Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Mechanisms and functions of eph and ephrin signalling

Key Points

  • Biological functions for Eph receptors and ephrins include vascular development, tissue-border formation, cell migration, axon guidance and synaptic plasticity.

  • Eph receptors can act as a ligand in the same way that an ephrin ligand can act as a receptor. Ephrins are also able to signal into their host cell, which is referred to as 'reverse signalling'

  • Recent examples of Eph-receptor signalling mechanisms are: (1) Ephexin and Abl and their role in regulating the actin cytoskeleton; (2) Eph receptors as negative regulators of the extracellular-signal-regulated kinase/mitogen-activated protein kinase (ERK/MAPK) pathway; and (3) Eph receptors as regulators of cell adhesion through integrin cell–substrate interactions.

  • Recent examples of ephrin signalling mechanisms are: (1) Src family kinases (SFK) as positive regulators of ephrinB phosphorylation; (2) the recruitment of PDZ-domain-containing protein-tyrosine phosphatase PTP-BL to ephrinB membrane clusters; (3) the SH2–SH3 domain adaptor protein Grb4 as a downstream effector of ephrinB ligands; and (4) phosphorylation-independent signalling by ephrinB ligands through the new cytoplasmic protein PDZ-RGS3.

  • Some of the functions that are dependent on receptor-mediated signalling are: (1) kinase-dependent functions in formation of the corticospinal tract mediated by EphA4; (2) EphB2 forward signalling in the regulation of fluid homeostasis in the inner ear by EphB2; and (3) EphrinB–EphB2–NMDA-receptor influenced signalling clusters at the synapse and modulation of synapse functions, although some of these events are dependent on Eph receptor kinase signalling, whereas others are not.

  • Functions that require the ephrinB cytoplasmic domain are: (1) the establishment of boundaries between segments of the vertebrate hindbrain; and (2) remodelling of the embryonic vasculature.

  • A function that does not require the ephrinB cytoplasmic domain is neural-crest-cell migration, and is instead probably mediated by forward signalling of Eph receptors.

Abstract

Eph receptors constitute the largest family of tyrosine kinase receptors and, together with their plasma-membrane-bound ephrin ligands, have many important functions during development and adulthood. In contrast with most receptor tyrosine kinases, unidirectional signalling can originate from the ephrin ligands as well as from the Eph receptors. Furthermore, the concept of bidirectional signalling has emerged as an important mechanism by which Ephs and ephrins control the output signal in processes of cell–cell communication.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: General features of Eph receptors and ephrins.
Figure 2: Regulation of Eph receptor catalytic activity.
Figure 3: Summary of adaptor interactions described in this review.
Figure 4: Molecular mechanisms of ephrinB reverse signalling.
Figure 5: Corticospinal-tract-fibre guidance.
Figure 6: Long-term potentiation.
Figure 7: Boundary sorting.
Figure 8: Angiogenesis and vasculogenesis.
Figure 9: Migration of neural-crest cells.

Similar content being viewed by others

References

  1. Mellitzer, G., Xu, Q. & Wilkinson, D. G. Eph receptors and ephrins restrict cell intermingling and communication. Nature 400, 77–81 (1999).

    Article  CAS  PubMed  Google Scholar 

  2. Holland, S. J. et al. Bidirectional signalling through the EPH-family receptor Nuk and its transmembrane ligands. Nature 383, 722–725 (1996).

    Article  CAS  PubMed  Google Scholar 

  3. Bruckner, K., Pasquale, E. B. & Klein, R. Tyrosine phosphorylation of transmembrane ligands for Eph receptors. Science 275, 1640–1643 (1997).References 2 and 3 provide the first biochemical evidence for tyrosine phosphorylation of the ephrinB cytoplasmic tail, which indicates reverse signalling.

    Article  CAS  PubMed  Google Scholar 

  4. Davis, S. et al. Ligands for EPH-related receptor tyrosine kinases that require membrane attachment or clustering for activity. Science 266, 816–819 (1994).

    Article  CAS  PubMed  Google Scholar 

  5. Kalo, M. S. & Pasquale, E. B. Multiple in vivo tyrosine phosphorylation sites in EphB receptors. Biochemistry 38, 14396–14408 (1999).

    Article  CAS  PubMed  Google Scholar 

  6. Binns, K. L., Taylor, P. P., Sicheri, F., Pawson, T. & Holland, S. J. Phosphorylation of tyrosine residues in the kinase domain and juxtamembrane region regulates the biological and catalytic activities of Eph receptors. Mol. Cell. Biol. 20, 4791–4805 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Zisch, A. H. et al. Replacing two conserved tyrosines of the EphB2 receptor with glutamic acid prevents binding of SH2 domains without abrogating kinase activity and biological responses. Oncogene 19, 177–187 (2000).

    Article  CAS  PubMed  Google Scholar 

  8. Kullander, K. et al. Kinase-dependent and kinase-independent functions of EphA4 receptors in major axon tract formation in vivo. Neuron 29, 73–84 (2001).This study showed that an Eph receptor can have kinase-dependent and kinase-independent functions in axon-tract formation in vivo.

    Article  CAS  PubMed  Google Scholar 

  9. Wybenga-Groot, L. E. et al. Structural basis for autoinhibition of the EphB2 receptor tyrosine kinase by the unphosphorylated juxtamembrane region. Cell 106, 745–757 (2001).This article contains structural data on the cytoplasmic tail of EphB2 and a model that explains how Eph-receptor kinase activity is autoinhibited by the juxtamembrane domain.

    Article  CAS  PubMed  Google Scholar 

  10. Baxter, R. M., Secrist, J. P., Vaillancourt, R. R. & Kazlauskas, A. Full activation of the platelet-derived growth factor β-receptor kinase involves multiple events. J. Biol. Chem. 273, 17050–17055 (1998).

    Article  CAS  PubMed  Google Scholar 

  11. Postigo, A. et al. Distinct requirements for TrkB and TrkC signaling in target innervation by sensory neurons. Genes Dev. 16, 633–645 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Pawson, T. & Scott, J. D. Signaling through scaffold, anchoring, and adaptor proteins. Science 278, 2075–2080 (1997).

    Article  CAS  PubMed  Google Scholar 

  13. Van Etten, R. A. Cycling, stressed-out and nervous: cellular functions of c-Abl. Trends Cell Biol. 9, 179–186 (1999).

    Article  CAS  PubMed  Google Scholar 

  14. Yu, H. H., Zisch, A. H., Dodelet, V. C. & Pasquale, E. B. Multiple signaling interactions of Abl and Arg kinases with the EphB2 receptor. Oncogene 20, 3995–4006 (2001).

    Article  CAS  PubMed  Google Scholar 

  15. Plattner, R., Kadlec, L., DeMali, K. A., Kazlauskas, A. & Pendergast, A. M. c-Abl is activated by growth factors and Src family kinases and has a role in the cellular response to PDGF. Genes Dev. 13, 2400–2411 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Zisch, A. H., Kalo, M. S., Chong, L. D. & Pasquale, E. B. Complex formation between EphB2 and Src requires phosphorylation of tyrosine 611 in the EphB2 juxtamembrane region. Oncogene 16, 2657–2670 (1998).

    Article  CAS  PubMed  Google Scholar 

  17. Koleske, A. J. et al. Essential roles for the Abl and Arg tyrosine kinases in neurulation. Neuron 21, 1259–1272 (1998).

    Article  CAS  PubMed  Google Scholar 

  18. Holmberg, J., Clarke, D. L. & Frisen, J. Regulation of repulsion versus adhesion by different splice forms of an Eph receptor. Nature 408, 203–206 (2000).

    Article  CAS  PubMed  Google Scholar 

  19. Hall, A. Rho GTPases and the actin cytoskeleton. Science 279, 509–514 (1998).

    Article  CAS  PubMed  Google Scholar 

  20. Luo, L. Rho GTPases in neuronal morphogenesis. Nature Rev. Neurosci. 1, 173–180 (2000).

    Article  CAS  Google Scholar 

  21. Kozma, R., Sarner, S., Ahmed, S. & Lim, L. Rho family GTPases and neuronal growth cone remodelling: relationship between increased complexity induced by Cdc42Hs, Rac1, and acetylcholine and collapse induced by RhoA and lysophosphatidic acid. Mol. Cell. Biol. 17, 1201–1211 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Shamah, S. M. et al. EphA receptors regulate growth cone dynamics through the novel guanine nucleotide exchange factor ephexin. Cell 105, 233–244 (2001).This piece reports the identification of a new guanine nucleotide exchange factor, Ephexin, for Rho family GTPases as a downstream target of Eph receptors and provides a mechanism as to how Ephs regulate the actin cytoskeleton.

    Article  CAS  PubMed  Google Scholar 

  23. Wahl, S., Barth, H., Ciossek, T., Aktories, K. & Mueller, B. K. EphrinA5 induces collapse of growth cones by activating Rho and Rho kinase. J. Cell Biol. 149, 263–270 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Miao, H. et al. Activation of EphA receptor tyrosine kinase inhibits the Ras/MAPK pathway. Nature Cell Biol. 3, 527–530 (2001).

    Article  CAS  PubMed  Google Scholar 

  25. Elowe, S., Holland, S. J., Kulkarni, S. & Pawson, T. Downregulation of the ras-mitogen-activated protein kinase pathway by the ephb2 receptor tyrosine kinase is required for ephrin-induced neurite retraction. Mol. Cell. Biol. 21, 7429–7441 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Brambilla, R. et al. Membrane-bound LERK2 ligand can signal through three different Eph-related receptor tyrosine kinases. EMBO J. 14, 3116–3126 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Lhotak, V. & Pawson, T. Biological and biochemical activities of a chimeric epidermal growth factor–Elk receptor tyrosine kinase. Mol. Cell. Biol. 13, 7071–7079 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Bruce, V., Olivieri, G., Eickelberg, O. & Miescher, G. C. Functional activation of EphA5 receptor does not promote cell proliferation in the aberrant EphA5 expressing human glioblastoma U-118 MG cell line. Brain Res. 821, 169–176 (1999).

    Article  CAS  PubMed  Google Scholar 

  29. Olivier, J. P. et al. A Drosophila SH2–SH3 adaptor protein implicated in coupling the sevenless tyrosine kinase to an activator of Ras guanine nucleotide exchange, Sos. Cell 73, 179–191 (1993).

    Article  CAS  PubMed  Google Scholar 

  30. Simon, M. A., Dodson, G. S. & Rubin, G. M. An SH3–SH2–SH3 protein is required for p21Ras1 activation and binds to sevenless and Sos proteins in vitro. Cell 73, 169–177 (1993).

    Article  CAS  PubMed  Google Scholar 

  31. Kolch, W. Meaningful relationships: the regulation of the Ras/Raf/MEK/ERK pathway by protein interactions. Biochem. J. 351, 289–305 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Schlaepfer, D. D. & Hunter, T. Integrin signalling and tyrosine phosphorylation: just the FAKs? Trends Cell Biol. 8, 151–157 (1998).

    Article  CAS  PubMed  Google Scholar 

  33. Zou, J. X. et al. An Eph receptor regulates integrin activity through R-Ras. Proc. Natl Acad. Sci. USA 96, 13813–13818 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Miao, H., Burnett, E., Kinch, M., Simon, E. & Wang, B. Activation of EphA2 kinase suppresses integrin function and causes focal-adhesion-kinase dephosphorylation. Nature Cell Biol. 2, 62–69 (2000).

    Article  CAS  PubMed  Google Scholar 

  35. Huynh-Do, U. et al. Surface densities of ephrinB1 determine EphB1-coupled activation of cell attachment through αvβ3 and α5β1 integrins. EMBO J. 18, 2165–2173 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Becker, E. et al. Nck-interacting Ste20 kinase couples Eph receptors to c-Jun N-terminal kinase and integrin activation. Mol. Cell. Biol. 20, 1537–1545 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Gu, C. & Park, S. The EphA8 receptor regulates integrin activity through p110γ phosphatidylinositol 3-kinase in a tyrosine kinase activity-independent manner. Mol. Cell. Biol. 21, 4579–4597 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Bruckner, K. & Klein, R. Signaling by Eph receptors and their ephrin ligands. Curr. Opin. Neurobiol. 8, 375–382 (1998).

    Article  CAS  PubMed  Google Scholar 

  39. Flanagan, J. G. & Vanderhaeghen, P. The ephrins and Eph receptors in neural development. Annu. Rev. Neurosci. 21, 309–345 (1998).

    Article  CAS  PubMed  Google Scholar 

  40. Wilkinson, D. G. Eph receptors and ephrins: regulators of guidance and assembly. Int. Rev. Cytol. 196, 177–244 (2000).

    Article  CAS  PubMed  Google Scholar 

  41. Henkemeyer, M. et al. Nuk controls pathfinding of commissural axons in the mammalian central nervous system. Cell 86, 35–46 (1996).This paper provides the first genetic evidence for EphB2 (Nuk) having a kinase-independent role in axon-tract formation and suggested reverse signalling by ephrins.

    Article  CAS  PubMed  Google Scholar 

  42. Kalo, M. S., Yu, H. H. & Pasquale, E. B. In vivo tyrosine phosphorylation sites of activated ephrinB1 and ephB2 from neural tissue. J. Biol. Chem. 276, 38940–38948 (2001).

    Article  CAS  PubMed  Google Scholar 

  43. Palmer, A. et al. EphrinB phosphorylation and reverse signaling: regulation by Src kinases and PTP-BL phosphatase. Mol. Cell 9, 725–737 (2002).This article shows that Src-family kinases are required for ephrinB phosphorylation and angiogenic sprouting and indicates the presence of a switch mechanism from tyrosine-phosphorylation-dependent to PDZ-domain-dependent signalling.

    Article  CAS  PubMed  Google Scholar 

  44. Chong, L. D., Park, E. K., Latimer, E., Friesel, R. & Daar, I. O. Fibroblast growth factor receptor-mediated rescue of x-ephrin B1-induced cell dissociation in Xenopus embryos. Mol. Cell. Biol. 20, 724–734 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Torres, R. et al. PDZ proteins bind, cluster, and synaptically colocalize with Eph receptors and their ephrin ligands. Neuron 21, 1453–1463 (1998).

    Article  CAS  PubMed  Google Scholar 

  46. Bruckner, K. et al. EphrinB ligands recruit GRIP family PDZ adaptor proteins into raft membrane microdomains. Neuron 22, 511–524 (1999).

    Article  CAS  PubMed  Google Scholar 

  47. Lin, D., Gish, G. D., Songyang, Z. & Pawson, T. The carboxyl terminus of B class ephrins constitutes a PDZ domain binding motif. J. Biol. Chem. 274, 3726–3733 (1999).

    Article  CAS  PubMed  Google Scholar 

  48. Cowan, C. A. & Henkemeyer, M. The SH2/SH3 adaptor Grb4 transduces B-ephrin reverse signals. Nature 413, 174–179 (2001).This study identified the adaptor Grb4 as an essential downstream effector of ephrinB reverse signalling.

    Article  CAS  PubMed  Google Scholar 

  49. Ribon, V., Herrera, R., Kay, B. K. & Saltiel, A. R. A role for CAP, a novel, multifunctional Src homology 3 domain-containing protein in formation of actin stress fibers and focal adhesions. J. Biol. Chem. 273, 4073–4080 (1998).

    Article  CAS  PubMed  Google Scholar 

  50. Coutinho, S. et al. Characterization of Grb4, an adapter protein interacting with Bcr-Abl. Blood 96, 618–624 (2000).

    CAS  PubMed  Google Scholar 

  51. Dai, Z. & Pendergast, A. M. Abi-2, a novel SH3-containing protein interacts with the c-Abl tyrosine kinase and modulates c-Abl transforming activity. Genes Dev. 9, 2569–2582 (1995).

    Article  CAS  PubMed  Google Scholar 

  52. Shi, Y., Alin, K. & Goff, S. P. Abl-interactor-1, a novel SH3 protein binding to the carboxy-terminal portion of the Abl protein, suppresses v-abl transforming activity. Genes Dev. 9, 2583–2597 (1995).

    Article  CAS  PubMed  Google Scholar 

  53. Lu, Q., Sun, E. E., Klein, R. S. & Flanagan, J. G. Ephrin-B reverse signaling is mediated by a novel PDZ–RGS protein and selectively inhibits G protein-coupled chemoattraction. Cell 105, 69–79 (2001).This paper provides the first functional relevance for ephrinB interaction with PDZ-domain-containing proteins in the regulation of heterotrimeric G-protein signalling and neuronal migration.

    Article  CAS  PubMed  Google Scholar 

  54. Salcedo, R. et al. Vascular endothelial growth factor and basic fibroblast growth factor induce expression of CXCR4 on human endothelial cells: in vivo neovascularization induced by stromal-derived factor-1α. Am. J. Pathol. 154, 1125–1135 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Gupta, S. K., Lysko, P. G., Pillarisetti, K., Ohlstein, E. & Stadel, J. M. Chemokine receptors in human endothelial cells. Functional expression of CXCR4 and its transcriptional regulation by inflammatory cytokines. J. Biol. Chem. 273, 4282–4287 (1998).

    Article  CAS  PubMed  Google Scholar 

  56. Wang, X. et al. Multiple ephrins control cell organization in C. elegans using kinase-dependent and-independent functions of the VAB-1 Eph receptor. Mol. Cell 4, 903–913 (1999).This, and reference 62 , identified functions of the C. elegans Eph receptor VAB-1 and the corresponding ephrins. As for other genetic studies VAB-1 can have kinase-dependent and kinase-independent functions.

    Article  CAS  PubMed  Google Scholar 

  57. Davy, A. et al. Compartmentalized signaling by GPI-anchored ephrin-A5 requires the Fyn tyrosine kinase to regulate cellular adhesion. Genes Dev. 13, 3125–3135 (1999).This study identified the Src-family kinase Fyn as an adaptor downstream of ephrinA signalling.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Davy, A. & Robbins, S. M. Ephrin-A5 modulates cell adhesion and morphology in an integrin-dependent manner. EMBO J. 19, 5396–5405 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Huai, J. & Drescher, U. An ephrin-A-dependent signaling pathway controls integrin function and is linked to the tyrosine phosphorylation of a 120-kDa protein. J. Biol. Chem. 276, 6689–6694 (2001).

    Article  CAS  PubMed  Google Scholar 

  60. Birgbauer, E., Cowan, C. A., Sretavan, D. W. & Henkemeyer, M. Kinase independent function of EphB receptors in retinal axon pathfinding to the optic disc from dorsal but not ventral retina. Development 127, 1231–1241 (2000).

    CAS  PubMed  Google Scholar 

  61. Birgbauer, E., Oster, S. F., Severin, C. G. & Sretavan, D. W. Retinal axon growth cones respond to EphB extracellular domains as inhibitory axon guidance cues. Development 128, 3041–3048 (2001).

    CAS  PubMed  Google Scholar 

  62. George, S. E., Simokat, K., Hardin, J. & Chisholm, A. D. The VAB-1 Eph receptor tyrosine kinase functions in neural and epithelial morphogenesis in C. elegans. Cell 92, 633–643 (1998).

    Article  CAS  PubMed  Google Scholar 

  63. Dottori, M. et al. EphA4 (Sek1) receptor tyrosine kinase is required for the development of the corticospinal tract. Proc. Natl Acad. Sci. USA 95, 13248–13253 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Kullander, K. et al. Ephrin-B3 is the midline barrier that prevents corticospinal tract axons from recrossing, allowing for unilateral motor control. Genes Dev. 15, 877–888 (2001).References 64 and 65 provide genetic data that ephrinB3 acts as a midline barrier for corticospinal-tract axons that express EphA4. Reference 65 further shows that the ephrinB3 cytoplasmic tail is not required for this function.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Yokoyama, N. et al. Forward signaling mediated by ephrin-B3 prevents contralateral corticospinal axons from recrossing the spinal cord midline. Neuron 29, 85–97 (2001).

    Article  CAS  PubMed  Google Scholar 

  66. Martone, M. E., Holash, J. A., Bayardo, A., Pasquale, E. B. & Ellisman, M. H. Immunolocalization of the receptor tyrosine kinase EphA4 in the adult rat central nervous system. Brain Res. 771, 238–250 (1997).

    Article  CAS  PubMed  Google Scholar 

  67. Stein, E. et al. Eph receptors discriminate specific ligand oligomers to determine alternative signaling complexes, attachment, and assembly responses. Genes Dev. 12, 667–678 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Smalla, M. et al. Solution structure of the receptor tyrosine kinase EphB2 SAM domain and identification of two distinct homotypic interaction sites. Protein Sci. 8, 1954–1961 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Stapleton, D., Balan, I., Pawson, T. & Sicheri, F. The crystal structure of an Eph receptor SAM domain reveals a mechanism for modular dimerization. Nature Struct. Biol. 6, 44–49 (1999).

    Article  CAS  PubMed  Google Scholar 

  70. Thanos, C. D., Goodwill, K. E. & Bowie, J. U. Oligomeric structure of the human EphB2 receptor SAM domain. Science 283, 833–836 (1999).

    Article  CAS  PubMed  Google Scholar 

  71. Cowan, C. A., Yokoyama, N., Bianchi, L. M., Henkemeyer, M. & Fritzsch, B. EphB2 guides axons at the midline and is necessary for normal vestibular function. Neuron 26, 417–430 (2000).

    Article  CAS  PubMed  Google Scholar 

  72. Dalva, M. B. et al. EphB receptors interact with NMDA receptors and regulate excitatory synapse formation. Cell 103, 945–956 (2000).This is the first study to show a direct interaction between the EphB2 receptor and the NMDA-type glutamate receptor NR1 and indicates a possible role for EphB2 in synapse formation or function.

    Article  CAS  PubMed  Google Scholar 

  73. Takasu, M. A., Dalva, M. B., Zigmond, R. E. & Greenberg, M. E. Modulation of NMDA receptor-dependent calcium influx and gene expression through EphB receptors. Science 295, 491–495 (2002).

    Article  CAS  PubMed  Google Scholar 

  74. Ethell, I. M. et al. EphB/syndecan-2 signaling in dendritic spine morphogenesis. Neuron 31, 1001–1013 (2001).

    Article  CAS  PubMed  Google Scholar 

  75. Grunwald, I. C. et al. Kinase-independent requirement of EphB2 receptors in hippocampal synaptic plasticity. Neuron 32, 1027–1040 (2001).

    Article  CAS  PubMed  Google Scholar 

  76. Henderson, J. T. et al. The receptor tyrosine kinase EphB2 regulates NMDA-dependent synaptic function. Neuron 32, 1041–1056 (2001).References 75 and 76 show a requirement for EphB2 in hippocampal synaptic plasticity, which is possibly linked to its interaction with NMDA receptors.

    Article  CAS  PubMed  Google Scholar 

  77. Klein, R. Bidirectional signals establish boundaries. Curr. Biol. 9, R691–R694 (1999).

    Article  CAS  PubMed  Google Scholar 

  78. Xu, Q., Mellitzer, G., Robinson, V. & Wilkinson, D. G. In vivo cell sorting in complementary segmental domains mediated by Eph receptors and ephrins. Nature 399, 267–271 (1999).

    Article  CAS  PubMed  Google Scholar 

  79. Mellitzer, G., Xu, Q. & Wilkinson, D. G. Eph receptors and ephrins restrict cell intermingling and communication. Nature 400, 77–81 (1999).References 78 and 79 show ephrin–Eph bidirectional signalling in hindbrain-segment-boundary formation and in restriction of cell intermingling.

    Article  CAS  PubMed  Google Scholar 

  80. Adams, R. H. et al. The cytoplasmic domain of the ligand ephrinB2 is required for vascular morphogenesis but not cranial neural crest migration. Cell 104, 57–69 (2001).In vivo data that show the importance of the cytoplasmic domain of ephrinB2 for angiogenic remodelling.

    Article  CAS  PubMed  Google Scholar 

  81. Smith, A., Robinson, V., Patel, K. & Wilkinson, D. G. The EphA4 and EphB1 receptor tyrosine kinases and ephrin-B2 ligand regulate targeted migration of branchial neural crest cells. Curr. Biol. 7, 561–570 (1997).

    Article  CAS  PubMed  Google Scholar 

  82. Wang, H. & Anderson, D. Eph family transmembrane ligands can mediate repulsive guidance of trunk neural crest migration and motor axon outgrowth. Neuron 18, 383–396 (1997).

    Article  CAS  PubMed  Google Scholar 

  83. Krull, C. E. et al. Interactions of Eph-related receptors and ligands confer rostrocaudal pattern to trunk neural crest migration. Curr. Biol. 7, 571–580 (1997).

    Article  CAS  PubMed  Google Scholar 

  84. Gavin, A. C. et al. Functional organization of the yeast proteome by systematic analysis of protein complexes. Nature 415, 141–147 (2002).

    Article  CAS  PubMed  Google Scholar 

  85. Ho, Y. et al. Systematic identification of protein complexes in Saccharomyces cerevisiae by mass spectrometry. Nature 415, 180–183 (2002).

    Article  CAS  PubMed  Google Scholar 

  86. Sajjadi, F. G. & Pasquale, E. B. Five novel avian Eph-related tyrosine kinases are differentially expressed. Oncogene 8, 1807–1813 (1993).

    CAS  PubMed  Google Scholar 

  87. Scully, A. L., McKeown, M. & Thomas, J. B. Isolation and characterization of Dek, a Drosophila eph receptor protein tyrosine kinase. Mol. Cell Neurosci. 13, 337–347 (1999).

    Article  CAS  PubMed  Google Scholar 

  88. Dai, Y. Drosophila melanogaster Ephrin mRNA, complete cds. In 'GenBank/EMBL/DDBJ', pp. AF216287. (1999).

  89. Chin-Sang, I. D. et al. The ephrin VAB-2/EFN-1 functions in neuronal signaling to regulate epidermal morphogenesis in C. elegans. Cell 99, 781–790 (1999).

    Article  CAS  PubMed  Google Scholar 

  90. Orioli, D., Henkemeyer, M., Lemke, G., Klein, R. & Pawson, T. Sek4 and Nuk receptors cooperate in guidance of commissural axons and in palate formation. EMBO J. 15, 6035–6049 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. O'Leary, D. D. & Wilkinson, D. G. Eph receptors and ephrins in neural development. Curr. Opin. Neurobiol. 9, 65–73 (1999).

    Article  CAS  PubMed  Google Scholar 

  92. Knoll, B., Zarbalis, K., Wurst, W. & Drescher, U. A role for the EphA family in the topographic targeting of vomeronasal axons. Development 128, 895–906 (2001).

    CAS  PubMed  Google Scholar 

  93. Adams, R. H. et al. Roles of ephrinB ligands and EphB receptors in cardiovascular development: demarcation of arterial/venous domains, vascular morphogenesis, and sprouting angiogenesis. Genes Dev. 13, 295–306 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Wang, H. U., Chen, Z. F. & Anderson, D. J. Molecular distinction and angiogenic interaction between embryonic arteries and veins revealed by ephrin-B2 and its receptor Eph-B4. Cell 93, 741–753 (1998).

    Article  CAS  PubMed  Google Scholar 

  95. Gerety, S. S., Wang, H. U., Chen, Z. F. & Anderson, D. J. Symmetrical mutant phenotypes of the receptor EphB4 and its specific transmembrane ligand ephrin-B2 in cardiovascular development. Mol. Cell 4, 403–414 (1999).

    Article  CAS  PubMed  Google Scholar 

  96. Nikolova, Z., Djonov, V., Zuercher, G., Andres, A. C. & Ziemiecki, A. Cell-type specific and estrogen dependent expression of the receptor tyrosine kinase EphB4 and its ligand ephrin-B2 during mammary gland morphogenesis. J. Cell Sci. 111, 2741–2751 (1998).

    CAS  PubMed  Google Scholar 

  97. Gale, N. W. et al. Ephrin-B2 selectively marks arterial vessels and neovascularization sites in the adult, with expression in both endothelial and smooth-muscle cells. Dev. Biol. 230, 151–160 (2001).

    Article  CAS  PubMed  Google Scholar 

  98. Ogawa, K. et al. The ephrin-A1 ligand and its receptor, EphA2, are expressed during tumor neovascularization. Oncogene 19, 6043–6052 (2000).

    Article  CAS  PubMed  Google Scholar 

  99. Simons, K. & Toomre, D. Lipid rafts and signal transduction. Nature Rev. Mol. Cell Biol. 1, 31–39 (2000).

    Article  CAS  Google Scholar 

  100. Harris, K. M. Structure, development, and plasticity of dendritic spines. Curr. Opin. Neurobiol. 9, 343–348 (1999).

    Article  CAS  PubMed  Google Scholar 

  101. Segal, M. & Andersen, P. Dendritic spines shaped by synaptic activity. Curr. Opin. Neurobiol. 10, 582–586 (2000).

    Article  CAS  PubMed  Google Scholar 

  102. Bliss, T. V. & Lomo, T. Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path. J. Physiol. 232, 331–356 (1973).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Stein, E., Huynh-Do, U., Lane, A. A., Cerretti, D. P. & Daniel, T. O. Nck recruitment to Eph receptor, EphB1/ELK, couples ligand activation to c-Jun kinase. J. Biol. Chem. 273, 1303–1308 (1998).

    Article  CAS  PubMed  Google Scholar 

  104. Holland, S. J. et al. Juxtamembrane tyrosine residues couple the Eph family receptor EphB2/Nuk to specific SH2 domain proteins in neuronal cells. EMBO J. 16, 3877–3888 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Hock, B. et al. PDZ-domain-mediated interaction of the Eph-related receptor tyrosine kinase EphB3 and the ras-binding protein AF6 depends on the kinase activity of the receptor. Proc. Natl Acad. Sci. USA 95, 9779–9784 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Ellis, C. et al. A juxtamembrane autophosphorylation site in the Eph family receptor tyrosine kinase, Sek, mediates high affinity interaction with p59fyn. Oncogene 12, 1727–1736 (1996).

    CAS  PubMed  Google Scholar 

  107. Pandey, A., Duan, H. & Dixit, V. M. Characterization of a novel Src-like adapter protein that associates with the Eck receptor tyrosine kinase. J. Biol. Chem. 270, 19201–19204 (1995).

    Article  CAS  PubMed  Google Scholar 

  108. Pandey, A., Lazar, D. F., Saltiel, A. R. & Dixit, V. M. Activation of the Eck receptor protein tyrosine kinase stimulates phosphatidylinositol 3-kinase activity. J. Biol. Chem. 269, 30154–30157 (1994).

    CAS  PubMed  Google Scholar 

  109. Stein, E., Cerretti, D. P. & Daniel, T. O. Ligand activation of ELK receptor tyrosine kinase promotes its association with Grb10 and Grb2 in vascular endothelial cells. J. Biol. Chem. 271, 23588–23593 (1996).

    Article  CAS  PubMed  Google Scholar 

  110. Dodelet, V. C., Pazzagli, C., Zisch, A. H., Hauser, C. A. & Pasquale, E. B. A novel signaling intermediate, SHEP1, directly couples Eph receptors to R-Ras and Rap1A. J. Biol. Chem. 274, 31941–31946 (1999).

    Article  CAS  PubMed  Google Scholar 

  111. Hock, B. et al. Tyrosine-614, the major autophosphorylation site of the receptor tyrosine kinase HEK2, functions as multi-docking site for SH2-domain mediated interactions. Oncogene 17, 255–260 (1998).

    Article  CAS  PubMed  Google Scholar 

  112. Buchert, M. et al. The junction-associated protein AF-6 interacts and clusters with specific Eph receptor tyrosine kinases at specialized sites of cell–cell contact in the brain. J. Cell Biol. 144, 361–371 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Himanen, J. P. et al. Crystal structure of an Eph receptor–ephrin complex. Nature 414, 933–938 (2001).

    Article  CAS  PubMed  Google Scholar 

  114. Himanen, J. P., Henkemeyer, M. & Nikolov, D. B. Crystal structure of the ligand-binding domain of the receptor tyrosine kinase EphB2. Nature 396, 486–491 (1998).

    Article  CAS  PubMed  Google Scholar 

  115. Toth, J. et al. Crystal structure of an ephrin ectodomain. Dev. Cell 1, 83–92 (2001).

    Article  CAS  PubMed  Google Scholar 

  116. Labrador, J. P., Brambilla, R. & Klein, R. The N-terminal globular domain of Eph receptors is sufficient for ligand binding and receptor signalling. EMBO J. 16, 3889–3897 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Kalo, M. S. & Pasquale, E. B. Signal transfer by Eph receptors. Cell Tissue Res. 298, 1–9 (1999).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank I. C. Grunwald, A. Palmer and G. A. Wilkinson for critically reading the manuscript and helpful discussions. Work in the laboratory was supported by grants from the Human Frontiers Science Programme Organization, the Deutsche Forschungsgemeinschaft and the Max Planck Society. K. K is a Marie Curie Fellow.

Author information

Authors and Affiliations

Authors

Related links

Related links

DATABASES

Flybase

dock

InterPro

Dbl

PDZ-binding motif

pleckstrin homology

SAM

SH2

SH3 domains

LocusLink

Abi-1

axin

BDNF

Cdc42

CXCR4

EGF

EphA1

EphA2

EphA3

EphA4

EphA8

EphB1

EphB2

EphB3

EphB4

EphB6

Grb4

GRIP1

GRIP2

Nck

Pick1

R-Ras

SDF-1

SOS

syndecan-2

syntenin

VEGF

Swiss-Prot

Arg

Ephexin

ephrinA1

ephrinA3

ephrinA4

ephrinA5

ephrinB1

ephrinB3

FAK

Fyn

Grb2

lacZ

PI3Kγ

PDGF receptorβ

Rac1

TrkB receptor

VAB-1

Glossary

GPI ANCHOR

The function of this post-translational modification is to attach proteins to the exoplasmic leaflet of membranes, and possibly to specific domains therein. The anchor is made of one molecule of phosphatidylinositol to which a carbohydrate chain is linked through the C-6 hydroxyl of the inositol, and is linked to the protein through an ethanolamine phosphate moiety.

FIBRONECTIN TYPE III REPEAT

A 90-amino-acid-long stretch that is repeated 15–17 times in the fibronectin molecule. It is a common motif in many cell-surface proteins.

STERILE α-MOTIF

(SAM). A domain of 70 amino acids that is roughly conserved in many proteins and thought to participate in protein–protein interactions.

PDZ-DOMAIN

(PSD-95, Dlg and ZO-1/2). A protein–protein interaction domain of around 90 amino acids that binds particularly to carboxy-terminal polypeptides.

SYNAPTIC PLASTICITY

A change in the functional properties of a synapse as a result of use.

AUTOPHOSPHORYLATION

The phosphorylation by a protein of one of its own residues.

SH2 DOMAIN

(Src-homology-2 domain). A protein motif that recognizes and binds tyrosine-phosphorylated sequences, and thereby has a key role in relaying cascades of signal transduction.

SH3 DOMAIN

(Src-homology-3 domain). A protein sequence of around 50 amino acids that recognizes and binds sequences that are rich in proline.

NEURAL TUBE

A hollow, dorsal tube of embryonic nerve tissue that is formed by the rolling up of the neural plate. At the front, the tube expands to form the brain, whereas the posterior part narrows to form the spinal cord.

RHO FAMILY GTPASES

Ras-related GTPases that are involved in controlling the polymerization of actin.

GROWTH CONE

A motile, exploratory tip of the axon or dendrite of a growing nerve cell, which spreads out into a large cone-shaped appendage.

FILOPODIA

Long, thin protrusions at the periphery of cells and growth cones. They are composed of F-actin bundles.

LAMELLIPODIA

Flattened, sheet-like projections of crosslinked F-actin from the surface of a cell, which are often associated with cell migration.

DOMINANT-NEGATIVE

A defective protein that retains interaction capabilities and so distorts or competes with normal proteins.

RETINAL GANGLION CELLS

Cells that form the third and last layer of the retina. They are a type of interneuron that convey information from the retinal bipolar, horizontal and amacrine cells of the eye to the brain. The axons of ganglion cells form the fibers of the optic nerve.

VOMERONASAL SYSTEM

A cluster of sensory neurons in the nasal arch that detects pheromones and transmits this information to higher cortical centres.

ENDOTHELIAL CELLS

Thin, flattened cells of mesoblastic origin that are arranged in a single layer that lines the blood vessels and some body cavities; for example, those of the heart.

FASCICULATION

The bundling of axonal processes of neurons.

FOCAL ADHESIONS

Cellular structures that link the extracellular matrix on the outside of the cell, through integrin receptors, to the actin cytoskeleton inside the cell.

STRESS FIBRES

Axial bundles of F-actin underlying the cell bodies.

OPTIC DISC

The exit point of retinal axons from the eye into the optic nerve (also called the optic nerve head).

VENTRAL ENCLOSURE

The ability of epithelial sheets with free edges to join together and fuse at the ventral midline.

NEOCORTEX

The 'newer cortex', which refers to the telencephalic cortex as opposed to the evolutionarily older primitive cortex (piriform cortex). It is found in higher vertebrates and is the site of higher mental processes.

SEMICIRCULAR CANAL

Liquid-filled archformed canal that is part of the inner-ear balance organ.

VESTIBULAR SYSTEM

The inner-ear balance organ that keeps track of the position and motion of the head in space. It consists of three perpendicularly oriented semicircular canals, which detect angular acceleration, and the utricle and saccule, which detect linear acceleration.

PROTEOGLYCANS

A class of acidic glycoproteins that are found in the extracellular matrix, especially in connective tissues. They contain more carbohydrate than protein.

LONG-TERM POTENTIATION

A long-lasting increase in the efficacy of synaptic transmission, which is commonly elicited by high-frequency neuron stimulation.

NEURAL-CREST CELL

An embryonic cell that separates from the embryonic neural plate and migrates, giving rise to the spinal and autonomic ganglia, peripheral glia, chromaffin cells, melanocytes and some haematopoietic cells.

BRANCHIAL ARCH

In the higher vertebrate embryo, this is one of a series of arches — populated by neural-crest cells — that develop into structures of the ear, neck and face. The corresponding structures in fish and amphibians, sometimes referred to as gill arches, are made of bone or cartilage and are located on either side of the pharynx.

AORTIC ARCHES

Paired arches in vertebrate embryos that connect the ventral aorta with dorsal aorta(e) by running up between gill slits or gill pouches on each side.

PROTEOME

The complete set of (predicted) proteins in an organism. The term is analogous to the genome (the complete genetic material).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kullander, K., Klein, R. Mechanisms and functions of eph and ephrin signalling. Nat Rev Mol Cell Biol 3, 475–486 (2002). https://doi.org/10.1038/nrm856

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm856

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing