. Genes Dev 2011; 25: 1928–1942.

    CAS  Google Scholar 

  92. Kirstetter P, Anderson K, Porse BT, Jacobsen SE, Nerlov C . Activation of the canonical Wnt pathway leads to loss of hematopoietic stem cell repopulation and multilineage differentiation block. Nat Immunol 2006; 7: 1048–1056.

    CAS  Google Scholar 

  93. Scheller M, Huelsken J, Rosenbauer F, Taketo MM, Birchmeier W, Tenen DG et al. Hematopoietic stem cell and multilineage defects generated by constitutive beta-catenin activation. Nat Immunol 2006; 7: 1037–1047.

    CAS  Google Scholar 

  94. Wilson A, Murphy MJ, Oskarsson T, Kaloulis K, Bettess MD, Oser GM et al. c-Myc controls the balance between hematopoietic stem cell self-renewal and differentiation. Genes Dev 2004; 18: 2747–2763.

    CAS  Google Scholar 

  95. Campbell TB, Basu S, Hangoc G, Tao W, Broxmeyer HE . Overexpression of Rheb2 enhances mouse hematopoietic progenitor cell growth while impairing stem cell repopulation. Blood 2009; 114: 3392–3401.

    CAS  Google Scholar 

Download references

Acknowledgements

These studies were supported by grants from the National Institutes of Health (R01-CA157850) and the Leukemia Lymphoma Society. I thank Robert Sclafani, Michael Weil, Andriy Marusyk, Ruth Hershberg, Andrew Thorburn and members of my laboratory for their critical comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J DeGregori.

Ethics declarations

Competing interests

The author declares no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

DeGregori, J. Challenging the axiom: does the occurrence of oncogenic mutations truly limit cancer development with age?. Oncogene 32, 1869–1875 (2013). https://doi.org/10.1038/onc.2012.281

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2012.281

Keywords

This article is cited by

Search

Quick links