Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • News & Views
  • Published:

Thresholds of replication stress signaling in cancer development and treatment

Oncogene-induced replication stress and DNA damage are among the hallmarks of cancer. A recent study explores how different levels of replication stress affect animal development and tumorigenesis, and how targeting of the replication stress–signaling pathway of ATR and Chk1 kinases can be exploited for selective killing of cancer cells.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Impact of different levels of ATR signaling on organismal development and tumorigenesis.
Figure 2: Distinct roles of the ATR-Chk1 pathway during multistep tumorigenesis.
Figure 3: Potential exploitation of replication stress as a target for cancer therapy.

References

  1. Luo, J., Solimini, N.L. & Elledge, S.J. Cell 136, 823–837 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Jackson, S.P. & Bartek, J. Nature 461, 1071–1078 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Halazonetis, T.D., Gorgoulis, V.G. & Bartek, J. Science 319, 1352–1355 (2008).

    Article  CAS  PubMed  Google Scholar 

  4. Murga, M. et al. Nat. Struct. Mol. Biol. 18, 1331–1335 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Cimprich, K.A. & Cortez, D. Nat. Rev. Mol. Cell Biol. 9, 616–627 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Gorgoulis, V.G. et al. Nature 434, 907–913 (2005).

    Article  CAS  PubMed  Google Scholar 

  7. Bartkova, J. et al. Nature 434, 864–870 (2005).

    Article  CAS  PubMed  Google Scholar 

  8. Di Micco, R. et al. Nature 444, 638–642 (2006).

    Article  CAS  PubMed  Google Scholar 

  9. Mallette, F.A., Gaumont-Leclerc, M.F. & Ferbeyre, G. Genes Dev. 21, 43–48 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Bartkova, J. et al. Nature 444, 633–637 (2006).

    Article  CAS  PubMed  Google Scholar 

  11. Dereli-Öz, A., Versini, G. & Halazonetis, T. Mol. Oncol. 5, 308–314 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Toledo, L.I., Murga, M. & Fernandez-Capetillo, O. Mol. Oncol. 5, 368–373 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Brown, E.J. & Baltimore, D. Genes Dev. 14, 397–402 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. de Klein, A. et al. Curr. Biol. 10, 479–482 (2000).

    Article  CAS  PubMed  Google Scholar 

  15. Takai, H. et al. Genes Dev. 14, 1439–1447 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Branzei, D. & Foiani, M. Nat. Rev. Mol. Cell Biol. 11, 208–219 (2010).

    Article  CAS  PubMed  Google Scholar 

  17. Murga, M. et al. Nat. Genet. 41, 891–898 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. O'Driscoll, M. et al. Nat. Genet. 33, 497–501 (2003).

    Article  CAS  PubMed  Google Scholar 

  19. Ruzankina, Y. et al. Cell Stem Cell 1, 113–126 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Gilad, O. et al. Cancer Res. 70, 9693–9702 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Toledo, L.I. et al. Nat. Struct. Mol. Biol 18, 721–727 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Fang, Y. et al. EMBO J. 23, 3164–3174 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Lam, M.H., Liu, Q., Elledge, S.J. & Rosen, J.M. Cancer Cell 6, 45–59 (2004).

    Article  CAS  PubMed  Google Scholar 

  24. Bartek, J., Lukas, J. & Bartkova, J. Cell Cycle 6, 2344–2347 (2007).

    Article  CAS  PubMed  Google Scholar 

  25. Harrigan, J.A. et al. J. Cell Biol. 193, 97–108 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Lukas, C. et al. Nat. Cell Biol. 13, 243–253 (2011).

    Article  CAS  PubMed  Google Scholar 

  27. Bartkova, J. et al. Oncogene 29, 5095–5102 (2010).

    Article  CAS  PubMed  Google Scholar 

  28. Poveda, A.M., Le Clech, M. & Pasero, P. Transcription 1, 99–102 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Bermejo, R. et al. Cell 146, 233–246 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors are supported by grants from the Danish Cancer Society, the Danish National Research Foundation, the Czech Ministry of Health (NS10282-3/2009, NT11065-5/2010), the Czech Ministry of Education (MSM6198959216) and the European Commission (projects Infla-Care, Biomedreg and DDResponse).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiri Bartek.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bartek, J., Mistrik, M. & Bartkova, J. Thresholds of replication stress signaling in cancer development and treatment. Nat Struct Mol Biol 19, 5–7 (2012). https://doi.org/10.1038/nsmb.2220

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.2220

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing