Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Integrin inactivators: balancing cellular functions in vitro and in vivo

Key Points

  • Correct integrin function requires constant switching of integrins between inactive and active conformations.

  • This switching is dynamically controlled by a multi-integrated system, including the interaction of integrins with inhibitory and activating proteins.

  • Interfering with integrin activity, both through integrin mutations or modulation of integrin inhibitors or activators, leads to strong phenotypes in mice and is linked to human pathologies.

Abstract

Integrins mediate cell–matrix and cell–cell interactions and integrate extracellular cues to the cytoskeleton and cellular signalling pathways. Integrin function on the cell surface is regulated by their activity switching such that intracellular proteins interacting with the integrin cytoplasmic domains increase or decrease integrin–ligand binding affinity. It is widely accepted that integrin activation by specific proteins is essential for cell adhesion and integrin linkage to the actin cytoskeleton. However, there is also increasing evidence that integrin-inactivating proteins are crucial for appropriate integrin function in vitro and in vivo and that the regulation of integrin–ligand interactions is a fine-tuned balancing act between inactivation and activation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Integrin inactivation.
Figure 2: The life of an integrin.

Similar content being viewed by others

References

  1. Legate, K. R. & Fassler, R. Mechanisms that regulate adaptor binding to β-integrin cytoplasmic tails. J. Cell Sci. 122, 187–198 (2009).

    CAS  PubMed  Google Scholar 

  2. Zaidel-Bar, R., Itzkovitz, S., Ma'ayan, A., Iyengar, R. & Geiger, B. Functional atlas of the integrin adhesome. Nature Cell Biol. 9, 858–867 (2007).

    CAS  PubMed  Google Scholar 

  3. Ivaska, J. & Heino, J. Interplay between cell adhesion and growth factor receptors: from the plasma membrane to the endosomes. Cell Tissue Res. 339, 111–120 (2010).

    CAS  PubMed  Google Scholar 

  4. Schwarz, U. S. & Gardel, M. L. United we stand: integrating the actin cytoskeleton and cell–matrix adhesions in cellular mechanotransduction. J. Cell Sci. 125, 3051–3060 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Schwartz, M. A. Integrins and extracellular matrix in mechanotransduction. Cold Spring Harb. Perspect. Biol. 2, a005066 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Wehrle-Haller, B. Assembly and disassembly of cell matrix adhesions. Curr. Opin. Cell Biol. 24, 569–581 (2012).

    CAS  PubMed  Google Scholar 

  7. Arjonen, A., Alanko, J., Veltel, S. & Ivaska, J. Distinct recycling of active and inactive β1 integrins. Traffic 13, 610–625 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Springer, T. A. & Dustin, M. L. Integrin inside–out signaling and the immunological synapse. Curr. Opin. Cell Biol. 24, 107–115 (2012).

    CAS  PubMed  Google Scholar 

  9. Shattil, S. J., Kim, C. & Ginsberg, M. H. The final steps of integrin activation: the end game. Nature Rev. Mol. Cell Biol. 11, 288–300 (2010).

    CAS  Google Scholar 

  10. Rantala, J. K. et al. SHARPIN is an endogenous inhibitor of β1-integrin activation. Nature Cell Biol. 13, 1315–1324 (2011). First demonstration of a ubiquitously expressed integrin inhibitor that interacts with the α-integrin tail and prevents binding of the integrin activators talin and kindlin. Importantly, SHARPIN also affects integrin activity in vivo.

    CAS  PubMed  Google Scholar 

  11. Bouvard, D. et al. Disruption of focal adhesions by integrin cytoplasmic domain-associated protein-1α. J. Biol. Chem. 278, 6567–6574 (2003).

    CAS  PubMed  Google Scholar 

  12. Calderwood, D. A. et al. Increased filamin binding to β-integrin cytoplasmic domains inhibits cell migration. Nature Cell Biol. 3, 1060–1068 (2001).

    CAS  PubMed  Google Scholar 

  13. Kim, C., Ye, F. & Ginsberg, M. H. Regulation of integrin activation. Annu. Rev. Cell Dev. Biol. 27, 321–345 (2011).

    CAS  PubMed  Google Scholar 

  14. Boettiger, D. Mechanical control of integrin-mediated adhesion and signaling. Curr. Opin. Cell Biol. 24, 592–599 (2012).

    CAS  PubMed  Google Scholar 

  15. Chang, D. D., Wong, C., Smith, H. & Liu, J. ICAP-1, a novel β1 integrin cytoplasmic domain-associated protein, binds to a conserved and functionally important NPXY sequence motif of β1 integrin. J. Cell Biol. 138, 1149–1157 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Calderwood, D. A. et al. Integrin-β cytoplasmic domain interactions with phosphotyrosine-binding domains: a structural prototype for diversity in integrin signaling. Proc. Natl Acad. Sci. USA 100, 2272–2277 (2003).

    CAS  PubMed  Google Scholar 

  17. Wegener, K. L. et al. Structural basis of integrin activation by talin. Cell 128, 171–182 (2007).

    CAS  PubMed  Google Scholar 

  18. Kiema, T. et al. The molecular basis of filamin binding to integrins and competition with talin. Mol. Cell 21, 337–347 (2006).

    CAS  PubMed  Google Scholar 

  19. Nevo, J. et al. Mammary-derived growth inhibitor (MDGI) interacts with integrin α-subunits and suppresses integrin activity and invasion. Oncogene 29, 6452–663 (2010).

    CAS  PubMed  Google Scholar 

  20. Pouwels, J., Nevo, J., Pellinen, T., Ylanne, J. & Ivaska, J. Negative regulators of integrin activity. J. Cell Sci. 125, 3271–3280 (2012).

    CAS  PubMed  Google Scholar 

  21. Pentikainen, U. & Ylanne, J. The regulation mechanism for the auto-inhibition of binding of human filamin A to integrin. J. Mol. Biol. 393, 644–657 (2009).

    PubMed  Google Scholar 

  22. Ehrlicher, A. J., Nakamura, F., Hartwig, J. H., Weitz, D. A. & Stossel, T. P. Mechanical strain in actin networks regulates FilGAP and integrin binding to filamin A. Nature 478, 260–263 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Nieves, B. et al. The NPIY motif in the integrin β1 tail dictates the requirement for talin-1 in outside–in signaling. J. Cell. Sci. 123, 1216–1226 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Baldassarre, M. et al. Filamins regulate cell spreading and initiation of cell migration. PLoS ONE 4, e7830 (2009).

    PubMed  PubMed Central  Google Scholar 

  25. Lynch, C. D. et al. Filamin depletion blocks endoplasmic spreading and destabilizes force-bearing adhesions. Mol. Biol. Cell 22, 1263–1273 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Baldassarre, M., Razinia, Z., Brahme, N. N., Buccione, R. & Calderwood, D. A. Filamin A controls matrix metalloproteinase activity and regulates cell invasion in human fibrosarcoma cells. J. Cell Sci. 125, 3858–3869 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Xu, Y. et al. Filamin A regulates focal adhesion disassembly and suppresses breast cancer cell migration and invasion. J. Exp. Med. 207, 2421–2437 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Millon-Fremillon, A. et al. Cell adaptive response to extracellular matrix density is controlled by ICAP-1-dependent β1-integrin affinity. J. Cell Biol. 180, 427–441 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Moser, M., Legate, K. R., Zent, R. & Fassler, R. The tail of integrins, talin, and kindlins. Science 324, 895–899 (2009).

    CAS  PubMed  Google Scholar 

  30. Brunner, M. et al. Osteoblast mineralization requires β1 integrin/ICAP-1-dependent fibronectin deposition. J. Cell Biol. 194, 307–322 (2011). Demonstrates the importance of negative regulation of β1 integrins by ICAP1 in cell matrix deposition through the modulation of adhesive structure dynamics. Also provides a molecular explanation for ICAP1-mediated inhibition of β1integrin by showing that ICAP1 is a direct antagonist of kindlin binding.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Fournier, H. N. et al. Integrin cytoplasmic domain-associated protein 1α (ICAP-1α) interacts directly with the metastasis suppressor nm23-H2, and both proteins are targeted to newly formed cell adhesion sites upon integrin engagement. J. Biol. Chem. 277, 20895–20902 (2002).

    CAS  PubMed  Google Scholar 

  32. Zhang, X. A. & Hemler, M. E. Interaction of the integrin β1 cytoplasmic domain with ICAP-1 protein. J. Biol. Chem. 274, 11–19 (1999).

    CAS  PubMed  Google Scholar 

  33. Bouvard, D. et al. Defective osteoblast function in ICAP-1-deficient mice. Development 134, 2615–2625 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Liu, W., Draheim, K. M., Zhang, R., Calderwood, D. A. & Boggon, T. J. Mechanism for KRIT1 release of ICAP1-mediated suppression of integrin activation. Mol. Cell 49, 719–729 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Oxley, C. L. et al. An integrin phosphorylation switch: the effect of β3 integrin tail phosphorylation on Dok1 and talin binding. J. Biol. Chem. 283, 5420–5426 (2008).

    CAS  PubMed  Google Scholar 

  36. Wang, Z., Potter, C. S., Sundberg, J. P. & Hogenesch, H. SHARPIN is a key regulator of immune and inflammatory responses. J. Cell. Mol. Med. 16, 2271–2279 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. O'Toole, T. E. et al. Modulation of the affinity of integrin αIIb β3 (GPIIb-IIIa) by the cytoplasmic domain of αIIb. Science 254, 845–847 (1991).

    CAS  PubMed  Google Scholar 

  38. Yang, J. et al. Structure of an integrin αIIb β3 transmembrane–cytoplasmic heterocomplex provides insight into integrin activation. Proc. Natl Acad. Sci. USA 106, 17729–17734 (2009).

    CAS  PubMed  Google Scholar 

  39. Sakai, T., Jove, R., Fassler, R. & Mosher, D. F. Role of the cytoplasmic tyrosines of β1A integrins in transformation by v-src. Proc. Natl Acad. Sci. USA 98, 3808–3813 (2001).

    CAS  PubMed  Google Scholar 

  40. Bledzka, K. et al. Tyrosine phosphorylation of integrin β3 regulates kindlin-2 binding and integrin activation. J. Biol. Chem. 285, 30370–30374 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Sakai, T., Zhang, Q., Fassler, R. & Mosher, D. F. Modulation of β1A integrin functions by tyrosine residues in the β1 cytoplasmic domain. J. Cell Biol. 141, 527–538 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Ilic, D. et al. Reduced cell motility and enhanced focal adhesion contact formation in cells from FAK-deficient mice. Nature 377, 539–544 (1995).

    CAS  PubMed  Google Scholar 

  43. Gahmberg, C. G. et al. Regulation of integrin activity and signalling. Biochim. Biophys. Acta 1790, 431–444 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Takala, H. et al. β2 integrin phosphorylation on Thr758 acts as a molecular switch to regulate 14-3-3 and filamin binding. Blood 112, 1853–1862 (2008).

    CAS  PubMed  Google Scholar 

  45. Fagerholm, S. C., Hilden, T. J., Nurmi, S. M. & Gahmberg, C. G. Specific integrin α- and β-chain phosphorylations regulate LFA-1 activation through affinity-dependent and -independent mechanisms. J. Cell Biol. 171, 705–715 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Woo, M. S., Ohta, Y., Rabinovitz, I., Stossel, T. P. & Blenis, J. Ribosomal S6 kinase (RSK) regulates phosphorylation of filamin A on an important regulatory site. Mol. Cell. Biol. 24, 3025–3035 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Anjum, R. & Blenis, J. The RSK family of kinases: emerging roles in cellular signalling. Nature Rev. Mol. Cell Biol. 9, 747–758 (2008).

    CAS  Google Scholar 

  48. Gawecka, J. E. et al. RSK2 protein suppresses integrin activation and fibronectin matrix assembly and promotes cell migration. J. Biol. Chem. 287, 43424–43437 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Simpson, K. J. et al. Identification of genes that regulate epithelial cell migration using an siRNA screening approach. Nature Cell Biol. 10, 1027–1038 (2008).

    CAS  PubMed  Google Scholar 

  50. Virtakoivu, R., Pellinen, T., Rantala, J. K., Perala, M. & Ivaska, J. Distinct roles of AKT isoforms in regulating β1-integrin activity, migration, and invasion in prostate cancer. Mol. Biol. Cell 23, 3357–3369 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Pellinen, T. et al. A functional genetic screen reveals new regulators of β1-integrin activity. J. Cell. Sci. 125, 649–661 (2012).

    CAS  PubMed  Google Scholar 

  52. Heino, J., Ignotz, R. A., Hemler, M. E., Crouse, C. & Massague, J. Regulation of cell adhesion receptors by transforming growth factor-β. Concomitant regulation of integrins that share a common β1 subunit. J. Biol. Chem. 264, 380–388 (1989).

    CAS  PubMed  Google Scholar 

  53. Ho, M. K. & Springer, T. A. Biosynthesis and assembly of the α- and β-subunits of Mac-1, a macrophage glycoprotein associated with complement receptor function. J. Biol. Chem. 258, 2766–2769 (1983).

    CAS  PubMed  Google Scholar 

  54. Tiwari, S., Askari, J. A., Humphries, M. J. & Bulleid, N. J. Divalent cations regulate the folding and activation status of integrins during their intracellular trafficking. J. Cell Sci. 124, 1672–1680 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Mould, A. P. & Humphries, M. J. Regulation of integrin function through conformational complexity: not simply a knee-jerk reaction? Curr. Opin. Cell Biol. 16, 544–551 (2004).

    CAS  PubMed  Google Scholar 

  56. Galbraith, C. G., Yamada, K. M. & Galbraith, J. A. Polymerizing actin fibers position integrins primed to probe for adhesion sites. Science 315, 992–995 (2007).

    CAS  PubMed  Google Scholar 

  57. Rossier, O. et al. Integrins β1 and β3 exhibit distinct dynamic nanoscale organizations inside focal adhesions. Nature Cell Biol. 14, 1057–1067 (2012). Through very elegant methods, this paper provides novel data on the rapid switching of inactive and active β3 integrins within focal adhesions and the specific recruitment of talin to integrin only within focal adhesions.

    CAS  PubMed  Google Scholar 

  58. Zhang, X. et al. Talin depletion reveals independence of initial cell spreading from integrin activation and traction. Nature Cell Biol. 10, 1062–1068 (2008).

    CAS  PubMed  Google Scholar 

  59. Nagae, M. et al. Crystal structure of α5β1 integrin ectodomain: atomic details of the fibronectin receptor. J. Cell Biol. 197, 131–140 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Lawson, C. et al. FAK promotes recruitment of talin to nascent adhesions to control cell motility. J. Cell Biol. 196, 223–232 (2012). Shows that FAK accumulates at nascent adhesions before talin and is required for talin accumulation at these sites, suggesting that FAK has a key role in switching between active and inactive integrin conformations.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Choi, C. K. et al. Actin and α-actinin orchestrate the assembly and maturation of nascent adhesions in a myosin II motor-independent manner. Nature Cell Biol. 10, 1039–1050 (2008).

    CAS  PubMed  Google Scholar 

  62. del Rio, A. et al. Stretching single talin rod molecules activates vinculin binding. Science 323, 638–641 (2009).

    CAS  PubMed  Google Scholar 

  63. Kong, F., Garcia, A. J., Mould, A. P., Humphries, M. J. & Zhu, C. Demonstration of catch bonds between an integrin and its ligand. J. Cell Biol. 185, 1275–1284 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Friedland, J. C., Lee, M. H. & Boettiger, D. Mechanically activated integrin switch controls α5β1 function. Science 323, 642–644 (2009).

    CAS  PubMed  Google Scholar 

  65. Wehrle-Haller, B. Structure and function of focal adhesions. Curr. Opin. Cell Biol. 24, 116–124 (2012).

    CAS  PubMed  Google Scholar 

  66. Pellinen, T. et al. Small GTPase Rab21 regulates cell adhesion and controls endosomal traffic of β1-integrins. J. Cell Biol. 173, 767–780 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Dozynkiewicz, M. A. et al. Rab25 and CLIC3 collaborate to promote integrin recycling from late endosomes/lysosomes and drive cancer progression. Dev. Cell. 22, 131–145 (2012). Demonstrates, for the first time, that, instead of being degraded, integrins localized in lysosomes can be retrogradely targeted and subsequently recycled back to the plasma membrane. This lysosomal recycling is unique for active integrins and regulates the release of the cell rear during cell migration

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Margadant, C., Kreft, M., de Groot, D. J., Norman, J. C. & Sonnenberg, A. Distinct roles of talin and kindlin in regulating integrin α5β1 function and trafficking. Curr. Biol. 22, 1554–1563 (2012).

    CAS  PubMed  Google Scholar 

  69. Steinberg, F., Heesom, K. J., Bass, M. D. & Cullen, P. J. SNX17 protects integrins from degradation by sorting between lysosomal and recycling pathways. J. Cell Biol. 197, 219–230 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Bottcher, R. T. et al. Sorting nexin 17 prevents lysosomal degradation of β1 integrins by binding to the β1-integrin tail. Nature Cell Biol. 14, 584–592 (2012). Illustrates the complex interplay between different integrin interaction partners in integrin activity regulation and suggests that this interaction is highly dynamic and probably requires tight regulation.

    PubMed  Google Scholar 

  71. Lobert, V. H. et al. Ubiquitination of α5β1 integrin controls fibroblast migration through lysosomal degradation of fibronectin–integrin complexes. Dev. Cell. 19, 148–159 (2010).

    CAS  PubMed  Google Scholar 

  72. Chen, N. T. & Lo, S. H. The N-terminal half of talin2 is sufficient for mouse development and survival. Biochem. Biophys. Res. Commun. 337, 670–676 (2005).

    CAS  PubMed  Google Scholar 

  73. Monkley, S. J. et al. Disruption of the talin gene arrests mouse development at the gastrulation stage. Dev. Dyn. 219, 560–574 (2000).

    CAS  PubMed  Google Scholar 

  74. Conti, F. J., Monkley, S. J., Wood, M. R., Critchley, D. R. & Muller, U. Talin 1 and 2 are required for myoblast fusion, sarcomere assembly and the maintenance of myotendinous junctions. Development 136, 3597–3606 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Montanez, E. et al. Kindlin-2 controls bidirectional signaling of integrins. Genes Dev. 22, 1325–1330 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Moser, M. et al. Kindlin-3 is required for β2 integrin-mediated leukocyte adhesion to endothelial cells. Nature Med. 15, 300–305 (2009).

    CAS  PubMed  Google Scholar 

  77. Moser, M., Nieswandt, B., Ussar, S., Pozgajova, M. & Fassler, R. Kindlin-3 is essential for integrin activation and platelet aggregation. Nature Med. 14, 325–330 (2008).

    CAS  PubMed  Google Scholar 

  78. Ussar, S. et al. Loss of kindlin-1 causes skin atrophy and lethal neonatal intestinal epithelial dysfunction. PLoS Genet. 4, e1000289 (2008).

    PubMed  PubMed Central  Google Scholar 

  79. Lefort, C. T. et al. Distinct roles for talin-1 and kindlin-3 in LFA-1 extension and affinity regulation. Blood 119, 4275–4282 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Brown, N. H. et al. Talin is essential for integrin function in Drosophila. Dev. Cell. 3, 569–579 (2002).

    CAS  PubMed  Google Scholar 

  81. Das, M., Ithychanda, S. S., Qin, J. & Plow, E. F. Migfilin and filamin as regulators of integrin activation in endothelial cells and neutrophils. PLoS ONE 6, e26355 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Zhou, X. et al. Filamin B deficiency in mice results in skeletal malformations and impaired microvascular development. Proc. Natl Acad. Sci. USA 104, 3919–3924 (2007).

    CAS  PubMed  Google Scholar 

  83. Nallapalli, R. K. et al. Targeting filamin A reduces K-RAS-induced lung adenocarcinomas and endothelial response to tumor growth in mice. Mol. Cancer 11, 50 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Jalali, S. et al. Integrin-mediated mechanotransduction requires its dynamic interaction with specific extracellular matrix (ECM) ligands. Proc. Natl Acad. Sci. USA 98, 1042–1046 (2001).

    CAS  PubMed  Google Scholar 

  85. Xia, T. et al. Loss-of-function of SHARPIN causes an osteopenic phenotype in mice. Endocrine 39, 104–112 (2011).

    CAS  PubMed  Google Scholar 

  86. Margadant, C., Charafeddine, R. A. & Sonnenberg, A. Unique and redundant functions of integrins in the epidermis. FASEB J. 24, 4133–4152 (2010).

    CAS  PubMed  Google Scholar 

  87. Gerlach, B. et al. Linear ubiquitination prevents inflammation and regulates immune signalling. Nature 471, 591–596 (2011).

    CAS  PubMed  Google Scholar 

  88. Kendall, T., Mukai, L., Jannuzi, A. L. & Bunch, T. A. Identification of integrin-β subunit mutations that alter affinity for extracellular matrix ligand. J. Biol. Chem. 286, 30981–30993 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Baudoin, C., Goumans, M. J., Mummery, C. & Sonnenberg, A. Knockout and knockin of the β1 exon D define distinct roles for integrin splice variants in heart function and embryonic development. Genes Dev. 12, 1202–1216 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Czuchra, A., Meyer, H., Legate, K. R., Brakebusch, C. & Fassler, R. Genetic analysis of β1 integrin 'activation motifs' in mice. J. Cell Biol. 174, 889–899 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Imai, Y. et al. Genetic perturbation of the putative cytoplasmic membrane-proximal salt bridge aberrantly activates α4 integrins. Blood 112, 5007–5015 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Chen, H. et al. In vivo β1 integrin function requires phosphorylation-independent regulation by cytoplasmic tyrosines. Genes Dev. 20, 927–932 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Petrich, B. G. et al. The antithrombotic potential of selective blockade of talin-dependent integrin αIIb β3 (platelet GPIIb-IIIa) activation. J. Clin. Invest. 117, 2250–2259 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Law, D. A. et al. Integrin cytoplasmic tyrosine motif is required for outside-in αIIbβ3 signalling and platelet function. Nature 401, 808–811 (1999).

    CAS  PubMed  Google Scholar 

  95. Chen, Y. P. et al. Ser-752→Pro mutation in the cytoplasmic domain of integrin β3 subunit and defective activation of platelet integrin αIIb β3 (glycoprotein IIb-IIIa) in a variant of Glanzmann thrombasthenia. Proc. Natl Acad. Sci. USA 89, 10169–10173 (1992).

    CAS  PubMed  Google Scholar 

  96. Bicknell, L. S. et al. A molecular and clinical study of Larsen syndrome caused by mutations in FLNB. J. Med. Genet. 44, 89–98 (2007).

    CAS  PubMed  Google Scholar 

  97. Robertson, S. P. Filamin A: phenotypic diversity. Curr. Opin. Genet. Dev. 15, 301–307 (2005).

    CAS  PubMed  Google Scholar 

  98. Gingras, A. R., Liu, J. J. & Ginsberg, M. H. Structural basis of the junctional anchorage of the cerebral cavernous malformations complex. J. Cell Biol. 199, 39–48 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Zhou, A. X., Hartwig, J. H. & Akyurek, L. M. Filamins in cell signaling, transcription and organ development. Trends Cell Biol. 20, 113–123 (2010).

    CAS  PubMed  Google Scholar 

  100. Cheng, M. et al. Mutation of a conserved asparagine in the I-like domain promotes constitutively active integrins αLβ2 and αIIbβ3. J. Biol. Chem. 282, 18225–18232 (2007).

    CAS  PubMed  Google Scholar 

  101. Ferreira, M., Fujiwara, H., Morita, K. & Watt, F. M. An activating β1 integrin mutation increases the conversion of benign to malignant skin tumors. Cancer Res. 69, 1334–1342 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Kunishima, S. et al. Heterozygous ITGA2B R995W mutation inducing constitutive activation of the αIIbβ3 receptor affects proplatelet formation and causes congenital macrothrombocytopenia. Blood 117, 5479–5484 (2011).

    CAS  PubMed  Google Scholar 

  103. Kren, A. et al. Increased tumor cell dissemination and cellular senescence in the absence of β1-integrin function. EMBO J. 26, 2832–2842 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. White, D. E. et al. Targeted disruption of β1-integrin in a transgenic mouse model of human breast cancer reveals an essential role in mammary tumor induction. Cancer Cell 6, 159–170 (2004).

    CAS  PubMed  Google Scholar 

  105. Dingemans, A. M. et al. Integrin expression profiling identifies integrin α5 and β1 as prognostic factors in early stage non-small cell lung cancer. Mol. Cancer 9, 152 (2010).

    PubMed  PubMed Central  Google Scholar 

  106. Hori, H., Yano, S., Koufuji, K., Takeda, J. & Shirouzu, K. CD9 expression in gastric cancer and its significance. J. Surg. Res. 117, 208–215 (2004).

    CAS  PubMed  Google Scholar 

  107. Gao, J. et al. A feedback regulation between Kindlin-2 and GLI1 in prostate cancer cells. FEBS Lett. 587, 631–638 (2013).

    CAS  PubMed  Google Scholar 

  108. Desiniotis, A. & Kyprianou, N. Significance of talin in cancer progression and metastasis. Int. Rev. Cell Mol. Biol. 289, 117–147 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Kato, H. et al. The primacy of β1 integrin activation in the metastatic cascade. PLoS ONE 7, e46576 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Jung, J. et al. Newly identified tumor-associated role of human Sharpin. Mol. Cell. Biochem. 340, 161–167 (2010).

    CAS  PubMed  Google Scholar 

  111. Kurtz, L., Kao, L., Newman, D., Kurtz, I. & Zhu, Q. Integrin αIIbβ3 inside–out activation: an in situ conformational analysis reveals a new mechanism. J. Biol. Chem. 287, 23255–23265 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Ye, F., Liu, J., Winkler, H. & Taylor, K. A. Integrin αIIb β3 in a membrane environment remains the same height after Mn2+ activation when observed by cryoelectron tomography. J. Mol. Biol. 378, 976–986 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Caswell, P. T. et al. Rab25 associates with α5β1 integrin to promote invasive migration in 3D microenvironments. Dev. Cell 13, 496–510 (2007).

    CAS  PubMed  Google Scholar 

  114. Kim, C., Ye, F., Hu, X. & Ginsberg, M. H. Talin activates integrins by altering the topology of the β-transmembrane domain. J. Cell Biol. 197, 605–611 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Campbell, I. D. & Humphries, M. J. Integrin structure, activation, and interactions. Cold Spring Harb Perspect. Biol. 3, a004994 (2011).

    PubMed  PubMed Central  Google Scholar 

  116. Stehbens, S. & Wittmann, T. Targeting and transport: how microtubules control focal adhesion dynamics. J. Cell Biol. 198, 481–489 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

J.I. has been supported by an European Research Council (ERC) starting grant, and funding from the Academy of Finland, the Sigrid Juselius foundation and the Finnish Cancer Organizations. J.P has been supported by the Cancer Society Finland and the Instrumentarium Foundation. D.B. is funded by INCa (Institut National du Cancer) grants.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johanna Ivaska.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

FURTHER INFORMATION

Johanna Ivaska's homepage

PowerPoint slides

Supplementary information

Supplementary information S1 (table)

Phenotypes of integrin-knockout mice (PDF 151 kb)

Supplementary information S2 (table)

Phenotypes of mice lacking an integrin activator or inactivator (PDF 132 kb)

Supplementary information S3 (table)

Phenotypes of mice with mutated integrins and the effect of those mutations on integrin activity (PDF 111 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bouvard, D., Pouwels, J., De Franceschi, N. et al. Integrin inactivators: balancing cellular functions in vitro and in vivo. Nat Rev Mol Cell Biol 14, 430–442 (2013). https://doi.org/10.1038/nrm3599

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm3599

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing