Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Immune infiltration in human tumors: a prognostic factor that should not be ignored

Abstract

The natural history of a tumor includes phases of ‘in situ’ growth, invasion, extravasation and metastasis. During these phases, tumor cells interact with their microenvironment and are influenced by signals coming from stromal, endothelial, inflammatory and immune cells. Indeed, tumors are often infiltrated by various numbers of lymphocytes, macrophages or mast cells. It is generally believed that the latter produce factors that maintain chronic inflammation and promote tumor growth, whereas lymphocytes may control cancer outcome, as evidenced in mouse models. In this study, we analyze data from large cohorts of human tumors, clearly establishing that infiltration of the primary tumor by memory T cells, particularly of the Th1 and cytotoxic types, is the strongest prognostic factor in terms of freedom from disease and overall survival at all stages of clinical disease. We review data suggesting that tertiary lymphoid structures adjacent to tumors and composed of mature dendritic cells (T and B cells organized as germinal centers) may be the site of an antitumor reaction. We propose an immune scoring based on the type, density and location of lymphocyte infiltrates as a novel prognostic factor for use in addition to tumor node metastasis staging to predict disease-free survival and to aid in decisions regarding adjuvant therapies in early stage human cancers.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1

Similar content being viewed by others

References

  • Al-Shibli KI, Donnem T, Al-Saad S, Persson M, Bremnes RM, Busund LT . (2008). Prognostic effect of epithelial and stromal lymphocyte infiltration in non-small cell lung cancer. Clin Cancer Res 14: 5220–5227.

    CAS  PubMed  Google Scholar 

  • Badoual C, Bouchaud G, Agueznay Nel H, Mortier E, Hans S, Gey A et al. (2008). The soluble alpha chain of interleukin-15 receptor: a proinflammatory molecule associated with tumor progression in head and neck cancer. Cancer Res 68: 3907–3914.

    CAS  PubMed  Google Scholar 

  • Badoual C, Hans S, Fridman WH, Brasnu D, Erdman S, Tartour E . (2009). Revisiting the prognostic value of regulatory T cells in patients with cancer. J Clin Oncol 27: e5–e6.

    PubMed  Google Scholar 

  • Badoual C, Hans S, Rodriguez J, Peyrard S, Klein C, Agueznay Nel H et al. (2006). Prognostic value of tumor-infiltrating CD4+ T-cell subpopulations in head and neck cancers. Clin Cancer Res 12: 465–472.

    CAS  PubMed  Google Scholar 

  • Baier PK, Wimmenauer S, Hirsch T, von Specht BU, von Kleist S, Keller H et al. (1998). Analysis of the T cell receptor variability of tumor-infiltrating lymphocytes in colorectal carcinomas. Tumour Biol 19: 205–212.

    CAS  PubMed  Google Scholar 

  • Balkwill F . (2004). Cancer and the chemokine network. Nat Rev Cancer 4: 540–550.

    CAS  PubMed  Google Scholar 

  • Bergers G, Benjamin LE . (2003). Tumorigenesis and the angiogenic switch. Nat Rev Cancer 3: 401–410.

    CAS  PubMed  Google Scholar 

  • Bicknell DC, Kaklamanis L, Hampson R, Bodmer WF, Karran P . (1996). Selection for beta 2-microglobulin mutation in mismatch repair-defective colorectal carcinomas. Curr Biol 6: 1695–1697.

    CAS  PubMed  Google Scholar 

  • Birkeland SA, Storm HH, Lamm LU, Barlow L, Blohme I, Forsberg B et al. (1995). Cancer risk after renal transplantation in the Nordic countries, 1964–1986. Int J Cancer 60: 183–189.

    CAS  PubMed  Google Scholar 

  • Brown JR, DuBois RN . (2005). COX-2: a molecular target for colorectal cancer prevention. J Clin Oncol 23: 2840–2855.

    CAS  PubMed  Google Scholar 

  • Camus M, Tosolini M, Mlecnik B, Pages F, Kirilovsky A, Berger A et al. (2009). Coordination of intratumoral immune reaction and human colorectal cancer recurrence. Cancer Res 69: 2685–2693.

    CAS  PubMed  Google Scholar 

  • Carragher DM, Rangel-Moreno J, Randall TD . (2008). Ectopic lymphoid tissues and local immunity. Semin Immunol 20: 26–42.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Carreras J, Lopez-Guillermo A, Fox BC, Colomo L, Martinez A, Roncador G et al. (2006). High numbers of tumor-infiltrating FOXP3-positive regulatory T cells are associated with improved overall survival in follicular lymphoma. Blood 108: 2957–2964.

    CAS  PubMed  Google Scholar 

  • Castellone MD, Teramoto H, Williams BO, Druey KM, Gutkind JS . (2005). Prostaglandin E2 promotes colon cancer cell growth through a Gs-axin-beta-catenin signaling axis. Science 310: 1504–1510.

    CAS  PubMed  Google Scholar 

  • Chaput N, Louafi S, Bardier A, Charlotte F, Vaillant JC, Menegaux F et al. (2009). Identification of CD8+CD25+Foxp3+ suppressive T cells in colorectal cancer tissue. Gut 58: 520–529.

    CAS  PubMed  Google Scholar 

  • Cho Y, Miyamoto M, Kato K, Fukunaga A, Shichinohe T, Kawarada Y et al. (2003). CD4+ and CD8+ T cells cooperate to improve prognosis of patients with esophageal squamous cell carcinoma. Cancer Res 63: 1555–1559.

    CAS  PubMed  Google Scholar 

  • Clark Jr WH, Elder DE, Guerry D, Braitman LE, Trock BJ, Schultz D et al. (1989). Model predicting survival in stage I melanoma based on tumor progression. J Natl Cancer Inst 81: 1893–1904.

    PubMed  Google Scholar 

  • Clemente CG, Mihm Jr MC, Bufalino R, Zurrida S, Collini P, Cascinelli N . (1996). Prognostic value of tumor infiltrating lymphocytes in the vertical growth phase of primary cutaneous melanoma. Cancer 77: 1303–1310.

    CAS  PubMed  Google Scholar 

  • Coley WB . (1893). The treatment of malignant tumors by repeated inoculations of erysipelas with a report of ten original cases. Am J Med Sci 105: 487–511.

    Google Scholar 

  • Coussens LM, Werb Z . (2002). Inflammation and cancer. Nature 420: 860–867.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Curiel TJ, Coukos G, Zou L, Alvarez X, Cheng P, Mottram P et al. (2004). Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival. Nat Med 10: 942–949.

    Article  CAS  PubMed  Google Scholar 

  • Dalerba P, Maccalli C, Casati C, Castelli C, Parmiani G . (2003). Immunology and immunotherapy of colorectal cancer. Crit Rev Oncol Hematol 46: 33–57.

    PubMed  Google Scholar 

  • de Visser KE, Korets LV, Coussens LM . (2005). De novo carcinogenesis promoted by chronic inflammation is B lymphocyte dependent. Cancer Cell 7: 411–423.

    CAS  PubMed  Google Scholar 

  • Diederichsen AC, Hjelmborg JB, Christensen PB, Zeuthen J, Fenger C . (2003). Prognostic value of the CD4+/CD8+ ratio of tumour infiltrating lymphocytes in colorectal cancer and HLA-DR expression on tumour cells. Cancer Immunol Immunother 52: 423–428.

    CAS  PubMed  Google Scholar 

  • Dieu-Nosjean MC, Antoine M, Danel C, Heudes D, Wislez M, Poulot V et al. (2008). Long-term survival for patients with non-small-cell lung cancer with intratumoral lymphoid structures. J Clin Oncol 26: 4410–4417.

    CAS  PubMed  Google Scholar 

  • Dunn GP, Bruce AT, Ikeda H, Old LJ, Schreiber RD . (2002). Cancer immunoediting: from immunosurveillance to tumor escape. Nat Immunol 3: 991–998.

    CAS  PubMed  Google Scholar 

  • Dunn GP, Koebel CM, Schreiber RD . (2006). Interferons, immunity and cancer immunoediting. Nat Rev Immunol 6: 836–848.

    CAS  PubMed  Google Scholar 

  • Dunn GP, Old LJ, Schreiber RD . (2004). The three Es of cancer immunoediting. Annu Rev Immunol 22: 329–360.

    CAS  PubMed  Google Scholar 

  • Egen JG, Kuhns MS, Allison JP . (2002). CTLA-4: new insights into its biological function and use in tumor immunotherapy. Nat Immunol 3: 611–618.

    CAS  PubMed  Google Scholar 

  • Fu J, Xu D, Liu Z, Shi M, Zhao P, Fu B et al. (2007). Increased regulatory T cells correlate with CD8 T-cell impairment and poor survival in hepatocellular carcinoma patients. Gastroenterology 132: 2328–2339.

    PubMed  Google Scholar 

  • Gajewska BU, Alvarez D, Vidric M, Goncharova S, Stampfli MR, Coyle AJ et al. (2001). Generation of experimental allergic airways inflammation in the absence of draining lymph nodes. J Clin Invest 108: 577–583.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Galon J, Costes A, Sanchez-Cabo F, Kirilovsky A, Mlecnik B, Lagorce-Pages C et al. (2006). Type, density, and location of immune cells within human colorectal tumors predict clinical outcome. Science 313: 1960–1964.

    Article  CAS  PubMed  Google Scholar 

  • Galon J, Fridman WH, Pages F . (2007). The adaptive immunologic microenvironment in colorectal cancer: a novel perspective. Cancer Res 67: 1883–1886.

    CAS  PubMed  Google Scholar 

  • Gause A, Gundlach K, Zdichavsky M, Jacobs G, Koch B, Hopf T et al. (1995). The B lymphocyte in rheumatoid arthritis: analysis of rearranged V kappa genes from B cells infiltrating the synovial membrane. Eur J Immunol 25: 2775–2782.

    CAS  PubMed  Google Scholar 

  • Ghiringhelli F, Menard C, Puig PE, Ladoire S, Roux S, Martin F et al. (2007). Metronomic cyclophosphamide regimen selectively depletes CD4+CD25+ regulatory T cells and restores T and NK effector functions in end stage cancer patients. Cancer Immunol Immunother 56: 641–648.

    CAS  PubMed  Google Scholar 

  • Gould SJ, Isaacson PG . (1993). Bronchus-associated lymphoid tissue (BALT) in human fetal and infant lung. J Pathol 169: 229–234.

    CAS  PubMed  Google Scholar 

  • Graham DM, Appelman HD . (1990). Crohn's-like lymphoid reaction and colorectal carcinoma: a potential histologic prognosticator. Mod Pathol 3: 332–335.

    CAS  PubMed  Google Scholar 

  • Halama N, Michel S, Kloor M, Zoernig I, Pommerencke T, von Knebel Doeberitz M et al. (2009). The localization and density of immune cells in primary tumors of human metastatic colorectal cancer shows an association with response to chemotherapy. Cancer Immun 9: 1.

    PubMed  PubMed Central  Google Scholar 

  • Halvorsen TB, Seim E . (1989). Association between invasiveness, inflammatory reaction, desmoplasia and survival in colorectal cancer. J Clin Pathol 42: 162–166.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hanahan D, Weinberg RA . (2000). The hallmarks of cancer. Cell 100: 57–70.

    CAS  PubMed  Google Scholar 

  • Harrison JC, Dean PJ, el-Zeky F, Vander Zwaag R . (1994). From Dukes through Jass: pathological prognostic indicators in rectal cancer. Hum Pathol 25: 498–505.

    CAS  PubMed  Google Scholar 

  • Herr HW, Morales A . (2008). History of bacillus Calmette–Guerin and bladder cancer: an immunotherapy success story. J Urol 179: 53–56.

    PubMed  Google Scholar 

  • Hiraoka K, Miyamoto M, Cho Y, Suzuoki M, Oshikiri T, Nakakubo Y et al. (2006a). Concurrent infiltration by CD8+ T cells and CD4+ T cells is a favourable prognostic factor in non-small-cell lung carcinoma. Br J Cancer 94: 275–280.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hiraoka N, Onozato K, Kosuge T, Hirohashi S . (2006b). Prevalence of FOXP3+ regulatory T cells increases during the progression of pancreatic ductal adenocarcinoma and its premalignant lesions. Clin Cancer Res 12: 5423–5434.

    CAS  PubMed  Google Scholar 

  • Hoffmann P, Boeld TJ, Eder R, Huehn J, Floess S, Wieczorek G et al. (2009). Loss of FOXP3 expression in natural human CD4+CD25+ regulatory T cells upon repetitive in vitro stimulation. Eur J Immunol 39: 1088–1097.

    CAS  PubMed  Google Scholar 

  • Hohenberger P, Gretschel S . (2003). Gastric cancer. Lancet 362: 305–315.

    PubMed  Google Scholar 

  • House AK, Watt AG . (1979). Survival and the immune response in patients with carcinoma of the colorectum. Gut 20: 868–874.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Humby F, Bombardieri M, Manzo A, Kelly S, Blades MC, Kirkham B et al. (2009). Ectopic lymphoid structures support ongoing production of class-switched autoantibodies in rheumatoid synovium. PLoS Med 6: e1.

    PubMed  PubMed Central  Google Scholar 

  • Ito N, Suzuki Y, Taniguchi Y, Ishiguro K, Nakamura H, Ohgi S . (2005). Prognostic significance of T helper 1 and 2 and T cytotoxic 1 and 2 cells in patients with non-small cell lung cancer. Anticancer Res 25: 2027–2031.

    CAS  PubMed  Google Scholar 

  • Jass JR . (1986). Lymphocytic infiltration and survival in rectal cancer. J Clin Pathol 39: 585–589.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Karja V, Aaltomaa S, Lipponen P, Isotalo T, Talja M, Mokka R . (2005). Tumour-infiltrating lymphocytes: a prognostic factor of PSA-free survival in patients with local prostate carcinoma treated by radical prostatectomy. Anticancer Res 25: 4435–4438.

    PubMed  Google Scholar 

  • Kawai O, Ishii G, Kubota K, Murata Y, Naito Y, Mizuno T et al. (2008). Predominant infiltration of macrophages and CD8(+) T Cells in cancer nests is a significant predictor of survival in stage IV nonsmall cell lung cancer. Cancer 113: 1387–1395.

    CAS  PubMed  Google Scholar 

  • Kim R, Emi M, Tanabe K, Arihiro K . (2006). Tumor-driven evolution of immunosuppressive networks during malignant progression. Cancer Res 66: 5527–5536.

    CAS  PubMed  Google Scholar 

  • Komatsu N, Mariotti-Ferrandiz ME, Wang Y, Malissen B, Waldmann H, Hori S . (2009). Heterogeneity of natural Foxp3+ T cells: a committed regulatory T-cell lineage and an uncommitted minor population retaining plasticity. Proc Natl Acad Sci USA 106: 1903–1908.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kotlan B, Simsa P, Foldi J, Fridman WH, Glassy M, McKnight M et al. (2003). Immunoglobulin repertoire of B lymphocytes infiltrating breast medullary carcinoma. Hum Antibodies 12: 113–121.

    CAS  PubMed  Google Scholar 

  • Le Gouvello S, Bastuji-Garin S, Aloulou N, Mansour H, Chaumette MT, Berrehar F et al. (2008). High prevalence of Foxp3 and IL17 in MMR-proficient colorectal carcinomas. Gut 57: 772–779.

    CAS  PubMed  Google Scholar 

  • Leffers N, Gooden MJ, de Jong RA, Hoogeboom BN, ten Hoor KA, Hollema H et al. (2009). Prognostic significance of tumor-infiltrating T-lymphocytes in primary and metastatic lesions of advanced stage ovarian cancer. Cancer Immunol Immunother 58: 449–459.

    PubMed  Google Scholar 

  • Locker GY, Hamilton S, Harris J, Jessup JM, Kemeny N, Macdonald JS et al. (2006). ASCO 2006 update of recommendations for the use of tumor markers in gastrointestinal cancer. J Clin Oncol 24: 5313–5327.

    CAS  PubMed  Google Scholar 

  • Mackensen A, Ferradini L, Carcelain G, Triebel F, Faure F, Viel S et al. (1993). Evidence for in situ amplification of cytotoxic T-lymphocytes with antitumor activity in a human regressive melanoma. Cancer Res 53: 3569–3573.

    CAS  PubMed  Google Scholar 

  • Marrogi AJ, Munshi A, Merogi AJ, Ohadike Y, El-Habashi A, Marrogi OL et al. (1997). Study of tumor infiltrating lymphocytes and transforming growth factor-beta as prognostic factors in breast carcinoma. Int J Cancer 74: 492–501.

    CAS  PubMed  Google Scholar 

  • Menegaz RA, Michelin MA, Etchebehere RM, Fernandes PC, Murta EF . (2008). Peri- and intratumoral T and B lymphocytic infiltration in breast cancer. Eur J Gynaecol Oncol 29: 321–326.

    CAS  PubMed  Google Scholar 

  • Michel S, Benner A, Tariverdian M, Wentzensen N, Hoefler P, Pommerencke T et al. (2008). High density of FOXP3-positive T cells infiltrating colorectal cancers with microsatellite instability. Br J Cancer 99: 1867–1873.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Moyron-Quiroz JE, Rangel-Moreno J, Hartson L, Kusser K, Tighe MP, Klonowski KD et al. (2006). Persistence and responsiveness of immunologic memory in the absence of secondary lymphoid organs. Immunity 25: 643–654.

    CAS  PubMed  Google Scholar 

  • Moyron-Quiroz JE, Rangel-Moreno J, Kusser K, Hartson L, Sprague F, Goodrich S et al. (2004). Role of inducible bronchus associated lymphoid tissue (iBALT) in respiratory immunity. Nat Med 10: 927–934.

    CAS  PubMed  Google Scholar 

  • Naito Y, Saito K, Shiiba K, Ohuchi A, Saigenji K, Nagura H et al. (1998). CD8+ T cells infiltrated within cancer cell nests as a prognostic factor in human colorectal cancer. Cancer Res 58: 3491–3494.

    CAS  PubMed  Google Scholar 

  • Nakano O, Sato M, Naito Y, Suzuki K, Orikasa S, Aizawa M et al. (2001). Proliferative activity of intratumoral CD8(+) T-lymphocytes as a prognostic factor in human renal cell carcinoma: clinicopathologic demonstration of antitumor immunity. Cancer Res 61: 5132–5136.

    CAS  PubMed  Google Scholar 

  • Nielsen HJ, Hansen U, Christensen IJ, Reimert CM, Brunner N, Moesgaard F . (1999). Independent prognostic value of eosinophil and mast cell infiltration in colorectal cancer tissue. J Pathol 189: 487–495.

    CAS  PubMed  Google Scholar 

  • Okazaki T, Honjo T . (2006). The PD-1-PD-L pathway in immunological tolerance. Trends Immunol 27: 195–201.

    CAS  PubMed  Google Scholar 

  • Pagès F, Berger A, Camus M, Sanchez-Cabo F, Costes A, Molidor R et al. (2005). Effector memory T cells, early metastasis, and survival in colorectal cancer. N Engl J Med 353: 2654–2666.

    PubMed  Google Scholar 

  • Pages F, Galon J, Fridman WH . (2008). The essential role of the in situ immune reaction in human colorectal cancer. J Leukoc Biol 84: 981–987.

    CAS  PubMed  Google Scholar 

  • Pages F, Kirilovsky A, Mlecnik B, Asslaber M, Tosolini M, Bindea G et al. (2009). The in situ cytotoxic and memory T cells predict outcome in early-stage colorectal cancer patients. J Clin Oncol 27 (e-pub ahead of print 26 October 2009).

  • Popat S, Hubner R, Houlston RS . (2005). Systematic review of microsatellite instability and colorectal cancer prognosis. J Clin Oncol 23: 609–618.

    CAS  PubMed  Google Scholar 

  • Prall F, Duhrkop T, Weirich V, Ostwald C, Lenz P, Nizze H et al. (2004). Prognostic role of CD8+ tumor-infiltrating lymphocytes in stage III colorectal cancer with and without microsatellite instability. Hum Pathol 35: 808–816.

    CAS  PubMed  Google Scholar 

  • Rangel-Moreno J, Hartson L, Navarro C, Gaxiola M, Selman M, Randall TD . (2006). Inducible bronchus-associated lymphoid tissue (iBALT) in patients with pulmonary complications of rheumatoid arthritis. J Clin Invest 116: 3183–3194.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Reichert TE, Scheuer C, Day R, Wagner W, Whiteside TL . (2001). The number of intratumoral dendritic cells and zeta-chain expression in T cells as prognostic and survival biomarkers in patients with oral carcinoma. Cancer 91: 2136–2147.

    CAS  PubMed  Google Scholar 

  • Richardsen E, Uglehus RD, Due J, Busch C, Busund LT . (2008). The prognostic impact of M-CSF, CSF-1 receptor, CD68 and CD3 in prostatic carcinoma. Histopathology 53: 30–38.

    CAS  PubMed  Google Scholar 

  • Ropponen KM, Eskelinen MJ, Lipponen PK, Alhava E, Kosma VM . (1997). Prognostic value of tumour-infiltrating lymphocytes (TILs) in colorectal cancer. J Pathol 182: 318–324.

    CAS  PubMed  Google Scholar 

  • Salama P, Phillips M, Grieu F, Morris M, Zeps N, Joseph D et al. (2009). Tumor-infiltrating FOXP3+ T regulatory cells show strong prognostic significance in colorectal cancer. J Clin Oncol 27: 186–192.

    PubMed  Google Scholar 

  • Sato E, Olson SH, Ahn J, Bundy B, Nishikawa H, Qian F et al. (2005). Intraepithelial CD8+ tumor-infiltrating lymphocytes and a high CD8+/regulatory T cell ratio are associated with favorable prognosis in ovarian cancer. Proc Natl Acad Sci USA 102: 18538–18543.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schumacher K, Haensch W, Roefzaad C, Schlag PM . (2001). Prognostic significance of activated CD8(+) T cell infiltrations within esophageal carcinomas. Cancer Res 61: 3932–3936.

    CAS  PubMed  Google Scholar 

  • Schwitalle Y, Kloor M, Eiermann S, Linnebacher M, Kienle P, Knaebel HP et al. (2008). Immune response against frameshift-induced neopeptides in HNPCC patients and healthy HNPCC mutation carriers. Gastroenterology 134: 988–997.

    CAS  PubMed  Google Scholar 

  • Sharma P, Shen Y, Wen S, Yamada S, Jungbluth AA, Gnjatic S et al. (2007). CD8 tumor-infiltrating lymphocytes are predictive of survival in muscle-invasive urothelial carcinoma. Proc Natl Acad Sci USA 104: 3967–3972.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shibuya TY, Nugyen N, McLaren CE, Li KT, Wei WZ, Kim S et al. (2002). Clinical significance of poor CD3 response in head and neck cancer. Clin Cancer Res 8: 745–751.

    CAS  PubMed  Google Scholar 

  • Smyth MJ, Godfrey DI, Trapani JA . (2001). A fresh look at tumor immunosurveillance and immunotherapy. Nat Immunol 2: 293–299.

    CAS  PubMed  Google Scholar 

  • Stolte M, Bayerdorffer E, Morgner A, Alpen B, Wundisch T, Thiede C et al. (2002). Helicobacter and gastric MALT lymphoma. Gut 50 (Suppl 3): III19–III24.

    PubMed  PubMed Central  Google Scholar 

  • Svennevig JL, Lunde OC, Holter J, Bjorgsvik D . (1984). Lymphoid infiltration and prognosis in colorectal carcinoma. Br J Cancer 49: 375–377.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tefany FJ, Barnetson RS, Halliday GM, McCarthy SW, McCarthy WH . (1991). Immunocytochemical analysis of the cellular infiltrate in primary regressing and non-regressing malignant melanoma. J Invest Dermatol 97: 197–202.

    CAS  PubMed  Google Scholar 

  • Teng MW, Swann JB, Koebel CM, Schreiber RD, Smyth MJ . (2008). Immune-mediated dormancy: an equilibrium with cancer. J Leukoc Biol 84: 988–993.

    CAS  PubMed  Google Scholar 

  • Tesar BM, Chalasani G, Smith-Diggs L, Baddoura FK, Lakkis FG, Goldstein DR . (2004). Direct antigen presentation by a xenograft induces immunity independently of secondary lymphoid organs. J Immunol 173: 4377–4386.

    CAS  PubMed  Google Scholar 

  • Tesniere A, Apetoh L, Ghiringhelli F, Joza N, Panaretakis T, Kepp O et al. (2008). Immunogenic cancer cell death: a key-lock paradigm. Curr Opin Immunol 20: 504–511.

    CAS  PubMed  Google Scholar 

  • Thaunat O, Patey N, Gautreau C, Lechaton S, Fremeaux-Bacchi V, Dieu-Nosjean MC et al. (2008). B cell survival in intragraft tertiary lymphoid organs after rituximab therapy. Transplantation 85: 1648–1653.

    CAS  PubMed  Google Scholar 

  • Touitou V, Daussy C, Bodaghi B, Camelo S, de Kozak Y, Lehoang P et al. (2007). Impaired Th1/Tc1 cytokines production of tumor-infiltrating lymphocytes in a model of primary intraocular B-cell lymphoma. Invest Ophtalmol Vis SCI 48: 3223–3229.

    Google Scholar 

  • Tschernig T, Pabst R . (2000). Bronchus-associated lymphoid tissue (BALT) is not present in the normal adult lung but in different diseases. Pathobiology 68: 1–8.

    CAS  PubMed  Google Scholar 

  • Tzankov A, Meier C, Hirschmann P, Went P, Pileri SA, Dirnhofer S . (2008). Correlation of high numbers of intratumoral FOXP3+ regulatory T cells with improved survival in germinal center-like diffuse large B-cell lymphoma, follicular lymphoma and classical Hodgkin's lymphoma. Haematologica 93: 193–200.

    CAS  PubMed  Google Scholar 

  • Vesalainen S, Lipponen P, Talja M, Syrjanen K . (1994). Histological grade, perineural infiltration, tumour-infiltrating lymphocytes and apoptosis as determinants of long-term prognosis in prostatic adenocarcinoma. Eur J Cancer 30A: 1797–1803.

    CAS  PubMed  Google Scholar 

  • Wittekind C, Compton CC, Greene FL, Sobin LH . (2002). TNM residual tumor classification revisited. Cancer 94: 2511–2516.

    PubMed  Google Scholar 

  • Zhang L, Conejo-Garcia JR, Katsaros D, Gimotty PA, Massobrio M, Regnani G et al. (2003). Intratumoral T cells, recurrence, and survival in epithelial ovarian cancer. N Engl J Med 348: 203–213.

    CAS  PubMed  Google Scholar 

  • Zitvogel L, Tesniere A, Kroemer G . (2006). Cancer despite immunosurveillance: immunoselection and immunosubversion. Nat Rev Immunol 6: 715–727.

    CAS  PubMed  Google Scholar 

  • Zou W . (2005). Immunosuppressive networks in the tumour environment and their therapeutic relevance. Nat Rev Cancer 5: 263–274.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Association pour la Recherche sur le Cancer (ARC) through the Alliance pour la Recherche sur le Cancer network (ARECA), INSERM, Action Concertée Incitative ACI I MPBio (Université Paris Descartes), the National Cancer Institute (INCa), the Canceropole Ile de France, the Ville de Paris, Immucan and the European Commission (7FP, Geninca Consortium, Grant no. 202230).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W-H Fridman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pagès, F., Galon, J., Dieu-Nosjean, MC. et al. Immune infiltration in human tumors: a prognostic factor that should not be ignored. Oncogene 29, 1093–1102 (2010). https://doi.org/10.1038/onc.2009.416

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2009.416

Keywords

This article is cited by

Search

Quick links