Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Timeline
  • Published:

A century of cerebellar somatotopy: a debated representation

Abstract

The existence of functional localization within the cerebellum was advanced exactly one century ago by both comparative anatomical and physiological studies. Here, we will discuss how models of cerebellar localization have evolved over the last 100 years. Like the somatotopic representation in neocortical sensorimotor areas, the representation size of different body parts in the cerebellum does not reflect their peripheral extent, but rather the different demands on the sensory inputs for different movements.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Unfolded view of the cerebellar cortex showing lobes, lobules (by name and number) and main fissures.
Figure 2: The evolution of cerebellar somatotopy from Bolk to Snider and Stowell.
Figure 3: Zonal organization of olivocorticonuclear connections.
Figure 4: The fractured somatotopy of the cerebellar cortex.
Figure 5: Functional somatotopy of the cerebellum.

References

  1. Rolando, L. Saggio Sopra la Vera Struttura Del Cervello Dell'uomo e Degli Animali Sopra le Funzioni del Sistema Nervoso (Sassari, Stamperia di S. S. R. M. Privilegiata, 1809).

    Google Scholar 

  2. Flourens, P. Recherches expérimentales sur les propriétés et les fonctions du système nerveux dans les animaux vertébrés. Arch. Gén. Méd. 2, 321–370 (1824).

    Google Scholar 

  3. Luciani, L. Il Cervelletto: Nuovi Studi di Fisiologia Normale e Patologica (Le Monnier, Firenze, 1891).

    Google Scholar 

  4. Manni, E. & Petrosini, L. Luciani's work on the cerebellum a century later. Trends Neurosci. 20, 112–116 (1997).

    Article  CAS  Google Scholar 

  5. Sherrington, C. S. Double (antidrome) conduction in the central nervous system. Proc. Roy. Soc. Lond. 61, 243–246 (1897).

    Article  Google Scholar 

  6. Loewenthal, M. & Horsley, V. On the relations between the cerebellar and other centers (namely cerebral and spinal) with special reference to the action of antagonistic muscles. Proc. Roy. Soc. Lond. 61, 20–25 (1897).

    Article  Google Scholar 

  7. Luciani, L. Fisiologia Dell'uomo (4 Vols) (Soc. Ed. Lib., Milan, 1901–1911).

  8. Sherrington, C. S. Textbook of Physiology Vol. 2 (ed. Schäfer, E. A.) 893–910 (Young J. Pentland, Edinburgh and London, 1900).

    Google Scholar 

  9. Bolk, L. Das Cerebellum der Säugetiere: Eine Vergleichende Anatomische Untersuchung. Nederl. Bydragen Anat. 3, 1–136 (1904).

    Google Scholar 

  10. Jansen, J. in Aspects of cerebellar anatomy (eds Jansen, J. and Brodal A.) 13–81 (J. Grundt Tanum, Oslo, 1954).

    Google Scholar 

  11. Pagano, G. Saggio di localizzazione cerebellare. Riv. Pat. Nerv. Ment. 9, 209–228 (1904).

    Google Scholar 

  12. Rijnberk, G. van Tentativi di localizzazioni funzionali nel cervelletto. Arch. Fisiol. 1, 569–574 (1904).

    Google Scholar 

  13. Comolli, A. Per una nuova divisione del cervelletto dei mammiferi. Arch. It. Anat. 9, 247–273 (1910).

    Google Scholar 

  14. Edinger, L. Ueber die Einteilung des Cerebellums. Anat. Anz. 35, 319–323 (1910).

    Google Scholar 

  15. Botterell, E. H. & Fulton, J. F. Functional localization in the cerebellum of primates. III. Lesions of hemispheres (neocerebellum). J. Comp. Neurol. 69, 63–87 (1938).

    Article  Google Scholar 

  16. Bremer, F. in Traité de physiologie normale et pathologique vol. 10 (eds Roger, G. H. & Binet, L.) 39–135 (Masson, Paris, 1935).

    Google Scholar 

  17. Larsell, O. Morphogenesis and evolution of the cerebellum. Arch. Neurol. Psychatr. 31, 373–395 (1934).

    Article  Google Scholar 

  18. Larsell, O. The Comparative Anatomy and Histology of the Cerebellum from Monotremes through Apes (ed. Jansen, J.) (Minnesota Univ. Press, Minneapolis, 1970).

    Google Scholar 

  19. Ingvar, S. Zur Phylo- und Ontogenese des Kleinhirns. Folia Neurobiol. 11, 205–495 (1918).

    Google Scholar 

  20. Simonelli, G. Sulla funzione dei lobi medi del cervelletto. Arch. Fisiol. 19, 447–479 (1921).

    Google Scholar 

  21. Dow, R. S. Effects of lesions in the vestibular part of the cerebellum in primates. Arch. Neurol. Psychiatr. 40, 500–520 (1938).

    Article  Google Scholar 

  22. Manni, E. Localizzazioni cerebellari nella cavia. I. Il corpus cerebelli. Arch. Fisiol. 49, 213–237 (1950).

    CAS  PubMed  Google Scholar 

  23. Manni, E. Localizzazioni cerebellari nella cavia. Il. Effetti di lesioni delle parti vestibolari del cervelletto. Arch. Fisiol. 50, 110–123 (1950).

    CAS  PubMed  Google Scholar 

  24. Dow, R. S. The efferent connections of the flocculo-nodular lobe in Macaca mulatta. J. Comp. Neurol. 48, 297–306 (1938).

    Article  Google Scholar 

  25. Adrian, E. D. Afferent areas in the cerebellum connected with the limbs. Brain 66, 289–315 (1943).

    Article  Google Scholar 

  26. Snider, R. S. & Stowell, A. Receiving areas of the tactile, auditory and visual systems in the cerebellum. J. Neurophysiol. 7, 331–357 (1944).

    Article  Google Scholar 

  27. Gerard, R. W. et al. Electrical activity of the cat's brain. Arch. Neurol. Psychiatr. 36, 675–738 (1936).

    Article  Google Scholar 

  28. Dow, R. S. Cerebellar action potentials in response to stimulation of various afferent connections. J. Neurophysiol. 2, 543–555 (1939).

    Article  Google Scholar 

  29. Combs, C. M. Electro-anatomical study of cerebellar localization: Stimulation of various afferents. J. Neurophysiol. 17, 123–143 (1954).

    Article  CAS  Google Scholar 

  30. Armstrong, D. M., Edgley, S. A. & Lidierth, M. Complex spikes in Purkinje cells of the paravermal part of the anterior lobe of the cat cerebellum during locomotion. J. Physiol. (Lond.) 400, 405–414 (1988).

    Article  CAS  Google Scholar 

  31. Voogd, J. & Bigaré, F. in The Inferior Olivary Nucleus: Anatomy and Physiology (eds Courville, J., de Montigny, C. & Lamarre, Y.) 207–234 (Raven Press, New York, 1980).

    Google Scholar 

  32. Armstrong, D. M. Topographical localization in the projections from the inferior olive to the paravermal cortex in the anterior lobe and paramedian lobule in the cerebellum of the cat. Arch. Ital. Biol. 128, 183–207 (1990).

    CAS  PubMed  Google Scholar 

  33. Ekerot, C. -F., Garwicz, M. & Schouenborg, J. Topography and nociceptive receptive fields of climbing fibres projecting to the cerebellar anterior lobe in the cat. J. Physiol. (Lond.) 441, 257–274 (1991).

    Article  CAS  Google Scholar 

  34. Garwicz, M., Ekerot, C. F. & Schouenborg, J. Distribution of cutaneous nociceptive and tactile climbing fibre input to sagittal zones in cat cerebellar anterior lobe. Eur. J. Neurosci. 4, 289–295 (1992).

    Article  Google Scholar 

  35. Trott, J. R. & Armstrong, D. M. The cerebellar corticonuclear projection from lobule Vb/c of the cat anterior lobe: a combined electrophysiological and autoradiographic study. I. projections from the intermediate region. Exp. Brain Res. 66, 318–338 (1987).

    Article  CAS  Google Scholar 

  36. Trott, J. R. & Armstrong, D. M. The cerebellar corticonuclear projection from lobule Vb/c of the cat anterior lobe: a combined electrophysiological and autoradiographic study. II. projections from the vermis. Exp. Brain Res. 66, 339–354 (1987).

    Article  Google Scholar 

  37. Ekerot, C. F. & Larson, B. The dorsal spino-olivocerebellar system in the cat. II. Somatotopical organization. Exp. Brain Res. 36, 219–232 (1979).

    Article  CAS  Google Scholar 

  38. Andersson, G. & Oscarsson, O. Climbing fibre microzones in cerebellar vermis and their projection to different groups of cells in the lateral vestibular nucleus. Exp. Brain Res. 32, 565–578 (1978).

    CAS  PubMed  Google Scholar 

  39. Garwicz, M. & Ekerot, C. F. Topographical organization of the cerebellar cortical projection to nucleus interpositus anterior in the cat. J. Physiol. (Lond.) 474, 245–260 (1994).

    Article  CAS  Google Scholar 

  40. Jorntell, H., Ekerot, C. F., Garwicz, M. & Luo, X. -L. Functional organization of the climbing fibre projection to the cerebellar anterior lobe in the cat. J. Physiol. (Lond.) 522, 297–309 (2000).

    Article  CAS  Google Scholar 

  41. Garwicz, M., Ekerot, C. F., & Jorntell, H. Organizational principles of cerebellar neuronal circuitry. News Physiol. Sci. 13, 26–32 (1998).

    PubMed  Google Scholar 

  42. Apps, R. & Lee, S. Gating of transmission in climbing fibre path to cerebellar cortical C1 and C3 zones in the rostral paramedian lobule during locomotion in the cat. J. Physiol. (Lond.) 516, 875–883 (1999).

    Article  CAS  Google Scholar 

  43. Apps, R. Movement-related gating of climbing fibre input to cerebellar cortical zones. Prog. Neurobiol. 57, 537–562 (1999).

    Article  CAS  Google Scholar 

  44. Apps, R. Rostrocaudal branching within the climbing fibre projection to forelimb-receiving areas of the cerebellar cortical C1 zone. J. Comp. Neurol. 419, 193–204 (2000).

    Article  CAS  Google Scholar 

  45. Edge, A. L., Marple-Horvat, E. & Apps, R. Lateral cerebellum: functional localization within crus I and correspondence to cortical zones. Eur. J. Neurosci. 18, 1468–1485 (2003).

    Article  Google Scholar 

  46. Ekerot, C. F. & Jörntell, H. Parallel fibre receptive fields of Purkinje cells and interneurons are climbing fibre-specific. Eur. J. Neurosci. 13, 1303–1310 (2001).

    Article  CAS  Google Scholar 

  47. Ekerot, C. F. & Jörntell, H. Parallel fiber receptive fields: a key to understanding cerebellar operation and learning. Cerebellum 2, 101–109 (2003).

    Article  Google Scholar 

  48. Voogd, J., Pardoe, J., Ruigrok, T. J. & Apps, R. The distribution of climbing and mossy fiber collateral branches from the copula pyramidis and the paramedian lobule: congruence of climbing fiber cortical zones and the pattern of zebrin banding within the rat cerebellum. J. Neurosci. 23, 4645–56 (2003).

    Article  CAS  Google Scholar 

  49. Brown, I. E. & Bower, J. M. Congruence of mossy fibre and climbing fibre tactile projections in the lateral hemispheres of the rat cerebellum. J. Comp. Neurol. 429, 59–70 (2001).

    Article  CAS  Google Scholar 

  50. Jörntell, H. & Ekerot, C. F. Reciprocal bi-directional plasticity of parallel fiber receptive fields in cerebellar Purkinje cells and their afferent interneurons. Neuron 34, 797–806 (2002).

    Article  Google Scholar 

  51. Dow, R. S. & Moruzzi, G. The Physiology and Pathology of the Cerebellum (Minnesota Univ. Press, Minneapolis, 1958).

    Google Scholar 

  52. Hampson, J. L., Harrison, C. R. & Woolsey, C. N. Cerebro-cerebellar projections and the somatotopic localization of motor function in the cerebellum. Res. Nerv. Ment. Dis. Proc. 30, 299–316 (1952).

    CAS  Google Scholar 

  53. Moruzzi, G. & Pompeiano, O. Crossed fastigial influence on decebrate rigidità. J. Comp. Neurol. 106, 371–392 (1956).

    Article  CAS  Google Scholar 

  54. Chambers, W. W. & Sprague, E. J. M. Functional localization in the cerebellum. II. Somatotopic organization in cortex and nuclei. Arch. Neurol. Psych. 74, 653–680 (1955).

    Article  CAS  Google Scholar 

  55. Nulsen, F. E., Black, S. P. W. & Drake, C. G. Inhibition and facilitation of motor activity by the anterior cerebellum. Federation Proc. 7, 86–87 (1948).

    CAS  Google Scholar 

  56. Oscarsson, O. in Handbook of Sensory Physiology (ed. Iggo, A.) 340–380 (Springer-Verlag, Berlin, 1973).

    Google Scholar 

  57. Asanuma, C., Thach, W. T. & Jones, E. G. Brain stem and spinal projections of the deep cerebellar nuclei in the monkey, with observations on the brain stem projections of the dorsal column nuclei. Brain Res. Rev. 5, 299–322 (1983).

    Article  Google Scholar 

  58. Van Kan, P. L., Houk, J. C. & Gibson, A. R. Output organization of intermediate cerebellum of the monkey. J. Neurophysiol. 69, 57–73 (1993).

    Article  CAS  Google Scholar 

  59. Hesslow, G. Correspondence between climbing fibre input and motor output in eyeblink-related areas in cat cerebellar cortex. J. Physiol. (Lond.) 476, 229–244 (1994).

    Article  CAS  Google Scholar 

  60. Attwell, P. J. E., Raham, S. & Yeo, C. H. Acquisition of eye blink conditioning is critically dependent on normal function in cerebellar cortical lobule HVI. J. Neurosci. 21, 5715–5722 (2001).

    Article  CAS  Google Scholar 

  61. Attwell, P. J. E., Ivarsson, M., Millar, L. & Yeo, C. H. Cerebellar mechanisms in eyeblink conditioning. Ann. NY Acad. Sci. 978, 79–92 (2002).

    Article  CAS  Google Scholar 

  62. Shambes, G. M., Gibson, J. M. & Welker, W. Fractured somatotopy in granule cell tactile areas of rat cerebellar hemispheres revealed by micromapping. Brain Behav. Evol. 15, 94–140 (1978).

    Article  CAS  Google Scholar 

  63. Rijntjes, M., Buechel, C., Kiebel, S. & Weiller, C. Multiple somatotopic representations in the human cerebellum. Neuroreport 10, 3653–3658 (1999).

    Article  CAS  Google Scholar 

  64. Grodd, W., Hulsmann, E., Lotze, M., Wildgruber, D. & Erb, M. Sensorimotor mapping of the human cerebellum: fMRI evidence of somatotopic organization. Hum. Brain Mapp. 13, 55–73 (2001).

    Article  CAS  Google Scholar 

  65. Takanashi, M. et al. A functional MRI study of somatotopic representation of somatosensory stimulation in the cerebellum. Neuroradiology 45, 149–152 (2003).

    Article  CAS  Google Scholar 

  66. Barlow, H. B. Critical limiting factors in the design of the eye and visual cortex. Proc. R. Soc. Lond. 212, 1–34 (1981).

    Article  CAS  Google Scholar 

  67. Holmes, G. The cerebellum of man. Brain 62, 1–30 (1939).

    Article  Google Scholar 

  68. Weisenburg, T. H. Cerebellar localization and its symptomatology. Brain 50, 357–377 (1927).

    Article  Google Scholar 

Download references

Acknowledgements

The authors express thanks to L. Mandolesi for her skillful and creative craftwomanship in preparing illustrations. This work was supported by MIUR grants to E.M. and L.P.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laura Petrosini.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

FURTHER INFORMATION

Encyclopedia of Life Sciences

cerebellum: anatomy and organization

cerebellum: movement regulation and cognitive functions

Rights and permissions

Reprints and permissions

About this article

Cite this article

Manni, E., Petrosini, L. A century of cerebellar somatotopy: a debated representation. Nat Rev Neurosci 5, 241–249 (2004). https://doi.org/10.1038/nrn1347

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrn1347

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing