Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Prospects for the use of NK cells in immunotherapy of human cancer

Key Points

  • Natural killer (NK) cells have the ability to lyse tumour cells without the requirement for prior immune sensitization of the host. NK-cell recognition of target cells is tightly regulated by processes involving the integration of signals delivered from multiple activating and inhibitory receptors.

  • Insights into the molecular specificities that regulate NK-cell function have led to new possibilities to design NK-cell-based immunotherapeutic strategies against human cancer. Strategies of NK-cell immunotherapy include activation of endogenous NK cells, NK-cell-mediated graft-versus-tumour (GVT) effects in the context of haematopoietic allogeneic stem-cell transplantation (SCT), and adoptive transfer of allogeneic NK cells.

  • Endogenous NK cells may be activated by cytokines, immunomodulatory drugs, and agonists of activating receptors or by blockade of inhibitory killer-cell immunoglobulin-like receptor (KIR) with monoclonal antibodies, thereby augmenting tumour-cell recognition by NK cells. NK cells may also be genetically engineered to shift the balance towards NK-cell activation.

  • NK cells have been shown to mediate GVT effects in allogeneic haematopoietic SCT. Future criteria for donor selection may involve the selection of KIR–ligand-mismatched donors with a large alloreactive NK-cell subset.

  • Conditioning regimens will probably be required for survival and in vivo expansion of adoptively transferred NK cells. Apart from preventing rejection, such regimens may eradicate regulatory T cells and promote access to homeostatic cytokines, including IL-15.

  • Tumour-cell susceptibility to NK-cell lysis may be predicted by characterizing the expression of activating receptor ligands on tumour cells, as well as the expression of ligands for inhibitory receptors (MHC class I molecules). Such phenotypic analysis may be combined with direct testing of freshly isolated tumour cells for their susceptibility to NK-cell lysis ex vivo.

  • Combinatorial therapies, in which NK cells represent one important mediator, may further potentiate the clinical efficacy of NK-cell immunotherapy.

Abstract

Current insights into the molecular specificities that regulate natural killer (NK)-cell function suggest that it might be possible to design NK-cell-based immunotherapeutic strategies against human cancer. Here, we describe evidence for NK-cell targeting of human tumours and address crucial questions that, in our opinion, require consideration for the development of successful NK-cell-based therapies. Appropriately used, we predict that NK cells will have a role, both directly and in combination with other treatment modalities, in future treatment of cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Missing-self recognition of tumour cells.
Figure 2: Size of the alloreactive natural killer-cell subset as a criterion for donor selection.
Figure 3: Future possibilities to enhance tumour recognition by natural killer cells.

Similar content being viewed by others

References

  1. Kiessling, R., Klein, E. & Wigzell, H. 'Natural' killer cells in the mouse. I. Cytotoxic cells with specificity for mouse Moloney leukemia cells. Specificity and distribution according to genotype. Eur. J. Immunol. 5, 112–117 (1975).

    Article  CAS  PubMed  Google Scholar 

  2. Herberman, R. B., Nunn, M. E. & Lavrin, D. H. Natural cytotoxic reactivity of mouse lymphoid cells against syngeneic acid allogeneic tumors. I. Distribution of reactivity and specificity. Int. J. Cancer. 16, 216–229 (1975). The authors of references 1 and 2 independently report their parallel discovery of NK cells. These cells were named 'natural' killer cells by Kiessling and collaborators in reference 1.

    Article  CAS  PubMed  Google Scholar 

  3. Colucci, F., Caligiuri, M. A. & Di Santo, J. P. What does it take to make a natural killer? Nature Rev. Immunol. 3, 413–425 (2003).

    Article  CAS  Google Scholar 

  4. Raulet, D. H. Interplay of natural killer cells and their receptors with the adaptive immune response. Nature Immunol. 5, 996–1002 (2004).

    Article  CAS  Google Scholar 

  5. Lanier, L. L. NK cell recognition. Annu. Rev. Immunol. 23, 225–274 (2005).

    CAS  PubMed  Google Scholar 

  6. Farag, S. S. & Caligiuri, M. A. Human natural killer cell development and biology. Blood Rev. 20, 123–137 (2006).

    Article  CAS  PubMed  Google Scholar 

  7. Biron, C. A., Nguyen, K. B., Pien, G. C., Cousens, L. P. & Salazar-Mather, T. P. Natural killer cells in antiviral defense: function and regulation by innate cytokines. Annu. Rev. Immunol. 17, 189–220 (1999).

    Article  CAS  PubMed  Google Scholar 

  8. Wu, J. & Lanier, L. L. Natural killer cells and cancer. Adv. Cancer Res. 90, 127–156 (2003).

    Article  CAS  PubMed  Google Scholar 

  9. Cooper, M. A., Fehniger, T. A. & Caligiuri, M. A. The biology of human natural killer-cell subsets. Trends Immunol. 22, 633–640 (2001).

    Article  CAS  PubMed  Google Scholar 

  10. Moretta, L. & Moretta, A. Unravelling natural killer cell function: triggering and inhibitory human NK receptors. EMBO J. 23, 255–259 (2004).

    Article  CAS  PubMed  Google Scholar 

  11. Ljunggren, H. G. & Kärre, K. Host resistance directed selectively against H-2-deficient lymphoma variants. Analysis of the mechanism. J. Exp. Med. 162, 1745–1759 (1985).

    Article  CAS  PubMed  Google Scholar 

  12. Kärre, K., Ljunggren, H. G., Piontek, G. & Kiessling, R. Selective rejection of H-2-deficient lymphoma variants suggests alternative immune defence strategy. Nature 319, 675–678 (1986). References 11 and 12 describe the NK-cell dependent rejection of syngeneic tumour cells that lack expression of self MHC class I molecules.

    Article  PubMed  Google Scholar 

  13. Ljunggren, H. G. & Kärre, K. In search of the 'missing self': MHC molecules and NK cell recognition. Immunol. Today 11, 237–244 (1990).

    Article  CAS  PubMed  Google Scholar 

  14. Moretta, A. et al. A novel surface antigen expressed by a subset of human CD3 CD16+ natural killer cells. Role in cell activation and regulation of cytolytic function. J. Exp. Med. 171, 695–714 (1990).

    Article  CAS  PubMed  Google Scholar 

  15. Moretta, A. et al. Identification of four subsets of human CD3CD16+ natural killer (NK) cells by the expression of clonally distributed functional surface molecules: correlation between subset assignment of NK clones and ability to mediate specific alloantigen recognition. J. Exp. Med. 172, 1589–1598 (1990). References 14 and 15 describe monoclonal antibodies to NK-cell subsets, paving the way for the identification of human NK-cell inhibitory receptors recognizing MHC class I.

    Article  CAS  PubMed  Google Scholar 

  16. Moretta, A. et al. P58 molecules as putative receptors for major histocompatibility complex (MHC) class I molecules in human natural killer (NK) cells. Anti-p58 antibodies reconstitute lysis of MHC class I-protected cells in NK clones displaying different specificities. J. Exp. Med. 178, 597–604 (1993). This study shows that P58-specific antibodies can disrupt the NK-cell mediated recognition of HLA class I molecules, thereby providing the first molecular identification of HLA class I-specific inhibitory receptors

    Article  CAS  PubMed  Google Scholar 

  17. Braud, V. M. et al. HLA-E binds to natural killer cell receptors CD94/NKG2A, B and C. Nature 391, 795–799 (1998).

    Article  CAS  PubMed  Google Scholar 

  18. Vitale, M. et al. NKp44, a novel triggering surface molecule specifically expressed by activated natural killer cells, is involved in non-major histocompatibility complex-restricted tumor cell lysis. J. Exp. Med. 187, 2065–2072 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Pessino, A. et al. Molecular cloning of NKp46: a novel member of the immunoglobulin superfamily involved in triggering of natural cytotoxicity. J. Exp. Med. 188, 953–960 (1998). References 18 and 19 describe the identification of the natural cytotoxicity receptors NKp44 and NKp46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Bauer, S. et al. Activation of NK cells and T cells by NKG2D, a receptor for stress-inducible MICA. Science 285, 727–729 (1999). This paper identifies NKG2D as a receptor for the stress-induced molecule MICA.

    CAS  PubMed  Google Scholar 

  21. Bryceson, Y. T., March, M. E., Ljunggren, H. G. & Long, E. O. Activation, coactivation, and costimulation of resting human natural killer cells. Immunol. Rev. 214, 73–91 (2006).

    Article  CAS  PubMed  Google Scholar 

  22. Hayakawa, Y. & Smyth, M. J. Innate immune recognition and suppression of tumors. Adv. Cancer Res. 95, 293–322 (2006).

    Article  CAS  PubMed  Google Scholar 

  23. Fehniger, T. A., Cooper, M. A. & Caligiuri, M. A. Interleukin-2 and interleukin-15: immunotherapy for cancer. Cytokine Growth Factor Rev. 13, 169–183 (2002).

    Article  CAS  PubMed  Google Scholar 

  24. Ruggeri, L. et al. Effectiveness of donor natural killer cell alloreactivity in mismatched hematopoietic transplants. Science 295, 2097–2100 (2002). This is a seminal paper describing that donor-versus-recipient NK-cell alloreactivity can eliminate leukaemia relapse and graft rejection, and protect against GVHD in human SCT.

    Article  CAS  PubMed  Google Scholar 

  25. Miller, J. S. et al. Successful adoptive transfer and in vivo expansion of human haploidentical NK cells in patients with cancer. Blood 105, 3051–3057 (2005). This is a key study in which Miller and collaborators test haploidentical NK-cell infusions in a non-transplantation setting, to determine safety and in vivo NK-cell expansion.

    Article  CAS  PubMed  Google Scholar 

  26. Ruggeri, L., Aversa, F., Martelli, M. F. & Velardi, A. Allogeneic hematopoietic transplantation and natural killer cell recognition of missing self. Immunol. Rev. 214, 202–218 (2006).

    Article  CAS  PubMed  Google Scholar 

  27. Farag, S. S. & Caligiuri, M. A. Cytokine modulation of the innate immune system in the treatment of leukemia and lymphoma. Adv. Pharmacol. 51, 295–318 (2004).

    Article  CAS  PubMed  Google Scholar 

  28. Smyth, M. J., Cretney, E., Kershaw, M. H. & Hayakawa, Y. Cytokines in cancer immunity and immunotherapy. Immunol. Rev. 202, 275–293 (2004).

    Article  CAS  PubMed  Google Scholar 

  29. Becknell, B. & Caligiuri, M. A. Interleukin-2, interleukin-15, and their roles in human natural killer cells. Adv. Immunol. 86, 209–239 (2005).

    Article  CAS  PubMed  Google Scholar 

  30. Rosenberg, S. A. Interleukin-2 and the development of immunotherapy for the treatment of patients with cancer. Cancer J. Sci. Am. 6 (Suppl. 1), 2–7 (2000).

    Google Scholar 

  31. Colombo, M. P. & Trinchieri, G. Interleukin-12 in anti-tumor immunity and immunotherapy. Cytokine Growth Factor Rev. 13, 155–168 (2002).

    Article  CAS  PubMed  Google Scholar 

  32. Hayashi, T. et al. Molecular mechanisms whereby immunomodulatory drugs activate natural killer cells: clinical application. Br. J. Haematol. 128, 192–203 (2005).

    Article  CAS  PubMed  Google Scholar 

  33. Brandau, S. et al. NK cells are essential for effective BCG immunotherapy. Int. J. Cancer 92, 697–702 (2001).

    Article  CAS  PubMed  Google Scholar 

  34. Link, B. K. et al. Oligodeoxynucleotide CpG 7909 delivered as intravenous infusion demonstrates immunologic modulation in patients with previously treated non-Hodgkin lymphoma. J. Immunother. 29, 558–568 (2006).

    Article  CAS  PubMed  Google Scholar 

  35. Fujii, H. et al. In vivo control of acute lymphoblastic leukemia by immunostimulatory CpG oligonucleotides. Blood 109, 2008–2013 (2007).

    Article  CAS  PubMed  Google Scholar 

  36. Ruggeri, L. et al. Role of natural killer cell alloreactivity in HLA-mismatched hematopoietic stem cell transplantation. Blood 94, 333–339 (1999).

    CAS  PubMed  Google Scholar 

  37. Shlomchik, W. D. et al. Prevention of graft versus host disease by inactivation of host antigen-presenting cells. Science 285, 412–415 (1999).

    Article  CAS  PubMed  Google Scholar 

  38. Giebel, S. et al. Survival advantage with KIR ligand incompatibility in hematopoietic stem cell transplantation from unrelated donors. Blood 102, 814–819 (2003).

    Article  CAS  PubMed  Google Scholar 

  39. Beelen, D. W. et al. Genotypic inhibitory killer immunoglobulin-like receptor ligand incompatibility enhances the long-term antileukemic effect of unmodified allogeneic hematopoietic stem cell transplantation in patients with myeloid leukemias. Blood 105, 2594–2600 (2005).

    Article  CAS  PubMed  Google Scholar 

  40. Miller, J. S. et al. Missing KIR-ligands is associated with less relapse and increased graft versus host disease (GVHD) following unrelated donor allogeneic HCT. Blood (28 March 2007 (doi:10.1182/blood-2006-07-036228).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Davies, S. M. et al. Evaluation of KIR ligand incompatibility in mismatched unrelated donor hematopoietic transplants. Killer immunoglobulin-like receptor. Blood 100, 3825–3827 (2002).

    Article  CAS  PubMed  Google Scholar 

  42. Bornhauser, M. et al. Role of KIR ligand incompatibility in hematopoietic stem cell transplantation using unrelated donors. Blood. 103, 2860–2861 (2004).

    Article  PubMed  Google Scholar 

  43. Schaffer, M., Malmberg, K. J., Ringden, O., Ljunggren, H. G. & Remberger, M. Increased infection-related mortality in KIR-ligand-mismatched unrelated allogeneic hematopoietic stem-cell transplantation. Transplantation 78, 1081–1085 (2004).

    Article  PubMed  Google Scholar 

  44. Farag, S. S. et al. The effect of KIR ligand incompatibility on the outcome of unrelated donor transplantation: a report from the center for international blood and marrow transplant research, the European blood and marrow transplant registry, and the Dutch registry. Biol. Blood Marrow Transplant. 12, 876–884 (2006).

    Article  CAS  PubMed  Google Scholar 

  45. Aversa, F. et al. Treatment of high-risk acute leukemia with T-cell-depleted stem cells from related donors with one fully mismatched HLA haplotype. N. Engl. J. Med. 339, 1186–1193 (1998).

    Article  CAS  PubMed  Google Scholar 

  46. Shilling, H. G. et al. Reconstitution of NK cell receptor repertoire following HLA-matched hematopoietic cell transplantation. Blood 101, 3730–3740 (2003).

    Article  CAS  PubMed  Google Scholar 

  47. Cooley, S. et al. KIR reconstitution is altered by T cells in the graft and correlates with clinical outcomes after unrelated donor transplantation. Blood 106, 4370–4376 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Guma, M. et al. Imprint of human cytomegalovirus infection on the NK cell receptor repertoire. Blood 104, 3664–3671 (2004).

    Article  CAS  PubMed  Google Scholar 

  49. Fernandez, N. C. et al. A subset of natural killer cells achieves self-tolerance without expressing inhibitory receptors specific for self-MHC molecules. Blood 105, 4416–4423 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Kim, S. et al. Licensing of natural killer cells by host major histocompatibility complex class I molecules. Nature 436, 709–713 (2005).

    Article  CAS  PubMed  Google Scholar 

  51. Anfossi, N. et al. Human NK cell education by inhibitory receptors for MHC class I. Immunity 25, 331–342 (2006).

    Article  CAS  PubMed  Google Scholar 

  52. Yokoyama, W. M. & Kim, S. Licensing of natural killer cells by self-major histocompatibility complex class I. Immunol. Rev. 214, 143–154 (2006).

    Article  CAS  PubMed  Google Scholar 

  53. Gasser, S. & Raulet, D. H. Activation and self-tolerance of natural killer cells. Immunol. Rev. 214, 130–142 (2006).

    Article  CAS  PubMed  Google Scholar 

  54. Leung, W. et al. Determinants of antileukemia effects of allogeneic NK cells. J. Immunol. 172, 644–650 (2004).

    Article  CAS  PubMed  Google Scholar 

  55. Hsu, K. C. et al. Improved outcome in HLA-identical sibling hematopoietic stem-cell transplantation for acute myelogenous leukemia predicted by KIR and HLA genotypes. Blood 105, 4878–4884 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Kolb, H. J. et al. Donor leukocyte transfusions for treatment of recurrent chronic myelogenous leukemia in marrow transplant patients. Blood 76, 2462–2465 (1990). This is a study that describes the first transfusion of viable donor lymphocytes to three patients with haematological relapse following SCT.

    CAS  PubMed  Google Scholar 

  57. Kolb, H. J., Simoes, B. & Schmid, C. Cellular immunotherapy after allogeneic stem cell transplantation in hematologic malignancies. Curr. Opin. Oncol. 16, 167–173 (2004).

    Article  PubMed  Google Scholar 

  58. Soiffer, R. J. et al. Randomized trial of CD8+ T-cell depletion in the prevention of graft-versus-host disease associated with donor lymphocyte infusion. Biol. Blood Marrow Transplant. 8, 625–632 (2002).

    Article  PubMed  Google Scholar 

  59. Passweg, J. R. et al. Purified donor NK-lymphocyte infusion to consolidate engraftment after haploidentical stem cell transplantation. Leukemia 18, 1835–1838 (2004).

    Article  CAS  PubMed  Google Scholar 

  60. Passweg, J. R., Stern, M., Koehl, U., Uharek, L. & Tichelli, A. Use of natural killer cells in hematopoetic stem cell transplantation. Bone Marrow Transplant. 35, 637–643 (2005).

    Article  CAS  PubMed  Google Scholar 

  61. Bottino, C., Castriconi, R., Moretta, L. & Moretta, A. Cellular ligands of activating NK receptors. Trends Immunol. 26, 221–226 (2005).

    Article  CAS  PubMed  Google Scholar 

  62. Gonzalez, S., Groh, V. & Spies, T. Immunobiology of human NKG2D and its ligands. Curr. Top. Microbiol. Immunol. 298, 121–138 (2006).

    CAS  PubMed  Google Scholar 

  63. Lundqvist, A., McCoy, J. P., Samsel, L. & Childs, R. Reduction of GVHD and enhanced anti-tumor effects after adoptive infusion of alloreactive Ly49-mismatched NK-cells from MHC-matched donors. Blood 109, 3603?3606 (2006).

  64. Rosenberg, S. A. et al. Observations on the systemic administration of autologous lymphokine-activated killer cells and recombinant interleukin-2 to patients with metastatic cancer. N. Engl. J. Med. 313, 1485–1492 (1985). This is a pioneering study that describes systemic administration of autologous lymphokine activated killer cells and IL-2 to patients with advanced cancer. This study stimulated the development of new protocols for adoptive-cell-mediated immunotherapy.

    Article  CAS  PubMed  Google Scholar 

  65. Law, T. M. et al. Phase III randomized trial of interleukin-2 with or without lymphokine-activated killer cells in the treatment of patients with advanced renal cell carcinoma. Cancer 76, 824–832 (1995).

    Article  CAS  PubMed  Google Scholar 

  66. Dudley, M. E. et al. Cancer regression and autoimmunity in patients after clonal repopulation with antitumor lymphocytes. Science 298, 850–854 (2002). This is a recent study that suggests the therapeutic potential of genetically engineered T cells for immunotherapy of cancer.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Gattinoni, L., Powell, D. J., Jr., Rosenberg, S. A. & Restifo, N. P. Adoptive immunotherapy for cancer: building on success. Nature Rev. Immunol. 6, 383–393 (2006). This is an excellent review that discusses prospects for T-cell-mediated immunotherapy, in particular in relation to strategies for host preconditioning by lymphodepletion.

    Article  CAS  Google Scholar 

  68. Burns, L. J. et al. IL-2-based immunotherapy after autologous transplantation for lymphoma and breast cancer induces immune activation and cytokine release: a phase I/II trial. Bone Marrow Transplant. 32, 177–186 (2003).

    Article  CAS  PubMed  Google Scholar 

  69. Tam, Y. K., Martinson, J. A., Doligosa, K. & Klingemann, H. G. Ex vivo expansion of the highly cytotoxic human natural killer-92 cell-line under current good manufacturing practice conditions for clinical adoptive cellular immunotherapy. Cytotherapy 5, 259–272 (2003).

    Article  CAS  PubMed  Google Scholar 

  70. Klingemann, H. G. Natural killer cell-based immuno-therapeutic strategies. Cytotherapy 7, 16–22 (2005).

    Article  CAS  PubMed  Google Scholar 

  71. Carlens, S. et al. A new method for in vitro expansion of cytotoxic human CD3CD56+ natural killer cells. Hum. Immunol. 62, 1092–1098 (2001).

    Article  CAS  PubMed  Google Scholar 

  72. Klingemann, H. G. & Martinson, J. Ex vivo expansion of natural killer cells for clinical applications. Cytotherapy 6, 15–22 (2004).

    Article  PubMed  Google Scholar 

  73. Gattinoni, L. et al. Acquisition of full effector function in vitro paradoxically impairs the in vivo antitumor efficacy of adoptively transferred CD8+ T cells. J. Clin. Invest. 115, 1616–1626 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Ruggeri, L., Mancusi, A., Capanni, M., Martelli, M. F. & Velardi, A. Exploitation of alloreactive NK cells in adoptive immunotherapy of cancer. Curr. Opin. Immunol. 17, 211–217 (2005).

    Article  CAS  PubMed  Google Scholar 

  75. Pende, D. et al. Analysis of the receptor-ligand interactions in the natural killer-mediated lysis of freshly isolated myeloid or lymphoblastic leukemias: evidence for the involvement of the Poliovirus receptor (CD155) and Nectin-2 (CD112). Blood 105, 2066–2073 (2005).

    Article  CAS  PubMed  Google Scholar 

  76. Stewart, C. A. et al. Recognition of peptide-MHC class I complexes by activating killer immunoglobulin-like receptors. Proc. Natl Acad. Sci. USA 102, 13224–13229 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Ghiringhelli, F. et al. CD4+CD25+ regulatory T cells inhibit natural killer cell functions in a transforming growth factor-b-dependent manner. J. Exp. Med. 202, 1075–1085 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Muranski, P. et al. Increased intensity lymphodepletion and adoptive immunotherapy—how far can we go? Nature Clin. Pract. Oncol. 3, 668–681 (2006).

    Article  CAS  Google Scholar 

  79. Sheridan, C. First-in-class cancer therapeutic to stimulate natural killer cells. Nature Biotechnol. 24, 597 (2006).

    Article  CAS  Google Scholar 

  80. Koh, C. Y. et al. Augmentation of antitumor effects by NK cell inhibitory receptor blockade in vitro and in vivo. Blood 97, 3132–3137 (2001).

    Article  CAS  PubMed  Google Scholar 

  81. Koh, C. Y., Ortaldo, J. R., Blazar, B. R., Bennett, M. & Murphy, W. J. NK-cell purging of leukemia: superior antitumor effects of NK cells H2 allogeneic to the tumor and augmentation with inhibitory receptor blockade. Blood 102, 4067–4075 (2003).

    Article  CAS  PubMed  Google Scholar 

  82. Zhang, T., Barber, A. & Sentman, C. L. Generation of antitumor responses by genetic modification of primary human T cells with a chimeric NKG2D receptor. Cancer Res. 66, 5927–5933 (2006).

    Article  CAS  PubMed  Google Scholar 

  83. Imai, C., Iwamoto, S. & Campana, D. Genetic modification of primary natural killer cells overcomes inhibitory signals and induces specific killing of leukemic cells. Blood 106, 376–383 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Uherek, C. et al. Retargeting of natural killer-cell cytolytic activity to ErbB2-expressing cancer cells results in efficient and selective tumor cell destruction. Blood 100, 1265–1273 (2002).

    CAS  PubMed  Google Scholar 

  85. Bryceson, Y. T., March, M. E., Ljunggren, H. G. & Long, E. O. Synergy among receptors on resting NK cells for the activation of natural cytotoxicity and cytokine secretion. Blood 107, 159–166 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Castriconi, R. et al. Natural killer cell-mediated killing of freshly isolated neuroblastoma cells: critical role of DNAX accessory molecule-1-poliovirus receptor interaction. Cancer Res. 64, 9180–9184 (2004).

    Article  CAS  PubMed  Google Scholar 

  87. Moretta, L. et al. Surface NK receptors and their ligands on tumor cells. Semin. Immunol. 18, 151–158 (2006).

    Article  CAS  PubMed  Google Scholar 

  88. Carlsten, M. et al. DNAX accessory molecule-1 mediated recognition of freshly isolated ovarian carcinoma by resting natural killer cells. Cancer Res. 67, 1317–1325 (2007).

    Article  CAS  PubMed  Google Scholar 

  89. Malmberg, K. J. & Ljunggren, H. G. Escape from immune- and nonimmune-mediated tumor surveillance. Semin. Cancer Biol. 16, 16–31 (2006).

    Article  CAS  Google Scholar 

  90. Albertsson, P. A. et al. NK cells and the tumour microenvironment: implications for NK-cell function and anti-tumour activity. Trends Immunol. 24, 603–609 (2003).

    Article  CAS  PubMed  Google Scholar 

  91. Morris, M. A. & Ley, K. Trafficking of natural killer cells. Curr. Mol. Med. 4, 431–438 (2004).

    Article  CAS  PubMed  Google Scholar 

  92. Ahrens, E. T., Flores, R., Xu, H. & Morel, P. A. In vivo imaging platform for tracking immunotherapeutic cells. Nature Biotechnol. 23, 983–987 (2005).

    Article  CAS  Google Scholar 

  93. Castriconi, R. et al. Transforming growth factor β1 inhibits expression of NKp30 and NKG2D receptors: consequences for the NK-mediated killing of dendritic cells. Proc. Natl Acad. Sci. USA 100, 4120–4125 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Chiesa, M. D. et al. The tryptophan catabolite L-kynurenine inhibits the surface expression of NKp46- and NKG2D-activating receptors and regulates NK-cell function. Blood 108, 4118–4125 (2006).

    Article  CAS  PubMed  Google Scholar 

  95. Gasser, S., Orsulic, S., Brown, E. J. & Raulet, D. H. The DNA damage pathway regulates innate immune system ligands of the NKG2D receptor. Nature 436, 1186–1190 (2005). This paper describes how DNA damage can alert the immune system to the presence of potentially dangerous cells.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Gasser, S. & Raulet, D. The DNA damage response, immunity and cancer. Semin. Cancer Biol. 16, 344–347 (2006).

    Article  CAS  PubMed  Google Scholar 

  97. Sayers, T. J. et al. The proteasome inhibitor PS-341 sensitizes neoplastic cells to TRAIL-mediated apoptosis by reducing levels of c-FLIP. Blood 102, 303–310 (2003).

    Article  CAS  PubMed  Google Scholar 

  98. VanOosten, R. L., Moore, J. M., Karacay, B. & Griffith, T. S. Histone deacetylase inhibitors modulate renal cell carcinoma sensitivity to TRAIL/Apo-2L-induced apoptosis by enhancing TRAIL-R2 expression. Cancer Biol. Ther. 4, 1104–1112 (2005).

    Article  CAS  PubMed  Google Scholar 

  99. Lundqvist, A. et al. Bortezomib and depsipeptide sensitize tumors to tumor necrosis factor-related apoptosis-inducing ligand: a novel method to potentiate natural killer cell tumor cytotoxicity. Cancer Res. 66, 7317–7325 (2006).

    Article  CAS  PubMed  Google Scholar 

  100. Skov, S. et al. Cancer cells become susceptible to natural killer cell killing after exposure to histone deacetylase inhibitors due to glycogen synthase kinase-3-dependent expression of MHC class I-related chain A and B. Cancer Res. 65, 11136–11145 (2005).

    Article  CAS  PubMed  Google Scholar 

  101. Reff, M. E. et al. Depletion of B cells in vivo by a chimeric mouse human monoclonal antibody to CD20. Blood 83, 435–445 (1994).

    CAS  PubMed  Google Scholar 

  102. Weng, W. K. & Levy, R. Two immunoglobulin G fragment C receptor polymorphisms independently predict response to rituximab in patients with follicular lymphoma. J. Clin. Oncol. 21, 3940–3947 (2003).

    Article  CAS  PubMed  Google Scholar 

  103. Dall'Ozzo, S. et al. Rituximab-dependent cytotoxicity by natural killer cells: influence of FCGR3A polymorphism on the concentration-effect relationship. Cancer Res. 64, 4664–4669 (2004).

    Article  CAS  PubMed  Google Scholar 

  104. Adams, G. P. & Weiner, L. M. Monoclonal antibody therapy of cancer. Nature Biotechnol. 23, 1147–1157 (2005).

    Article  CAS  Google Scholar 

  105. Carter, P. J. Potent antibody therapeutics by design. Nature Rev. Immunol. 6, 343–357 (2006).

    Article  CAS  Google Scholar 

  106. Gluck, W. L. et al. Phase I studies of interleukin (IL)-2 and rituximab in B-cell non-hodgkin's lymphoma: IL-2 mediated natural killer cell expansion correlations with clinical response. Clin. Cancer Res. 10, 2253–2264 (2004).

    Article  CAS  PubMed  Google Scholar 

  107. Curti, B. D. Immunomodulatory and antitumor effects of interleukin-21 in patients with renal cell carcinoma. Expert Rev. Anticancer Ther. 6, 905–909 (2006).

    Article  CAS  PubMed  Google Scholar 

  108. Hartmann, F. et al. Anti-CD16/CD30 bispecific antibody treatment for Hodgkin's disease: role of infusion schedule and costimulation with cytokines. Clin. Cancer Res. 7, 1873–1881 (2001).

    CAS  PubMed  Google Scholar 

  109. Shahied, L. S. et al. Bispecific minibodies targeting HER2/neu and CD16 exhibit improved tumor lysis when placed in a divalent tumor antigen binding format. J. Biol. Chem. 279, 53907–53914 (2004).

    Article  CAS  PubMed  Google Scholar 

  110. Bruenke, J. et al. Effective lysis of lymphoma cells with a stabilised bispecific single-chain Fv antibody against CD19 and FcγRIII (CD16). Br. J. Haematol. 130, 218–228 (2005).

    Article  CAS  PubMed  Google Scholar 

  111. Cosman, D. et al. ULBPs, novel MHC class I-related molecules, bind to CMV glycoprotein UL16 and stimulate NK cytotoxicity through the NKG2D receptor. Immunity 14, 123–133 (2001).

    Article  CAS  PubMed  Google Scholar 

  112. Pende, D. et al. Identification and molecular characterization of NKp30, a novel triggering receptor involved in natural cytotoxicity mediated by human natural killer cells. J. Exp. Med. 190, 1505–1516 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Vitale, M. et al. Identification of NKp80, a novel triggering molecule expressed by human NK cells. Eur. J. Immunol. 31, 233–242 (2001).

    Article  CAS  PubMed  Google Scholar 

  114. Welte, S., Kuttruff, S., Waldhauer, I. & Steinle, A. Mutual activation of natural killer cells and monocytes mediated by NKp80–AICL interaction. Nature Immunol. 7, 1334–1342 (2006).

    Article  CAS  Google Scholar 

  115. Bottino, C. et al. Identification of PVR (CD155) and Nectin-2 (CD112) as cell surface ligands for the human DNAM-1 (CD226) activating molecule. J. Exp. Med. 198, 557–567 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Fuchs, A., Cella, M., Giurisato, E., Shaw, A. S. & Colonna, M. Cutting edge: CD96 (tactile) promotes NK cell-target cell adhesion by interacting with the poliovirus receptor (CD155). J. Immunol. 172, 3994–3998 (2004).

    Article  CAS  PubMed  Google Scholar 

  117. Anegon, I., Cuturi, M. C., Trinchieri, G. & Perussia, B. Interaction of Fc receptor (CD16) ligands induces transcription of interleukin 2 receptor (CD25) and lymphokine genes and expression of their products in human natural killer cells. J. Exp. Med. 167, 452–472 (1988).

    Article  CAS  PubMed  Google Scholar 

  118. Biassoni, R. et al. Role of amino acid position 70 in the binding affinity of p50.1 and p58.1 receptors for HLA-Cw4 molecules. Eur. J. Immunol. 27, 3095–3099 (1997).

    Article  CAS  PubMed  Google Scholar 

  119. Vales-Gomez, M., Reyburn, H. T., Erskine, R. A. & Strominger, J. Differential binding to HLA-C of p50-activating and p58-inhibitory natural killer cell receptors. Proc. Natl Acad. Sci. USA 95, 14326–14331 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. O'Connor, G. M. et al. Functional polymorphism of the KIR3DL1/S1 receptor on human NK cells. J. Immunol. 178, 235–241 (2007).

    Article  CAS  PubMed  Google Scholar 

  121. Carr, W. H. et al. Cutting Edge: KIR3DS1, a gene implicated in resistance to progression to AIDS, encodes a DAP12-associated receptor expressed on NK cells that triggers NK cell activation. J. Immunol. 178, 647–651 (2007).

    Article  CAS  PubMed  Google Scholar 

  122. Le Bouteiller, P. et al. Engagement of CD160 receptor by HLA-C is a triggering mechanism used by circulating natural killer (NK) cells to mediate cytotoxicity. Proc. Natl Acad. Sci. USA 99, 16963–16968 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Selvaraj, P. et al. The T lymphocyte glycoprotein CD2 binds the cell surface ligand LFA-3. Nature 326, 400–403 (1987).

    Article  CAS  PubMed  Google Scholar 

  124. Winter, C. C., Gumperz, J. E., Parham, P., Long, E. O. & Wagtmann, N. Direct binding and functional transfer of NK cell inhibitory receptors reveal novel patterns of HLA-C allotype recognition. J. Immunol. 161, 571–577 (1998).

    CAS  PubMed  Google Scholar 

  125. Colonna, M. et al. Alloantigen recognition by two human natural killer cell clones is associated with HLA-C or a closely linked gene. Proc. Natl Acad. Sci. USA 89, 7983–7985 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Cella, M., Longo, A., Ferrara, G. B., Strominger, J. L. & Colonna, M. NK3-specific natural killer cells are selectively inhibited by Bw4-positive HLA alleles with isoleucine 80. J. Exp. Med. 180, 1235–1242 (1994).

    Article  CAS  PubMed  Google Scholar 

  127. Pende, D. et al. The natural killer cell receptor specific for HLA-A allotypes: a novel member of the p58/p70 family of inhibitory receptors that is characterized by three immunoglobulin-like domains and is expressed as a 140-kD disulphide-linked dimer. J. Exp. Med. 184, 505–518 (1996).

    Article  CAS  PubMed  Google Scholar 

  128. Dohring, C., Scheidegger, D., Samaridis, J., Cella, M. & Colonna, M. A human killer inhibitory receptor specific for HLA-A1,2. J. Immunol. 156, 3098–3101 (1996).

    CAS  PubMed  Google Scholar 

  129. Hansasuta, P. et al. Recognition of HLA-A3 and HLA-A11 by KIR3DL2 is peptide-specific. Eur. J. Immunol. 34, 1673–1679 (2004).

    Article  CAS  PubMed  Google Scholar 

  130. Cosman, D. et al. A novel immunoglobulin superfamily receptor for cellular and viral MHC class I molecules. Immunity 7, 273–282 (1997).

    Article  CAS  PubMed  Google Scholar 

  131. Colonna, M. et al. A common inhibitory receptor for major histocompatibility complex class I molecules on human lymphoid and myelomonocytic cells. J. Exp. Med. 186, 1809–1818 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Butcher, S., Arney, K. L. & Cook, G. P. MAFA-L, an ITIM-containing receptor encoded by the human NK cell gene complex and expressed by basophils and NK cells. Eur. J. Immunol. 28, 3755–3762 (1998).

    Article  CAS  PubMed  Google Scholar 

  133. Ito, M. et al. Killer cell lectin-like receptor G1 binds three members of the classical cadherin family to inhibit NK cell cytotoxicity. J. Exp. Med. 203, 289–295 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  134. Rosen, D. B. et al. Cutting edge: lectin-like transcript-1 is a ligand for the inhibitory human NKR-P1A receptor. J. Immunol. 175, 7796–7799 (2005).

    Article  CAS  PubMed  Google Scholar 

  135. Aldemir, H. et al. Cutting edge: lectin-like transcript 1 is a ligand for the CD161 receptor. J. Immunol. 175, 7791–7795 (2005).

    Article  CAS  PubMed  Google Scholar 

  136. Nicoll, G. et al. Identification and characterization of a novel siglec, siglec-7, expressed by human natural killer cells and monocytes. J. Biol. Chem. 274, 34089–34095 (1999).

    Article  CAS  PubMed  Google Scholar 

  137. Brown, M. H. et al. 2B4, the natural killer and T cell immunoglobulin superfamily surface protein, is a ligand for CD48. J. Exp. Med. 188, 2083–2090 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Latchman, Y., McKay, P. F. & Reiser, H. Identification of the 2B4 molecule as a counter-receptor for CD48. J. Immunol. 161, 5809–5812 (1998).

    CAS  PubMed  Google Scholar 

  139. Bottino, C. et al. NTB-A, a novel SH2D1A-associated surface molecule contributing to the inability of natural killer cells to kill Epstein–Barr virus-infected B cells in X-linked lymphoproliferative disease. J. Exp. Med. 194, 235–246 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Flaig, R. M., Stark, S. & Watzl, C. Cutting edge: NTB-A activates NK cells via homophilic interaction. J. Immunol. 172, 6524–6527 (2004).

    Article  CAS  PubMed  Google Scholar 

  141. Rajagopalan, S. & Long, E. O. A human histocompatibility leukocyte antigen (HLA)-G-specific receptor expressed on all natural killer cells. J. Exp. Med. 189, 1093–1100 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank our colleagues S. Applequist, B. Baumann, N. Björkström, Y. Bryceson, M. Carlsten, C. Fauriat, and P. Ljungman for critically reading the manuscript, as well as other members of our laboratory for fruitful discussions. We are supported by the Swedish Foundation for Strategic Research, the Swedish Research Council, the Swedish Cancer Society, the Tobias Foundation, the Swedish Children's Cancer Foundation, the Cancer Society of Stockholm, the Karolinska Institutet and the Karolinska University Hospital. K.J.M. is a research fellow at the Royal Swedish Academy of Sciences.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

FURTHER INFORMATION

Centre for infectious medicine

Clinical trials

Glossary

Antibody-dependent cell-mediated cytotoxicity

(ADCC). A mechanism by which natural killer (NK) cells are targeted to IgG-coated cells, resulting in the lysis of the antibody-coated cells. The low-affinity Fc receptor for IgG (FcγRIII; also known as CD16), is expressed at the surface of NK cells and mediates ADCC.

Thalidomide and Lenalidomide

Thalidomide (α-N-phthalimidoglutarimide) is a derivative of glutamic acid. It is pharmacologically classified as an immunomodulatory drug because of its ability to change the expression of various cytokines and to co-stimulate immune effector cells including natural killer cells. Lenalidomide is a 4-aminoglutaramide analogue of thalidomide with enhanced immunomodulatory effects and a favourable toxicity profile compared with its parent compound.

Immunostimulatory DNA complexes

Synthetic DNA oligonucleotides containing unmethylated CpG motifs (CpG-ODN) that provide a danger signal to the immune system by mimicking the activity of bacterial DNA. CpG-ODN trigger rapid responses by innate immune cells including plasmacytoid dendritic cells and natural killer cells.

Licensing

A functional maturation process of NK cells involving the recognition of host MHC class I molecules by inhibitory NK-cell receptors. Lack of such functional maturation has been suggested as one mechanism behind the hyporesponsiveness of NK cells that do not express inhibitory receptors to host MHC class I molecules.

Replicative senescence

A growth-arrest state eventually reached by cells that have undergone repetitive proliferation in vitro or in vivo, which is characterized by functionally active cells that lack, or have a reduced, proliferative capacity. Senescent immune cells are more common in elderly people and in patients with chronic inflammatory diseases.

Regulatory T cells

(TReg cells). A small population of CD4+ T cells that expresses the transcription factor forkhead box P3 (FOXP3) and has regulatory (that is, suppressor) activity towards T-cell and natural-killer-cell activation. An absence of functional TReg-cells is associated with severe autoimmunity.

Cyclophosphamide

A DNA-alkylating agent that is used widely as an antitumour agent or an immunosuppressive agent. Cyclophosphamide has been shown to destroy certain subsets of lymphocytes preferentially, including B cells and regulatory cells.

Fludarabine

A purine analogue that acts as an inhibitory substrate for ribonucleotide reductase, DNA polymerases, DNA ligase I, and DNA primase. It affects DNA synthesis and transcription. Fludarabine induces cell death, particularly in leukaemic cells, and is commonly used in the treatment of indolent leukaemia and lymphoma. Fludarabine has also been incorporated into reduced intensity preparative regimens for haematopoietic stem-cell transplantation.

Small interfering RNA

(siRNA). Short double-stranded RNAs of 19–23 nucleotides that induce RNA interference, a post-transcriptional process that leads to gene silencing in a sequence-specific manner.

Bispecific antibodies

These are antibodies that are derived from the recombination of variable domains from two antibodies with different specificities. Bispecific antibodies have been used to redirect cytotoxic immune cells to tumour cells.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ljunggren, HG., Malmberg, KJ. Prospects for the use of NK cells in immunotherapy of human cancer. Nat Rev Immunol 7, 329–339 (2007). https://doi.org/10.1038/nri2073

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nri2073

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing