Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Epidemiology and risk factors for kidney cancer

Abstract

After more than two decades of rising rates, in recent years the total kidney cancer incidence worldwide has shown signs of stabilizing, or even decreasing. In adults, kidney cancer consists of renal cell carcinoma (RCC), the predominant form, and renal transitional cell carcinoma (RTCC); these types primarily arise in the renal parenchyma and renal pelvis, respectively. Although temporal trends by kidney cancer type are not well established worldwide, incidence of RCC in the US has continued to rise, mainly for early-stage tumors, while that of RTCC has declined, and total kidney cancer mortality rates have leveled. Stabilization of kidney cancer mortality rates has also been reported in Europe. These trends are consistent with reports of increasing incidental diagnoses and a downward shift in tumor stage and size in clinical series. The changing prevalence of known risk factors for RCC, including cigarette smoking, obesity, and hypertension, is also likely to affect incidence trends, although their relative impact may differ between populations. Accumulating evidence suggests an etiologic role in RCC for physical activity, alcohol consumption, occupational exposure to trichloroethylene, and high parity among women, but further research is needed into the potential causal effects of these factors. Genetic factors and their interaction with environmental exposures are believed to influence risk of developing RCC, but a limited number of studies using candidate-gene approaches have not produced conclusive results. Large consortium efforts employing genome-wide scanning technology are underway, which hold promise for novel discoveries in renal carcinogenesis.

Key Points

  • Kidney cancers among adults arise from the renal parenchyma (adenocarcinoma cell type [RCC]) or renal pelvis (renal transitional cell type [RTCC]); RCC is the predominant kidney cancer type

  • RCC incidence is high in Europe and North America and low in Asia and South America; the rarer RTCC generally show less geographic variation

  • Worldwide, kidney cancer incidence has increased since the late 1970s, until the mid-1990s when it leveled or declined in many countries

  • In the US, RTCC incidence has decreased while RCC incidence has increased—much of this rise is due to the increasing diagnosis of early-stage tumors

  • Cigarette smoking, obesity and hypertension are well-established risk factors for RCC

  • Genetic factors might also influence RCC risk; ongoing large consortium studies promise to identify novel etiologic and prognostic factors for RCC

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: International total kidney cancer incidence from 1978–1982 to 1998–2002.
Figure 2: US kidney cancer rates from 1977–1981 to 2002–2006.
Figure 3: US SEER 9 renal cell carcinoma incidence from 1977–1981 to 2002–2006.

Similar content being viewed by others

References

  1. Homer, M. J. et al. (eds). SEER Cancer Statistics Review, 1975–2006, National Cancer Institute. Bethesda, MD [online], (2009).

  2. Sudarshan, S. & Linehan, W. M. Genetic basis of cancer of the kidney. Semin. Oncol. 33, 544–551 (2006).

    Article  PubMed  Google Scholar 

  3. Cheng, L. et al. Molecular and cytogenetic insights into the pathogenesis, classification, differential diagnosis, and prognosis of renal epithelial neoplasms. Hum. Pathol. 40, 10–29 (2009).

    Article  CAS  PubMed  Google Scholar 

  4. Curado, M. P. et al. (eds) Cancer Incidence in Five Continents Vol. IX (IARC Scientific Publications No. 160, Lyon, IARC, 2007).

    Google Scholar 

  5. Stefanovic, V. & Radovanovic, Z. Balkan endemic nephropathy and associated urothelial cancer. Nat. Clin. Pract. Urol. 5, 105–112 (2008).

    Article  PubMed  Google Scholar 

  6. Cook, M. B. et al. Sex disparities in cancer incidence by period and age. Cancer Epidemiol. Biomarkers Prev. 18, 1174–1182 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Scélo, G. & Brennan, P. The epidemiology of bladder and kidney cancer. Nat. Clin. Pract. Urol. 4, 205–217 (2007).

    Article  PubMed  Google Scholar 

  8. Levi, F. et al. The changing pattern of kidney cancer incidence and mortality in Europe. BJU Int. 101, 949–958 (2008).

    Article  PubMed  Google Scholar 

  9. Devesa, S. S. et al. Comparison of the descriptive epidemiology of urinary tract cancers. Cancer Causes Control 1, 133–141 (1990).

    Article  CAS  PubMed  Google Scholar 

  10. Parkin, D. M., Whelan, S. L., Ferlay, J. & Storm, H. Cancer Incidence in Five Continents Vol. I–VIII (IARC CancerBase No. 7, Lyon, 2005).

    Google Scholar 

  11. Surveillance Research Program, National Cancer Institute SEER*Stat software. Surveillance, Epidemiology, and End Results (SEER): SEER*Stat Database: Total US, 1969–2006 Counties, National Cancer Institute, DCCPS, Surveillance Research Program, Cancer Statistics Branch [online], (2009).

  12. Katz, D. L., Zheng, T., Holford, T. R. & Flannery, J. Time trends in the incidence of renal carcinoma: analysis of Connecticut tumor registry data, 1935–1989. Int. J. Cancer 58, 57–63 (1994).

    Article  CAS  PubMed  Google Scholar 

  13. Wihlborg, A. & Johansen, C. Incidences of kidney, pelvis, ureter, and bladder cancer in a nationwide, population-based cancer registry, Denmark, 1944–2003. Urology doi:10.1016/j.urology.2009.05.013.

  14. Kane, C. J., Mallin, K., Ritchey, J., Cooperberg, M. R. & Carroll, P. R. Renal cell cancer stage migration: analysis of the National Cancer Data Base. Cancer 113, 78–83 (2008).

    Article  PubMed  Google Scholar 

  15. Sánchez-Martín, F. M., Millán-Rodríguez, F., Urdaneta-Pignalosa, G., Rubio-Briones, J. & Villavicencio-Mavrich, H. Small renal masses: incidental diagnosis, clinical symptoms, and prognostic factors. Adv. Urol. 2008, 310694 (2008).

    Article  Google Scholar 

  16. Chow, W.-H. & Devesa, S. S. Contemporary epidemiology of renal cell cancer. Cancer J. 14, 288–301 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Surveillance, Epidemiology, and End Results (SEER) SEER*Stat Database: Mortality—All COD: Total US, 1969–2006 Counties, National Cancer Institute, DCCPS, Surveillance Research Program, Cancer Statistics Branch, [online], Underlying mortality data—NCHS, http://www.cdc.gov/nchs Surveillance Research Program, National Cancer Institute SEER*Stat software, http://www.seer.cancer.gov/seerstat (2009).

  18. McLaughlin, J. K., Lipworth, l., Tarone, R. E. & Blot, W. J. in Cancer Epidemiology and Prevention 3rd edn (eds Schottenfeld, D. & Fraumeni, J. F. Jr) (New York, Oxford University Press, 2006).

    Google Scholar 

  19. Zeegers, M. P. A., Tan, F. E. S., Dorant, E. & van den Brandt, P. A. The impact of characteristics of cigarette smoking on urinary tract cancer risk: a meta-analysis of epidemiologic studies. Cancer 89, 630–639 (2000).

    Article  CAS  PubMed  Google Scholar 

  20. IARC Monographs on the Evaluation of Carcinogenesis risks to Humans. Suppl. 7: Overall evaluations of carcinogenicity: an updating of IARC Monographs Vol. 1–42 International Agency for Research on Cancer, Lyon (1987).

  21. IARC Monographs on the Evaluation of Carcinogenesis Risks to Humans: Tobacco smoke and involuntary smoking. International Agency for Research on Cancer, Lyon, 83 (2004).

  22. McCredie, M. & Stewart, J. H. Risk factors for kidney cancer in New South Wales—I. Cigarette smoking. Eur. J. Cancer 28A, 2050–2054 (1992).

    Article  CAS  PubMed  Google Scholar 

  23. McLaughlin, J. K. et al. Cigarette smoking and cancers of the renal pelvis and ureter. Cancer Res. 52, 254–257 (1992).

    CAS  PubMed  Google Scholar 

  24. Hinson, J. A. Reactive metabolites of phenacetin and acetaminophen: a review. Environ. Health Perspect. 49, 71–79 (1983).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Henrich, W. L. et al. Analgesics and the kidney: summary and recommendations to the Scientific Advisory Board of the National Kidney Foundation from an ad hoc committee of the National Kidney Foundation. Am. J. Kidney Dis. 27, 162–165 (1996).

    Article  CAS  PubMed  Google Scholar 

  26. Friis, S. et al. Cancer risk in persons receiving prescriptions for paracetamol: a Danish cohort study. Int. J. Cancer 97, 96–101 (2002).

    Article  CAS  PubMed  Google Scholar 

  27. Mihatsch, M. J., Khanlari, B. & Brunner, F. P. Obituary to analgesic nephropathy—an autopsy study. Nephrol. Dial. Transplant 21, 3139–3145 (2006).

    Article  PubMed  Google Scholar 

  28. Michielsen, P. et al. Non-phenacetin analgesics and analgesic nephropathy. Nephrol. Dial. Transplant 24, 1253–1259 (2009).

    Article  CAS  PubMed  Google Scholar 

  29. Nortier, J. L. et al. Urothelial carcinoma associated with the use of a Chinese herb (Aristolochia fangchi). N. Engl. J. Med. 342, 1686–1692 (2000).

    Article  CAS  PubMed  Google Scholar 

  30. Chen, C.-J., Chen, C. W., Wu, M.-M. & Kuo, T.-L. Cancer potential in liver, lung, bladder and kidney due to ingested inorganic arsenic in drinking water. Br. J. Cancer 66, 888–892 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Hopenhayn-Rich, C., Biggs, M. L. & Smith, A. H. Lung and kidney cancer mortality associated with arsenic in drinking water in Córdoba, Argentina. Int. J. Epidemiol. 27, 561–569 (1998).

    Article  CAS  PubMed  Google Scholar 

  32. Yuan, Y. et al. Kidney cancer mortality: fifty-year latency patterns related to arsenic exposure. Epidemiology 21, 103–108 (2010).

    Article  PubMed  Google Scholar 

  33. Guo, H.-R., Chiang, H.-S., Hu, H., Lipsitz, S. R. & Monson, R. R. Arsenic in drinking water and incidence of urinary cancers. Epidemiology 8, 545–550 (1997).

    Article  CAS  PubMed  Google Scholar 

  34. Bunnell, J. E. et al. Possible linkages between lignite aquifers, pathogenic microbes, and renal pelvic cancer in northwestern Louisiana, USA. Environ. Geochem. Health 28, 577–587 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kurttio, P., Pukkala, E., Kahelin, H., Auvinen, A. & Pekkanen, J. Arsenic concentrations in well water and risk of bladder and kidney cancer in Finland. Environ. Health Perspect. 107, 705–710 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Meliker, J. R., Wahl, R. L., Cameron, L. L. & Nriagu, J. O. Arsenic in drinking water and cerebrovascular disease, diabetes mellitus, and kidney disease in Michigan: a standardized mortality ratio analysis. Environ. Health 6, 4 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Baastrup, R. et al. Arsenic in drinking-water and risk for cancer in Denmark. Environ. Health Perspect. 116, 231–237 (2008).

    Article  CAS  PubMed  Google Scholar 

  38. Han, Y.-Y., Weissfeld, J. L., Davis, D. L. & Talbott, E. O. Arsenic levels in ground water and cancer incidence in Idaho: an ecologic study. Int. Arch. Occup. Environ. Health 82, 843–849 (2009).

    Article  CAS  PubMed  Google Scholar 

  39. Liaw, K.-L. et al. Possible relation between hypertension and cancers of the renal pelvis and ureter. Int. J. Cancer 70, 265–268 (1997).

    Article  CAS  PubMed  Google Scholar 

  40. Chow, W.-H. et al. Risk of urinary tract cancers following kidney or ureter stones. J. Natl Cancer Inst. 89, 1453–1457 (1997).

    Article  CAS  PubMed  Google Scholar 

  41. Chow, W.-H., Gridley, G., Fraumeni, J. F. Jr & Järvholm, B. Obesity, hypertension, and the risk of kidney cancer in men. N. Engl. J. Med. 343, 1305–1311 (2000).

    Article  CAS  PubMed  Google Scholar 

  42. Brock, K. E. et al. Dietary factors and cancers of the renal pelvis and ureter. Cancer Epidemiol. Biomarkers Prev. 15, 1051–1053 (2006).

    Article  CAS  PubMed  Google Scholar 

  43. Wilson, R. T. et al. Shared occupational risks for transitional cell cancer of the bladder and renal pelvis among men and women in Sweden. Am. J. Ind. Med. 51, 83–99 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  44. US Department of Health and Human Services. The Health Consequences of Smoking: A report of the Surgeon General (Centers for Disease Control and Prevention, National Center for Chronic Disease Prevention and Health Promotion, Office on Smoking and Health. Atlanta, GA, 2004).

  45. Hunt, J. D. et al. Renal cell carcinoma in relation to cigarette smoking: meta-analysis of 24 studies. Int. J. Cancer 114, 101–108 (2005).

    Article  CAS  PubMed  Google Scholar 

  46. Thun, M. J., DeLancey, J. O., Center, M. M., Jemal, A. & Ward, E. M. The global burden of cancer: priorities for prevention. Carcinogenesis 31, 100–110 (2010).

    Article  CAS  PubMed  Google Scholar 

  47. Forey, B., Hamling, J., Lee, P. & Wald, N. (eds) International Smoking Statistics. A Collection of Historical Data from 30 Economically Developed Countries 2nd edn (London, Oxford University Press, 2002).

    Book  Google Scholar 

  48. Sharifi, N. & Farrar, W. L. Perturbations in hypoxia detection: a shared link between hereditary and sporadic tumor formation? Med. Hypotheses 66, 732–735 (2006).

    Article  PubMed  Google Scholar 

  49. Clague, J. et al. Sensitivity to NNKOAc is associated with renal cancer risk. Carcinogenesis 30, 706–710 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Zhu, Y. et al. BPDE induced lymphocytic chromosome 3p deletions may predict renal cell carcinoma risk. J. Urol. 179, 2416–2421 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Calle, E. E. & Kaaks, R. Overweight, obesity and cancer: epidemiological evidence and proposed mechanisms. Nat. Rev. Cancer 4, 579–591 (2004).

    Article  CAS  PubMed  Google Scholar 

  52. Oh, S. W., Yoon, Y. S. & Shin, S. A. Effects of excess weight on cancer incidences depending on cancer sites and histologic findings among men: Korea National Health Insurance Corporation Study. J. Clin. Oncol. 23, 4742–4754 (2005).

    Article  PubMed  Google Scholar 

  53. Pischon, T. et al. Body size and risk of renal cell carcinoma in the European Prospective Investigation into Cancer and Nutrition (EPIC). Int. J. Cancer 118, 728–738 (2006).

    Article  CAS  PubMed  Google Scholar 

  54. Reeves, G. K. et al. Cancer incidence and mortality in relation to body mass index in the Million Women Study: cohort study. BMJ 335, 1134–1144 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Adams, K. F. et al. Body size and renal cell cancer incidence in a large US cohort study. Am. J. Epidemiol. 168, 268–277 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Renehan, A. G. et al. Body-mass index and incidence of cancer: a systematic review and meta-analysis of prospective observational studies. Lancet 371, 569–578 (2008).

    Article  PubMed  Google Scholar 

  57. World Cancer Research Fund, American Institute for Cancer Research. Food, Nutrition, Physical Activity, and the Prevention of Cancer: A Global Perspective (AICR, Washington DC, 2007).

  58. Nguyen, D. M. & El-Serag, H. B. The epidemiology of obesity. Gastroenterol. Clin. N. Am. 39, 1–7 (2010).

    Article  CAS  Google Scholar 

  59. Popkin, B. M. The nutrition transition: an overview of world patterns of change. Nutr. Rev. 62, S140–S143 (2004).

    Article  PubMed  Google Scholar 

  60. Flegal, K. M., Carroll, M. D., Ogden, C. L. & Curtin, L. R. Prevalence and trends in obesity among US adults, 1999–2008. JAMA 303, 235–241 (2010).

    Article  CAS  PubMed  Google Scholar 

  61. Klinghoffer, Z., Yang, B., Kapoor, A. & Pinthus, J. H. Obesity and renal cell carcinoma: epidemiology, underlying mechanisms and management considerations. Expert Rev. Anticancer Ther. 9, 975–987 (2009).

    Article  PubMed  Google Scholar 

  62. Kearney, P. M. et al. Global burden of hypertension: analysis of worldwide data. Lancet 365, 217–223 (2005).

    Article  PubMed  Google Scholar 

  63. Mittal, B. V. & Singh, A. K. Hypertension in the developing world: challenges and opportunities. Am. J. Kidney Dis. 55, 590–598 (2010).

    Article  PubMed  Google Scholar 

  64. Steffens, J. et al. Renin-producing renal cell carcinomas—clinical and experimental investigations on a special form of renal hypertension. Urol. Res. 20, 111–115 (1992).

    Article  CAS  PubMed  Google Scholar 

  65. Maitland, M. L. et al. Ambulatory monitoring detects sorafenib-induced blood pressure elevations on the first day of treatment. Clin. Cancer Res. 15, 6250–6257 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Choi, M. Y. et al. The effect of hypertension on the risk for kidney cancer in Korean men. Kidney Int. 67, 647–652 (2005).

    Article  PubMed  Google Scholar 

  67. Vatten, L. J. et al. Blood pressure and renal cancer risk: the HUNT Study in Norway. Br. J. Cancer 97, 112–114 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Weikert, S. et al. Blood pressure and risk of renal cell carcinoma in the European Prospective Investigation into Cancer and Nutrition. Am. J. Epidemiol. 167, 438–446 (2008).

    Article  PubMed  Google Scholar 

  69. Nicodemus, K. K., Sweeney, C. & Folsom, A. R. Evaluation of dietary, medical and lifestyle risk factors for incident kidney cancer in postmenopausal women. Int. J. Cancer 108, 115–121 (2004).

    Article  CAS  PubMed  Google Scholar 

  70. Flaherty, K. T. et al. A prospective study of body mass index, hypertension, and smoking and the risk of renal cell carcinoma (United States). Cancer Causes Control 16, 1099–1106 (2005).

    Article  PubMed  Google Scholar 

  71. Setiawan, V. W. et al. Risk factors for renal cell cancer: the multiethnic cohort. Am. J. Epidemiol. 166, 932–940 (2007).

    Article  PubMed  Google Scholar 

  72. Schouten, L. J. et al. Hypertension, antihypertensives and mutations in the von Hippel–Lindau gene in renal cell carcinoma: results from the Netherlands Cohort Study. J. Hypertens. 23, 1997–2004 (2005).

    Article  CAS  PubMed  Google Scholar 

  73. Gago-Dominguez, M. et al. Lipid peroxidation: a novel and unifying concept of the etiology of renal cell carcinoma (United States). Cancer Causes Control 13, 287–293 (2002).

    Article  PubMed  Google Scholar 

  74. Inoue, M. et al. Diabetes mellitus and the risk of cancer: results from a large-scale population-based cohort study in Japan. Arch. Intern. Med. 166, 1871–1877 (2009).

    Article  Google Scholar 

  75. Vajdic, C. M. et al. Cancer incidence before and after kidney transplantation. JAMA 296, 2823–2831 (2006).

    Article  CAS  PubMed  Google Scholar 

  76. Stewart, J. H. et al. The pattern of excess cancer in dialysis and transplantation. Nephrol. Dial. Transplant. 24, 3225–3231 (2009).

    Article  PubMed  Google Scholar 

  77. Klatte, T. et al. Features and outcomes of renal cell carcinoma of native kidneys in renal transplant recipients. BJU Int. doi:10.1111/j.1464–410X.2009.08941.x.

  78. Bonsib, S. M. Renal cystic diseases and renal neoplasms: a mini-review. Clin. J. Am. Soc. Nephrol. 4, 1998–2007 (2009).

    Article  PubMed  Google Scholar 

  79. Bassal, M. et al. Risk of selected subsequent carcinomas in survivors of childhood cancer: a report from the Childhood Cancer Survivor Study. J. Clin. Oncol. 24, 476–483 (2006).

    Article  PubMed  Google Scholar 

  80. Wiklund, F. et al. Risk of bilateral renal cell cancer. J. Clin. Oncol. 27, 3737–3741 (2009).

    Article  PubMed  Google Scholar 

  81. Lambe, M. et al. Pregnancy and risk of renal cell cancer: a population-based study in Sweden. Br. J. Cancer 86, 1425–1429 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

  82. Kabat, G. C. et al. A cohort study of reproductive and hormonal factors and renal cell cancer risk in women. Br. J. Cancer 96, 845–849 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Molokwu, J. C., Prizment, A. E. & Folsom, A. R. Reproductive characteristics and risk of kidney cancer: Iowa Women's Health Study. Maturitas 58, 156–163 (2007).

    Article  PubMed  Google Scholar 

  84. Lee, J. E., Hankinson, S. E. & Cho, E. Reproductive factors and risk of renal cell cancer: The Nurses' Health Study. Am. J. Epidemiol. 169, 1243–1250 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  85. Setiawan, V. W., Kolonel, L. N. & Henderson, B. E. Menstrual and reproductive factors and risk of renal cell cancer in the Multiethnic Cohort. Cancer Epidemiol. Biomarkers Prev. 18, 337–340 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. McTiernan, A. Mechanisms linking physical activity with cancer. Nat. Rev. Cancer 8, 205–211 (2008).

    Article  CAS  PubMed  Google Scholar 

  87. van Dijk, B. A. et al. Relation of height, body mass, energy intake, and physical activity to risk of renal cell carcinoma: results from the Netherlands Cohort Study. Am. J. Epidemiol. 160, 1159–1167 (2004).

    Article  PubMed  Google Scholar 

  88. Mahabir, S. et al. Physical activity and renal cell cancer risk in a cohort of male smokers. Int. J. Cancer 108, 600–605 (2004).

    Article  CAS  PubMed  Google Scholar 

  89. Moore, S. C. et al. Physical activity during adulthood and adolescence in relation to renal cell cancer. Am. J. Epidemiol. 168, 149–157 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  90. Richardson, C. R. et al. A meta-analysis of pedometer-based walking interventions and weight loss. Ann. Fam. Med. 6, 69–77 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  91. Pialoux, V., Brown, A. D., Leigh, R., Friedenreich, C. M. & Poulin, M. J. Effect of cardiorespiratory fitness on vascular regulation and oxidative stress in postmenopausal women. Hypertension 54, 1014–1020 (2009).

    Article  CAS  PubMed  Google Scholar 

  92. Solomon, T. P. J. et al. Randomized trial on the effects of a 7-d low-glycemic diet and exercise intervention on insulin resistance in older obese humans. Am. J. Clin. Nutr. 90, 1222–1229 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Lee, J. E. et al. Intakes of fruit, vegetables, and carotenoids and renal cell cancer risk: a pooled analysis of 13 prospective studies. Cancer Epidemiol. Biomarkers Prev. 18, 1730–1739 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Lee, J. E. et al. Intakes of fruits, vegetables, vitamins A, C, and E, and carotenoids and risk of renal cell cancer. Cancer Epidemiol. Biomarkers Prev. 15, 2445–2452 (2006).

    Article  CAS  PubMed  Google Scholar 

  95. Weikert, S. et al. Fruits and vegetables and renal cell carcinoma: findings from the European Prospective Investigation into Cancer and Nutrition (EPIC). Int. J. Cancer 118, 8133–8139 (2006).

    Article  CAS  Google Scholar 

  96. van Dijk, B. A. et al. Carotenoid and vitamin intake, von Hippel–Lindau gene mutations and sporadic renal cell carcinoma. Cancer Causes Control 19, 125–134 (2008).

    Article  PubMed  Google Scholar 

  97. Bertoia, M. et al. No association between fruit, vegetables, antioxidant nutrients and risk of renal cell carcinoma. Int. J. Cancer 126, 1504–1512 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Lee, J. E. et al. Fat, protein, and meat consumption and renal cell cancer risk: a pooled analysis of 13 prospective studies. J. Natl Cancer Inst. 100, 1695–1706 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Allen, N. E. et al. A prospective analysis of the association between macronutrient intake and renal cell carcinoma in the European Prospective Investigation into Cancer and Nutrition. Int. J. Cancer 125, 982–987 (2009).

    Article  CAS  PubMed  Google Scholar 

  100. Alexander, D. D. & Cushing, C. A. Quantitative assessment of red meat or processed meat consumption and kidney cancer. Cancer Detect. Prev. 32, 340–351 (2009).

    Article  PubMed  Google Scholar 

  101. Prentice, R. L. et al. Biomarker-calibrated energy and protein consumption and increased cancer risk among postmenopausal women. Am. J. Epidemiol. 169, 977–989 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  102. IARC Monographs on the Evaluation of Carcinogenic Risks to Humans: Some industrial chemicals. International Agency for Research on Cancer, Lyon, 60 (1994).

  103. Törnqvist, M. Acrylamide in food: the discovery and its implications: a historical perspective. Adv. Exp. Med. Biol. 561, 1–19 (2005).

    Article  PubMed  Google Scholar 

  104. Mucci, L. A. & Adami, H. O. The plight of the potato: Is dietary acrylamide a risk factor for human cancer? J. Natl Cancer Inst. 101, 618–621 (2009).

    Article  CAS  PubMed  Google Scholar 

  105. Mucci, L. A., Dickman, P. W., Steineck, G., Adami, H.-O. & Augustsson, K. Dietary acrylamide and cancer of the large bowel, kidney, and bladder: absence of an association in a population-based study in Sweden. Br. J. Cancer 88, 84–89 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Mucci, L. A., Lindblad, P., Steineck, G. & Adami, H.-O. Dietary acrylamide and risk of renal cell cancer. Int. J. Cancer 109, 774–776 (2004).

    Article  CAS  PubMed  Google Scholar 

  107. Hogervorst, J. G., Schouten, L. J., Konings, E. J., Goldbohm, R. A. & van den Brandt, P. A. Dietary acrylamide intake and the risk of renal cell, bladder, and prostate cancer. Am. J. Clin. Nutr. 87, 1428–1438 (2008).

    Article  CAS  PubMed  Google Scholar 

  108. Lee, J. E. et al. Alcohol intake and renal cell cancer in a pooled analysis of 12 prospective studies. J. Natl Cancer Inst. 99, 801–810 (2007).

    Article  PubMed  Google Scholar 

  109. Lee, J. E. et al. Intakes of coffee, tea, milk, soda and juice and renal cell cancer in a pooled analysis of 13 prospective studies. Int. J. Cancer 121, 2246–2253 (2007).

    Article  CAS  PubMed  Google Scholar 

  110. IARC Monographs on the Evaluation of Carcinogenic Risks to Humans: Dry cleaning, some chlorinated solvents and other industrial chemicals. International Agency for Research on Cancer, Lyon, 63 (1995).

  111. Chiu, W. A., Caldwell, J. C., Keshava, N. & Scott, C. S. Key scientific issues in the health risk assessment of trichloroethylene. Environ. Health Perspect. 114, 1445–1449 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Scott, C. S. & Chiu, W. A. Trichloroethylene cancer epidemiology: a consideration of select issues. Environ. Health Perspect. 114, 1471–1478 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Kelsh, M. A., Alexander, D. D., Mink, P. J. & Mandel, J. H. Occupational trichloroethylene exposure and kidney cancer: a meta-analysis. Epidemiology 21, 95–102 (2010).

    Article  PubMed  Google Scholar 

  114. Caldwell, J. C., Keshava, N. & Evans, M. V. Difficulty of mode of action determination for trichloroethylene: an example of complex interactions of metabolites and other chemical exposures. Environ. Mol. Mutag. 49, 142–154 (2008).

    Article  CAS  Google Scholar 

  115. Hu, H. et al. The relationship of bone and blood lead to hypertension. The Normative Aging Study. JAMA 275, 1171–1176 (1996).

    Article  CAS  PubMed  Google Scholar 

  116. Tellez-Plaza, M., Navas-Acien, A., Crainiceanu, C. M. & Guallar, E. Cadmium exposure and hypertension in the 1999–2004 National Health and Nutrition Examination Survey (NHANES). Environ. Health Perspect. 116, 51–56 (2008).

    Article  CAS  PubMed  Google Scholar 

  117. Huang, M. et al. Risk assessment of low-level cadmium and arsenic on the kidney. J. Toxicol. Environ. Health 72, 1493–1498 (2009).

    Article  CAS  Google Scholar 

  118. Navas-Acien, A. et al. Blood cadmium and lead and chronic kidney disease in US adults: a joint analysis. Am. J. Epidemiol. 170, 1156–1164 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  119. Kaelin, W. G. Jr. von Hippel–Lindau disease. Annu. Rev. Pathol. Mech. Dis. 2, 145–173 (2007).

    Article  CAS  Google Scholar 

  120. Clague, J. et al. Family history and risk of renal cell carcinoma: results from a case-control study and systematic meta-analysis. Cancer Epidemiol. Biomarkers Prev. 18, 801–807 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  121. Shiao, Y.-H. Genetic signature for human risk assessment: lessons from trichloroethylene. Environ. Mol. Mutag. 50, 68–77 (2009).

    Article  CAS  Google Scholar 

  122. Brauch, H. et al. Trichloroethylene exposure and sporadic somatic mutations in patients with renal cell carcinoma. J. Natl Cancer Inst. 91, 854–861 (1999).

    Article  CAS  PubMed  Google Scholar 

  123. Charbotel, B. et al. Trichloroethylene exposure and somatic mutations of the VHL gene in patients with renal cell carcinoma. J. Occup. Med. Toxicol. 2, 13–19 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Nickerson, M. L. et al. Improved identification of von Hippel–Lindau gene alterations in clear cell renal tumors. Clin. Cancer Res. 14, 4726–4734 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Chen, M. et al. Genome-wide profiling of chromosomal alterations in renal cell carcinoma using high-density single nucleotide polymorphism arrays. Int. J. Cancer 125, 2342–2348 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Wu, X. et al. Telomere dysfunction: a potential cancer predisposition factor. J. Natl Cancer Inst. 95, 1211–1218 (2003).

    Article  CAS  PubMed  Google Scholar 

  127. Xing, J. et al. Mitochondrial DNA content: its genetic heritability and association with renal cell carcinoma. J. Natl Cancer Inst. 100, 1104–1112 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Simic, T., Savic-Radojevic, A., Pljesa-Ercegovac, M., Matic, M. & Mimic-Oka, J. Glutathione S-transferases in kidney and urinary bladder tumors. Nat. Rev. Urol. 6, 281–289 (2009).

    Article  CAS  PubMed  Google Scholar 

  129. Semenza, J. C. et al. Gene–environment interactions in renal cell carcinoma. Am. J. Epidemiol. 153, 851–859 (2001).

    Article  CAS  PubMed  Google Scholar 

  130. García-Closas, M. et al. NAT2 slow acetylation, GSTM1 null genotype, and risk of bladder cancer: results from the Spanish Bladder Cancer Study and meta-analyses. Lancet 366, 649–659 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Bouillon, R. et al. Vitamin D and cancer. J. Steroid Biochem. Mol. Biol. 102, 156–162 (2006).

    Article  CAS  PubMed  Google Scholar 

  132. Valdivielso, J. M. & Fernandez, E. Vitamin D receptor polymorphisms and diseases. Clin. Chim. Acta 371, 1–12 (2006).

    Article  CAS  PubMed  Google Scholar 

  133. Karami, S. et al. Analysis of SNPs and haplotypes in vitamin D pathway genes and renal cancer risk. PLoS ONE 4, e7013 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Moore, L. E. et al. Apolipoprotein E/C1 locus variants modify renal cell carcinoma risk. Cancer Res. 69, 8001–8008 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Andreotti, G. et al. Variants in blood pressure genes and the risk of renal cell carcinoma. Carcinogenesis doi:10.1093/carcin/bgp321.

  136. Dong, L. M. et al. An analysis of growth, differentiation and apoptosis genes with risk of renal cancer. PLoS ONE 4, e4895 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors express their appreciation to the cancer registries contributing data to the IARC Cancer Incidence in Five Continents and the NCI Surveillance, Epidemiology, and End Results (SEER) Program, and to the dedicated program staff of the IARC and NCI. They also thank David Check of the Division of Cancer Epidemiology and Genetics, NCI for figure preparation using tabulated data generated from NCI's SEER and IARC's Cancer Incidence in Five Continents series. This Review was supported by the Intramural Research Program of the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wong-Ho Chow.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chow, WH., Dong, L. & Devesa, S. Epidemiology and risk factors for kidney cancer. Nat Rev Urol 7, 245–257 (2010). https://doi.org/10.1038/nrurol.2010.46

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrurol.2010.46

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer