Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Alzheimer disease therapy—moving from amyloid-β to tau

Abstract

Disease-modifying treatments for Alzheimer disease (AD) have focused mainly on reducing levels of amyloid-β (Aβ) in the brain. Some compounds have achieved this goal, but none has produced clinically meaningful results. Several methodological issues relating to clinical trials of these agents might explain this failure; an additional consideration is that the amyloid cascade hypothesis—which places amyloid plaques at the heart of AD pathogenesis—does not fully integrate a large body of data relevant to the emergence of clinical AD. Importantly, amyloid deposition is not strongly correlated with cognition in multivariate analyses, unlike hyperphosphorylated tau, neurofibrillary tangles, and synaptic and neuronal loss, which are closely associated with memory deficits. Targeting tau pathology, therefore, might be more clinically effective than Aβ-directed therapies. Furthermore, numerous immunization studies in animal models indicate that reduction of intracellular levels of tau and phosphorylated tau is possible, and is associated with improved cognitive performance. Several tau-related vaccines are in advanced preclinical stages and will soon enter clinical trials. In this article, we present a critical analysis of the failure of Aβ-directed therapies, discuss limitations of the amyloid cascade hypothesis, and suggest the potential value of tau-targeted therapy for AD.

Key Points

  • The efficacy of amyloid-β (Aβ) immunization observed in animal models of Alzheimer disease (AD) is not reflected in patients with this disease

  • Immunization against Aβ in patients with mild-to-moderately severe AD reduced levels of Aβ peptides, but failed to improve cognitive function

  • Levels of the microtubule-associated protein tau, hyperphosphorylated tau, and the number of neurofibrillary tangles, synapses and neurons (but not Aβ load) correlate strongly with cognition in AD

  • These findings and results of clinical trials suggest that Aβ might not be the best therapeutic target in AD

  • Tau immunotherapy has been shown to reduce tau pathology and improve cognitive deficits in animal models of AD

  • The amyloid cascade theory of AD pathogenesis remains a useful but unproven hypothesis that should be revised to emphasize the crucial role of tau as a candidate target for AD therapy

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Modified amyloid cascade hypothesis schematic, emphasizing the role of tau by placing it at the centre of the cascade leading to dementia.
Figure 2: Schematic representation of tau-related processes that are potential targets for therapeutic intervention.

Similar content being viewed by others

References

  1. Hardy, J. A. & Higgins, G. A. Alzheimer's disease: the amyloid cascade hypothesis. Science 256, 184–185 (1992).

    Article  CAS  PubMed  Google Scholar 

  2. Ferreira, S. T. & Klein, W. L. The Aβ oligomer hypothesis for synapse failure and memory loss in Alzheimer's disease. Neurobiol. Learn. Mem. 96, 529–543 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Giacobini, E. & Becker, R. E. One hundred years after discovery of Alzheimer's disease. A turning point for therapy? J. Alzheimers Dis. 12, 37–52 (2007).

    Article  CAS  PubMed  Google Scholar 

  4. Becker, R. E. & Greig, N. H. Why so few drugs for Alzheimer's disease? Are methods failing drugs? Curr. Alzheimer Res. 7, 27–35 (2010).

    Article  Google Scholar 

  5. Becker, R. E., Greig, H. H. & Giacobini, E. Why do so many drugs for Alzheimer's disease fail in development? Time for new methods and new practices? J. Alzheimers Dis. 15, 303–325 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Becker, R. E. & Greig, H. H. Increasing the success rate for Alzheimer's disease drug discovery and development. Expert Opin. Drug Discov. 4, 367–370 (2012).

    Article  CAS  Google Scholar 

  7. Hardy, J. Testing times for the “amyloid cascade hypothesis”. Neurobiol. Aging 6, 1073–1074 (2002).

    Article  Google Scholar 

  8. Hardy, J. Alzheimer disease: the amyloid cascade hypothesis: an update and reappraisal. J. Alzheimers Dis. 9, 151–153 (2006).

    Article  CAS  PubMed  Google Scholar 

  9. Xia, W., Wong, S. T., Hanlon, E. & Morin, P. γ-Secretase modulator in Alzheimer's disease: shifting the end. J. Alzheimers Dis. 31, 685–696 (2012).

    Article  CAS  PubMed  Google Scholar 

  10. Green, R. C. et al. Effect of tarenflurbil on cognitive decline and activities of daily living in patients with mild Alzheimer disease: a randomized controlled trial. JAMA 302, 2557–2564 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Henley, D. B., May, P. C., Dean, R. A. & Siemers, E. R. Development of semagacestat (LY450139), a functional gamma-secretase inhibitor, for the treatment of Alzheimer's disease. Exp. Opin. Pharmacother. 10, 1657–1674 (2009).

    Article  CAS  Google Scholar 

  12. Eli Lilly and Company. Lilly halts development of semagacestat for Alzheimer's disease based on preliminary results of phase III clinical trials. Eli Lilly and Company[online], (2010).

  13. Coric, V. et al. Safety and tolerability of the γ-secretase inhibitor avagacestat in a phase 2 study of mild to moderate Alzheimer disease. Arch. Neurol. 69, 1430–1440 (2012).

    Article  PubMed  Google Scholar 

  14. Atwal, J. K. et al. A therapeutic antibody targeting BACE1 inhibits amyloid-β production in vivo. Sci. Transl. Med. 3, 84ra43 (2011).

    Article  PubMed  CAS  Google Scholar 

  15. US National Library of Medicine. ClinicalTrials.gov[online], (2013).

  16. US National Library of Medicine. ClinicalTrials.gov[online], (2013).

  17. Dodel, R. et al. Intravenous immunoglobulin for treatment of mild-to-moderate Alzheimer's disease: a phase 2, randomized, double-blind, placebo-controlled, dose-finding trial. Lancet Neurol. 12, 233–243 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Buttini, M. et al. Beta-amyloid immunotherapy prevents synaptic degeneration in a mouse model of Alzheimer's disease. J. Neurosci. 40, 9096–9101 (2005).

    Article  CAS  Google Scholar 

  19. Gilman, S. M., Koller, M. & Black, R. S. Clinical effects of Aβ immunization (AN1792) in patients with AD in an interrupted trial. Neurology 64, 1553–1562 (2005).

    Article  CAS  PubMed  Google Scholar 

  20. Boche, D., Denham, N., Holmes, C. & Nicoll, J. A. Neuropathology after active Aβ42 immunotherapy: implications for Alzheimer's disease pathogenesis. Acta Neuropathol. 120, 369–384 (2010).

    Article  CAS  PubMed  Google Scholar 

  21. Bard, F. et al. Peripherally administered antibodies against amyloid β-peptide enter the central nervous system and reduce pathology in a mouse model of Alzheimer disease. Nat. Med. 6, 916–919 (2000).

    Article  CAS  PubMed  Google Scholar 

  22. Rinne, J. O. et al. 11C-PIB PET assessment of change in fibrillar amyloid-beta load in patients with Alzheimer's disease treated with bapineuzumab: a phase 2, double-blind, placebo-controlled, ascending-dose study. Lancet Neurol. 4, 363–372 (2010).

    Article  CAS  Google Scholar 

  23. Blennow, K. et al. Effect of immunotherapy with bapineuzumab on cerebrospinal fluid biomarkers levels in patients with mild to moderate Alzheimer disease. Arch. Neurol. 69, 1002–1010 (2012).

    Article  PubMed  Google Scholar 

  24. Business Wire. Pfizer announces topline results of first of four studies in bapineuzumab phase 3 program. Business Wire[online], (2012).

  25. Samadi, H. & Sultzer, D. Solanezumab for Alzheimer's disease. Expert Opin. Biol. Ther. 11, 787–798 (2011).

    Article  CAS  PubMed  Google Scholar 

  26. Dodart, J. C. et al. Immunization reverses memory deficits without reducing brain Aβ burden in Alzheimer's disease model. Nat. Neurosci. 5, 452–457 (2002).

    Article  CAS  PubMed  Google Scholar 

  27. Eli Lilly and Company. Lilly announces detailed results of phase 3 Solanezumab EXPEDITIONS studies following a presentation of the independent analyses by the Alzheimer's Disease Cooperative Study (ADCS). Eli Lilly and Company[online], (2012).

  28. Tariot, P. N. Maintaining cognitive function in Alzheimer disease: how effective are current treatments? Alzheimer Dis. Assoc. Disord. 15 (Suppl. 1), S26–S33 (2001).

    Article  CAS  PubMed  Google Scholar 

  29. Giacobini, E. In The Brain Cholinergic System (eds Giacobini, E. & Pepeu, G. C.) 235–264 (Informa HealthCare, 2006).

    Book  Google Scholar 

  30. Mullane, K. & Williams, M. Alzheimer's therapeutics: continued clinical failures question the validity of the amyloid hypothesis—but what lies beyond? Biochem. Pharmacol. 85, 289–305 (2013).

    Article  CAS  PubMed  Google Scholar 

  31. Aisen, P. S. et al. Tramiprosate in mild-to-moderate Alzheimer's disease—a randomized, double-blind, placebo-controlled, multi-centre study (the Alphase Study). Arch. Med. Sci. 7, 102–111 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Lannfelt, L. et al. Safety, efficacy, and biomarker findings of PBT2 in targeting Aβ as a modifying therapy for Alzheimer's disease: a phase IIa, double-blind, randomised, placebo-controlled trial. Lancet Neurol. 9, 779–786 (2008).

    Article  CAS  Google Scholar 

  33. Salloway, S. et al. A phase 2 randomized trial of ELND005, scyllo-inositol, in mild to moderate Alzheimer Disease. Neurology 77, 1253–1262 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Walker, J. R. et al. Enhanced proteolytic clearance of plasma Aβ by peripherally administered neprilysin does not result in reduced levels of brain Aβ in mice. J. Neurosci. 33, 2457–2464 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Arriagada, P. V., Growdon, J. H., Hedley-White, E. T. & Hyman, B. T. Neurofibrillary tangles but not senile plaques parallel duration and severity of Alzheimer's disease. Neurology 42, 631–639 (1992).

    Article  CAS  PubMed  Google Scholar 

  36. Giannakopoulos, P. et al. Tangle and neuron numbers, but not amyloid load, predict cognitive status in Alzheimer's disease. Neurology 60, 1495–1500 (2003).

    Article  CAS  PubMed  Google Scholar 

  37. Gold, G. et al. Clinical validity of Aβ-protein deposition staging in brain aging and Alzheimer disease. J. Neuropathol. Exp. Neurol. 60, 946–952 (2001).

    Article  CAS  PubMed  Google Scholar 

  38. Gold, G. et al. Clinical validity of Braak neuropathological staging in the oldest-old. Acta Neuropathol. 99, 579–582 (2000).

    Article  CAS  PubMed  Google Scholar 

  39. Terry, R. D. et al. Physical basis of cognitive alterations in Alzheimer's disease: synapse loss is the major correlate of cognitive impairment. Ann. Neurol. 30, 572–580 (1991).

    Article  CAS  PubMed  Google Scholar 

  40. Pievani, M., de Haan, W., Wu, T., Seeley, W. W. & Frisoni, G. B. Functional network disruption in degenerative dementias. Lancet Neurol. 10, 829–843 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  41. LaFerla, F. M. & Green, K. N. Animal models of Alzheimer disease. Cold Spring Harb. Perspect. Med. 2, a006320 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Desikan, R. S. et al. Amyloid-β-associated clinical decline occurs only in the presence of elevated P-tau. Arch. Neurol. 69, 700–713 (2012).

    Article  Google Scholar 

  43. Corrada, M. M., Berlau, D. & Kawas, C. H. A population-based clinicopathological study in the oldest-old: the 90+ Study. Curr. Alzheimer Res. 9, 709–716 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Balasubramanian, A. B. et al. Alzheimer disease pathology and longitudinal cognitive performance in the oldest-old with no dementia. Neurol. 79, 915–921 (2012).

    Article  Google Scholar 

  45. Jack, C. R. Jr et al. Brain β-amyloid load approaches a plateau. Neurology 80, 890–896 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Villemagne, V. L. et al. Amyloid-β deposition, neurodegeneration, and cognitive decline in sporadic Alzheimer's disease: a prospective study. Lancet Neurol. 12, 357–367 (2013).

    Article  CAS  PubMed  Google Scholar 

  47. Doré, V. et al. Cross-sectional and longitudinal analysis of the relationship between Aβ deposition, cortical thickness, and memory in cognitively unimpaired individuals and in Alzheimer's disease. JAMA Neurol. 27, 1–9 (2013).

    Google Scholar 

  48. Knopman, D. S. et al. Brain injury biomarkers are not dependent on β-amyloid in normal elderly. Ann. Neurol. 73, 472–480 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Marchant, N. L. et al. The aging brain and cognition: contribution of vascular injury and Aβ to mild cognitive dysfunction. JAMA Neurol. 70, 488–495 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Wirth, M. et al. Alzheimer's disease neurodegenerative biomarkers are associated with decreased cognitive function but not β-amyloid in cognitively normal older individuals. J. Neurosci. 33, 5553–5556 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Haass, C. & Selkoe, D. J. Soluble protein oligomers in neurodegeneration: lessons from the Alzheimer's amyloid β-peptide. Nat. Rev. Mol. Cell. Biol. 8, 101–112 (2007).

    Article  CAS  PubMed  Google Scholar 

  52. Lesné, S. E. et al. Brain amyloid-β oligomers in ageing and Alzheimer's disease. Brain 136, 1383–1398 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Hardy, J. Has the amyloid cascade hypothesis for Alzheimer's disease been proved? Curr. Alzheimer Res. 3, 71–73 (2006).

    Article  CAS  PubMed  Google Scholar 

  54. Ittner, L. M. & Götz, J. Amyloid-β and tau—a toxic pas de deux in Alzheimer's disease. Nat. Rev. Neurosci. 12, 65–72 (2011).

    Article  CAS  PubMed  Google Scholar 

  55. Karran, E., Mercken, M. & De Strooper, B. The amyloid cascade hypothesis for Alzheimer's disease: an appraisal for the development of therapeutics. Nat. Rev. Drug Discov. 10, 698–712 (2011).

    Article  CAS  PubMed  Google Scholar 

  56. Grundke-Iqbal, K. et al. Abnormal phosphorylation of the microtubule-associated protein tau (tau) in Alzheimer cytoskeletal pathology. Proc. Natl Acad. Sci. USA 83, 4913–4917 (1986).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Braak, H., Braak, E., Grundke-Iqbal, I. & Iqbal, K. Occurrence of neuropil threads in the senile human brain and in Alzheimer's disease: a third location of paired helical filaments outside of neurofibrillary tangles and neuritic plaques. Neurosci. Lett. 65, 351–355 (1986).

    Article  CAS  PubMed  Google Scholar 

  58. Khatoon, S., Grundke-Iqbal, I. & Iqbal, K. Brain levels of microtubule-associated protein tau are elevated in Alzheimer's disease: a radioimmuno-slot-blot assay for nanograms of the protein. J. Neurochem. 59, 750–753 (1992).

    Article  CAS  PubMed  Google Scholar 

  59. Alonso, A., Zaidi, T., Novak, M., Grundke-Iqbal, I. & Iqbal, K. Hyperphosphorylation induces self-assembly of tau into tangles of paired helical filaments/straight filaments. Proc. Natl Acad. Sci. USA 98, 6923–6928 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Wang, J. Z., Grundke-Iqbal, I. & Iqbal, K. Kinases and phosphatases and tau sites involved in Alzheimer neurofibrillary degeneration. Eur. J. Neurosci. 25, 59–68 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Bancher, C. et al. Accumulation of abnormally phosphorylated tau precedes the formation of neurofibrillary tangles in Alzheimer’s disease. Brain Res. 16, 90–99 (1989).

    Article  Google Scholar 

  62. Handoko, M. et al. Correlations of specific amyloid-β oligomers with tau in cerebrospinal fluid from cognitively normal older adults. JAMA Neurol. 70, 594–599 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Ashe, K. H. & Zahs, K. R. Probing the biology of Alzheimer's disease in mice. Neuron 10, 631–645 (2010).

    Article  CAS  Google Scholar 

  64. De Calignon, A. et al. Propagation of tau pathology in a model of early Alzheimer's disease. Neuron 73, 685–697 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Oddo, S. et al. Reduction of soluble Aβ and tau, but not soluble Aβ alone, ameliorates cognitive decline in transgenic plaques and tangles. J. Biol. Chem. 281, 39413–39423 (2006).

    Article  CAS  PubMed  Google Scholar 

  66. Oddo, S., Billings, J., Kesslak, J. P., Cribbs, D. H. & LaFerla, F. M. Aβ immunotherapy leads to clearance of early, but not late, hyperphosphorylated tau aggregates via the proteasome. Neuron 43, 321–332 (2004).

    Article  CAS  PubMed  Google Scholar 

  67. Nagy, Z. et al. Relative roles of plaques and tangles in the dementia of Alzheimer's disease: correlations using three sets of neuropathological criteria. Dementia 6, 21–31 (1995).

    CAS  PubMed  Google Scholar 

  68. Robertson, E. D. et al. Reducing endogenous tau ameliorates amyloid-β-induced deficits in an Alzheimer's disease mouse model. Science 316, 750–754 (2007).

    Article  CAS  Google Scholar 

  69. Rosenmann, H. et al. Tauopathy-like abnormalities and neurologic deficits in mice immunized with neuronal tau protein. Arch. Neurol. 63, 1459–1467 (2006).

    Article  PubMed  Google Scholar 

  70. Asuni, A. A., Boutajangout, A., Quartermain, D. & Sigurdsson, E. M. Immunotherapy targeting pathological tau conformers in a tangle mouse reduces brain pathology with associated functional improvement. J. Neurosci. 27, 9115–9129 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Novak, M. Tau vaccine: active immunization with a misfolded tau protein attenuates tau pathology in the transgenic rat model of tauopathy. Alzheimers Dement. 5, P93 (2009).

    Article  Google Scholar 

  72. Bi, M., Ittner, A., Ke, J. D., Götz, J. & Ittner, L. M. Tau-targeted immunization impedes progression of neurofibrillary histopathology in aged P301L tau transgenic mice. PLoS ONE 6, 12–18 (2012).

    Google Scholar 

  73. Chai, X. et al. Passive immunization with anti-tau antibodies in two transgenic models: reduction of tau pathology and delay of disease progression. J. Biol. Chem. 286, 34457–34467 (2012).

    Article  CAS  Google Scholar 

  74. Troquier, L. et al. Targeting phospho-Ser422 by active tau immunotherapy in the THY Tau22 mouse model: a suitable therapeutic approach. Curr. Alz. Res. 9, 397–405 (2012).

    Article  Google Scholar 

  75. Novak, M. Tau transgenic rat model and response to tau vaccine. Alzheimers Dement. 6, S118 (2010).

    Article  Google Scholar 

  76. Theunis, C. et al. Protein tau, target for immunotherapy: preclinical evaluation in transgenic mice [abstract]. Neurodegener. Dis. 8, (Suppl. 1, 2011).

  77. Krishnamurthy, P., Gonzales, V., Rajamohamedsait, H. B. & Sigurdsson, E. Immunization with a pseudo-phosphorylated tau epitope clears tau pathology in a mouse model [abstract]. Alzheimers Dement. 7, S481–S482 (2011).

    Article  Google Scholar 

  78. Yoshiyama, Y., Lee, V. M. & Trojanowski, J. Q. Therapeutic strategies for tau mediated neurodegeneration. J. Neurol. Neurosurg. Psychiatry 84, 784–795 (2013).

    Article  PubMed  Google Scholar 

  79. Hochgräfe, K., Sydow, A. & Mandelkow, E. M. Regulatable transgenic mouse models of Alzheimer disease: onset, reversibility and spreading of tau pathology. FEBS J. 280, 4371–4381 (2013).

    Article  PubMed  CAS  Google Scholar 

  80. Zhang, B. et al. Microtubule-binding drugs offset tau sequestration by stabilizing mictrotubules and reversing fast axonal transport deficits in a tauopathy model. Proc. Natl Acad. Sci. USA 102, 227–231 (2005).

    Article  CAS  PubMed  Google Scholar 

  81. Gold, M. et al. Critical appraisal of the role of davunetide in the treatment of progressive supranuclear palsy. Neuropsychiatr. Dis. Treat. 8, 85–93 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Jouroukhin, Y. et al. NAP (davenutide) modifies disease progression in a mouse model of severe neurodegeneration: protection against impairments in axonal transport. Neurobiol. Dis. 56, 79–94 (2013).

    Article  CAS  PubMed  Google Scholar 

  83. Götz, J., Ittner, A. & Ittner, L. Tau-targeted treatment strategies in Alzheimer's disease. Br. J. Pharm. 165, 1246–1259 (2012).

    Article  CAS  Google Scholar 

  84. Wischick, C. & Staff, R. Challenges in the conduct of disesase-modifying trials in AD: practical experience from a phase 2 trial of tau-aggregation inhibitory therapy. J. Nutr. Health Aging 13, 367–369 (2009).

    Article  Google Scholar 

  85. Macdonald, A. et al. A feasibility and tolerability study of lithium in Alzheimer's disease. Int. J. Geriat. Psychiatry 23, 704–711 (2008).

    Article  Google Scholar 

  86. Tariot, P. N. et al. Chronic divalproex sodium to attenuate agitation and clinical progression of Alzheimer disease. Arch. Gen. Psychiatry 68, 853–861 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Hu, J. P. et al. Valproate reduces tau phosphorylation via cyclin-dependent kinase 5 and glycogen synthase kinase 3 signaling pathways. Brain Res. Bull. 30, 194–200 (2011).

    Article  CAS  Google Scholar 

  88. Glenner, G. G. & Wong, C. W. Alzheimer's disease: initial report of the purification and characterization of a novel cerebrovascular amyloid protein. Biochem. Biophys. Res. Commun. 120, 885–890 (1984).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Both authors made substantial contributions to researching the data for the article, to discussions of the content, to writing the article, and to review and/or editing of the manuscript before submission.

Corresponding author

Correspondence to Ezio Giacobini.

Ethics declarations

Competing interests

G. Gold is currently a member of an advisory board for AC Immune. E. Giacobini declares no competing interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Giacobini, E., Gold, G. Alzheimer disease therapy—moving from amyloid-β to tau. Nat Rev Neurol 9, 677–686 (2013). https://doi.org/10.1038/nrneurol.2013.223

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneurol.2013.223

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing