Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Immunopathogenesis of IBD: current state of the art

Key Points

  • Substantial progress has been made in the understanding of IBD immunopathogenesis during the past few decades

  • Discovery of the cellular and molecular mediators of intestinal inflammation has led to the development of new therapies that clearly have benefited patients with IBD

  • Environmental, genetic and microbial factors interact with the immune system, resulting in dysregulated immune responses responsible for chronic intestinal inflammation typical of Crohn's disease and ulcerative colitis

  • IBD pathogenesis also includes the effects of other cells involved in the inflammatory processes (such as epithelial, endothelial, mesenchymal and fat cells), as well as other components (such as the inflammasome and regulatory RNAs)

  • Immunopathogenic events are only one component of IBD and they must be interpreted in the context of the other components; that is, the environment, genome and microbiota

  • Only the functional integration of all the underlying components will lead to a full understanding and cure of IBD

Abstract

IBD is a chronic inflammatory condition of the gastrointestinal tract encompassing two main clinical entities: Crohn's disease and ulcerative colitis. Although Crohn's disease and ulcerative colitis have historically been studied together because they share common features (such as symptoms, structural damage and therapy), it is now clear that they represent two distinct pathophysiological entities. Both Crohn's disease and ulcerative colitis are associated with multiple pathogenic factors including environmental changes, an array of susceptibility gene variants, a qualitatively and quantitatively abnormal gut microbiota and a broadly dysregulated immune response. In spite of this realization and the identification of seemingly pertinent environmental, genetic, microbial and immune factors, a full understanding of IBD pathogenesis is still out of reach and, consequently, treatment is far from optimal. An important reason for this unsatisfactory situation is the currently limited comprehension of what are the truly relevant components of IBD immunopathogenesis. This article will comprehensively review current knowledge of the classic immune components and will expand the concept of IBD immunopathogenesis to include various cells, mediators and pathways that have not been traditionally associated with disease mechanisms, but that profoundly affect the overall intestinal inflammatory process.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Intestinal immune homeostasis and inflammation.
Figure 2: Chronic intestinal inflammation induced by multiple exogenous and endogenous signals and mediated by multiple immune and nonimmune cells.
Figure 3: The intricate universe of immune and nonimmune components involved in IBD immunopathogenesis.

Similar content being viewed by others

References

  1. Bernstein, C. N. & Shanahan, F. Disorders of a modern lifestyle: reconciling the epidemiology of inflammatory bowel diseases. Gut 57, 1185–1191 (2008).

    PubMed  Google Scholar 

  2. Ng, S. C. et al. Geographical variability and environmental risk factors in inflammatory bowel disease. Gut 62, 630–649 (2013).

    PubMed  Google Scholar 

  3. Hviid, A., Svanstrom, H. & Frisch, M. Antibiotic use and inflammatory bowel diseases in childhood. Gut 60, 49–54 (2011).

    PubMed  Google Scholar 

  4. Garcia-Rodriguez, L. A., Ruigomez, A. & Panes, J. Acute gastroenteritis is followed by an increased risk of inflammatory bowel disease. Gastroenterology 130, 1588–1594 (2006).

    PubMed  Google Scholar 

  5. Benjamin, J. L. et al. Smokers with active Crohn's disease have a clinically relevant dysbiosis of the gastrointestinal microbiota. Inflamm. Bowel. Dis. 18, 1092–1100 (2012).

    PubMed  Google Scholar 

  6. Nickerson, K. P. & McDonald, C. Crohn's disease-associated adherent-invasive Escherichia coli adhesion is enhanced by exposure to the ubiquitous dietary polysaccharide maltodextrin. PLoS ONE 7, e52132 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Nerich, V. et al. Low exposure to sunlight is a risk factor for Crohn's disease. Aliment. Pharmacol. Ther. 33, 940–945 (2011).

    CAS  PubMed  Google Scholar 

  8. Boneberger, A. et al. Endotoxin levels in house dust samples and juvenile inflammatory bowel disease – a case–control study. J. Crohns Colitis 5, 525–530 (2011).

    PubMed  Google Scholar 

  9. Rook, G. A. Hygiene hypothesis and autoimmune diseases. Clin. Rev. Allergy Immunol. 42, 5–15 (2012).

    CAS  PubMed  Google Scholar 

  10. Chen, Y. & Blaser, M. J. Helicobacter pylori colonization is inversely associated with childhood asthma. J. Infect. Dis. 198, 553–560 (2008).

    PubMed  Google Scholar 

  11. Matsushima, K. & Nagai, S. Unraveling the mystery of the hygiene hypothesis through Helicobacter pylori infection. J. Clin. Invest. 122, 801–804 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Saidel-Odes, L. & Odes, S. Hygiene hypothesis in inflammatory bowel disease. Ann. Gastroenterol. 27, 189–190 (2014).

    PubMed  PubMed Central  Google Scholar 

  13. Inoue, N. et al. Lack of common NOD2 variants in Japanese patients with Crohn's disease. Gastroenterology 123, 86–91 (2002).

    CAS  PubMed  Google Scholar 

  14. Leong, R. W. et al. NOD2/CARD15 gene polymorphism and Crohn's disease in the Chinese population. Aliment. Pharmacol. Ther. 17, 1465–1470 (2003).

    CAS  PubMed  Google Scholar 

  15. Duerr, R. H. et al. A genome-wide association study identifies IL23R as an inflammatory bowel disease gene. Science 314, 1461–1463 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Rivas, M. A. et al. Deep resequencing of GWAS loci identifies independent rare variants associated with inflammatory bowel disease. Nat. Genet. 43, 1066–1073 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Jostins, L. et al. Host–microbe interactions have shaped the genetic architecture of inflammatory bowel disease. Nature 491, 119–124 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Shaw, M. H., Kamada, N., Warner, N., Kim, Y. G. & Nunez, G. The ever-expanding function of NOD2: autophagy, viral recognition, and T cell activation. Trends Immunol. 32, 73–79 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Noguchi, E., Homma, Y., Kang, X., Netea, M. G. & Ma, X. A Crohn's disease-associated NOD2 mutation suppresses transcription of human IL10 by inhibiting activity of the nuclear ribonucleoprotein hnRNP-A1. Nat. Immunol. 10, 471–479 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Hampe, H. et al. A genome-wide association scan of nonsynonymous SNPs identifies a susceptibility variant for Crohn disease in ATG16L1. Nat. Genet. 39, 207–211 (2007).

    CAS  PubMed  Google Scholar 

  21. Parkes, M. et al. Sequence variants in the autophagy gene IRGM and multiple other replicating loci contribute to Crohn's disease susceptibility. Nat. Genet. 39, 830–832 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Hoefkens, E. et al. Genetic association and functional role of Crohn disease risk alleles involved in microbial sensing, autophagy, and endoplasmic reticulum (ER) stress. Autophagy 9, 2046–2055 (2013).

    CAS  PubMed  Google Scholar 

  23. Levine, B., Mizushima, N. & Virgin, H. W. Autophagy in immunity and inflammation. Nature 469, 323–335 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Homer, C. R., Richmond, A. L., Rebert, N. A., Achkar, J. P. & McDonald, C. ATG16L1 and NOD2 interact in an autophagy-dependent antibacterial pathway implicated in Crohn's disease pathogenesis. Gastroenterology 139, 1630–1641.e1–e2 (2010).

    CAS  PubMed  Google Scholar 

  25. Stappenbeck, T. S. et al. Crohn disease: a current perspective on genetics, autophagy and immunity. Autophagy 7, 355–374 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Schwab, M. et al. Association between the C3435T MDR1 gene polymorphism and susceptibility for ulcerative colitis. Gastroenterology 124, 26–33 (2003).

    CAS  PubMed  Google Scholar 

  27. Wang, J. et al. MDR1 C3435T polymorphism and inflammatory bowel disease risk: a meta-analysis. Mol. Biol. Rep. 41, 79–85 (2014).

    Google Scholar 

  28. Franchimont, D. et al. Deficient host-bacteria interactions in inflammatory bowel disease? The toll-like receptor (TLR)-4 Asp299gly polymorphism is associated with Crohn's disease and ulcerative colitis. Gut 53, 987–992 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Kaser, A. et al. XBP1 links ER stress to intestinal inflammation and confers genetci risk for human inflammatory bowel disease. Cell 134, 743–756 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Villani, A. C. et al. Common variants in the NLRP3 region contribute to Crohn's disease susceptibility. Nat. Genet. 41, 71–76 (2009).

    CAS  PubMed  Google Scholar 

  31. Venema, K. Role of gut microbiota in the control of energy and carbohydrate metabolism. Curr. Opin. Clin. Nutr. Metab. Care 13, 432–438 (2010).

    CAS  PubMed  Google Scholar 

  32. Dominguez-Bello, M. G., Blaser, M. J., Ley, R. E. & Knight, R. Development of the human gastrointestinal microbiota and insights from high-throughput sequencing. Gastroenterology 140, 1713–1719 (2011).

    CAS  PubMed  Google Scholar 

  33. Lathrop, S. K. et al. Peripheral education of the immune system by colonic commensal microbiota. Nature 478, 250–254 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Medzhitov, R. Recognition of microorganisms and activation of the immune response. Nature 449, 819–826 (2007).

    CAS  PubMed  Google Scholar 

  35. Hooper, L. V., Littman, D. R. & Macpherson, A. J. Interactions between the microbiota and the immune system. Science 336, 1268–1273 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Quinton, J. F. et al. Anti-Saccharomyces cerevisiae mannan antibodies combined with antineutrophil cytoplasmic autoantibodies in inflammatory bowel disease: prevalence and diagnostic role. Gut 42, 788–791 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Mow, W. S. et al. Association of antibody responses to microbial antigens and complications of small bowel Crohn's disease. Gastroenterology 126, 414–424 (2004).

    CAS  PubMed  Google Scholar 

  38. Lodes, M. J. et al. Bacterial flagellin is a dominant antigen in Crohn disease. J. Clin. Invest. 113, 1296–1306 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Murdoch, T. B. et al. Pattern recognition receptor and autophagy gene variants are associated with development of antimicrobial antibodies in Crohn's disease. Inflamm. Bowel Dis. 18, 1743–1748 (2012).

    PubMed  Google Scholar 

  40. Dotan, I. et al. Antibodies against laminaribioside and chitobioside are novel serologic markers in Crohn's disease. Gastroenterology 131, 366–378 (2006).

    CAS  PubMed  Google Scholar 

  41. Pirzer, U., Schonhaar, A., Fleischer, B., Hermann, E. & MeyerzumBuschenfelde, K.-H. Reactivity of infiltrating T lymphocytes with microbial antigens in Crohn's disease. Lancet 338, 1238–1239 (1991).

    CAS  PubMed  Google Scholar 

  42. D'Haens, G. et al. Early lesions caused by infusion of intestinal contents in excluded ileum of Crohn's disease. Gastroenterology 114, 262–267 (1998).

    CAS  PubMed  Google Scholar 

  43. Chassaing, B. & Darfeuille-Michaud, A. The commensal microbiota and enteropathogens in the pathogenesis of inflammatory bowel diseases. Gastroenterology 140, 1720–1728 (2011).

    PubMed  Google Scholar 

  44. Man, S. M., Kaakoush, N. O. & Mitchell, H. M. The role of bacteria and pattern-recognition receptors in Crohn's disease. Nat. Rev. Gastroenterol. Hepatol. 8, 152–168 (2011).

    PubMed  Google Scholar 

  45. Hansen, R. et al. Microbiota of de-novo pediatric IBD: increased Faecalibacterium prausnitzii and reduced bacterial diversity in Crohn's but not in ulcerative colitis. Am. J. Gastroenterol. 107, 1913–1922 (2012).

    CAS  PubMed  Google Scholar 

  46. Andoh, A. et al. Comparison of the fecal microbiota profiles between ulcerative colitis and Crohn's disease using terminal restriction fragment length polymorphism analysis. J. Gastroenterol. 46, 479–486 (2011).

    PubMed  Google Scholar 

  47. Mazmanian, S. K., Round, J. L. & Kasper, D. L. A microbial symbiosis factor prevents intestinal inflammatory disease. Nature 453, 620–625 (2008).

    CAS  PubMed  Google Scholar 

  48. Sokol, H. et al. Faecalibacterium prausnitzii is an anti-inflammatory commensal bacterium identified by gut microbiota analysis of Crohn disease patients. Proc. Natl Acad. Sci. USA 105, 16731–16736 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Gevers, D. et al. The treatment-naive microbiome in new-onset Crohn's disease. Cell Host Microbe 15, 382–392 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Sewell, G. W., Marks, D. J. & Segal, A. W. The immunopathogenesis of Crohn's disease: a three-stage model. Curr. Opin. Immunol. 21, 506–513 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Fritz, T., Niederreiter, L., Adolph, T., Blumberg, R. S. & Kaser, A. Crohn's disease: NOD2, autophagy and ER stress converge. Gut 60, 1580–1588 (2011).

    CAS  PubMed  Google Scholar 

  52. Kaser, A. & Blumberg, R. S. Endoplasmic reticulum stress and intestinal inflammation. Mucosal Immunol. 3, 11–16 (2010).

    CAS  PubMed  Google Scholar 

  53. McGovern, D. P. B. et al. Genome-wide association identifies multiple ulcerative colitis susceptibility loci. Nat. Genet. 42, 332–337 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Mukherjee, P. K. et al. Mycobiota in gastrointestinal diseases. Nat. Rev. Gastroenterol. Hepatol. 12, 77–87 (2015).

    PubMed  Google Scholar 

  55. Norman, J. M. et al. Disease-specific alterations in the enteric virome in inflammatory bowel disease. Cell 160, 447–460 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Rausch, P. et al. Colonic mucosa-associated microbiota is influenced by an interaction of Crohn disease and FUT2 (Secretor) genotype. Proc. Natl Acad. Sci. USA 108, 19030–19035 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Lupp, C. et al. Host-mediated inflammation disrupts the intestinal microbiota and promotes the overgrowth of Enterobacteriaceae. Cell Host Microbe 2, 119–129 (2007).

    CAS  PubMed  Google Scholar 

  58. Bruce, A., Black, M. & Bhattacharya, S. Mode of delivery and risk of inflammatory bowel disease in the offspring: systematic review and meta-analysis of observational studies. Inflamm. Bowel Dis. 20, 1217–1226 (2014).

    PubMed  Google Scholar 

  59. Kobayashi, K. S. et al. Nod2-dependent regulation of innate and adaptive immunity in the intestinal tract. Science 307, 731–734 (2005).

    CAS  PubMed  Google Scholar 

  60. Wehkamp, J. et al. Inducible and constitutive β-defensins are differentially expressed in Crohn's disease and ulcerative colitis. Inflamm. Bowel Dis. 9, 215–223 (2003).

    PubMed  Google Scholar 

  61. Wehkamp, J. et al. Reduced Paneth cell α-defensins in ileal Crohn's disease. Proc. Natl Acad. Sci. USA 102, 18129–18134 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Billmann-Born, S. et al. The complex interplay of NOD-like receptors and the autophagy machinery in the pathophysiology of Crohn disease. Eur. J. Cell Biol. 90, 593–602 (2011).

    CAS  PubMed  Google Scholar 

  63. Lapaquette, P., Glasser, A. L., Huett, A., Xavier, R. J. & Darfeuille-Michaud, A. Crohn's disease-associated adherent-invasive, E. coli are selectively favoured by impaired autophagy to replicate intracellularly. Cell Microbiol. 12, 99–113 (2010).

    CAS  PubMed  Google Scholar 

  64. Brazil, J. C., Louis, N. A. & Parkos, C. A. The role of polymorphonuclear leukocyte trafficking in the perpetuation of inflammation during inflammatory bowel disease. Inflamm. Bowel Dis. 19, 1556–1565 (2013).

    PubMed  Google Scholar 

  65. Wynn, T. A., Chawla, A. & Pollard, J. W. Macrophage biology in development, homeostasis and disease. Nature 496, 445–455 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Martinez, F. O. & Gordon, S. The M1 and M2 paradigm of macrophage activation: time for reassessment. F1000Prime Rep. 6, 13 (2014).

    PubMed  PubMed Central  Google Scholar 

  67. Smythies, L. E. et al. Human intestinal macrophages display profound inflammatory anergy despite avid phagocytic and bacteriocidal activity. J. Clin. Invest. 115, 1066–1075 (2005).

    Google Scholar 

  68. Kamada, N. et al. Unique CD14 intestinal macrophages contribute to the pathogenesis of Crohn disease via IL-23/IFN-γ axis. J. Clin. Invest. 118, 2269–2280 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Smith, A. M. et al. Disordered macrophage cytokine secretion underlies impaired acute inflammation and bacterial clearance in Crohn's disease. J. Exp. Med. 206, 1883–1897 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Rossi, M. & Young, J. W. Human dendritic cells: potent antigen-presenting cells at the crossroads of innate and adaptive immunity. J. Immunol. 175, 1373–1381 (2005).

    CAS  PubMed  Google Scholar 

  71. Rescigno, M. & diSabatino, A. Dendritic cells in intestinal homeostasis and disease. J. Clin. Invest. 119, 2441–2450 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Rimoldi, M. et al. Intestinal immune homeostasis is regulated by the crosstalk between epithelial cells and dendritic cells. Nat. Immunol. 6, 507–514 (2005).

    CAS  PubMed  Google Scholar 

  73. Hart, A. L. et al. Characteristics of intestinal dendritic cells in inflammatory bowel disease. Gastroenterology 129, 50–65 (2005).

    CAS  PubMed  Google Scholar 

  74. Middel, P., Raddatz, D., Gunawan, B., Haller, F. & Radzun, H. J. Increased number of mature dendritic cells in Crohn's disease: evidence for a chemokine mediated retention mechanism. Gut 55, 220–227 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Scott, M. G. et al. Spontaneous secretion of IgG subclasses by intestinal mononuclear cells: differences between ulcerative colitis, Crohn's disease, and controls. Clin. Exp. Immunol. 66, 209–215 (1986).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. MacDermott, R. P., Nash, G. S. & Nahm, M. H. Antibody secretion by human intestinal mononuclear cells from normal controls and inflammatory bowel disease patients. Immunol. Invest. 18, 449–457 (1989).

    CAS  PubMed  Google Scholar 

  77. Takahashi, F. & Das, K. M. Isolation and characterization of a colonic autoantigen specifically recognized by colon tissue-bound immunoglobulin G. from idiopathic ulcerative colitis. J. Clin. Invest. 76, 311–318 (1985).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Das, K. M., Vecchi, M. & Sakamaki, S. A shared and unique epitope(s) on human colon, skin, and biliary epithelium detected by a monoclonal antibody. Gastroenterology 98, 464–469 (1990).

    CAS  PubMed  Google Scholar 

  79. Halstensen, T. S., Das, K. M. & Brandtzaeg, P. Epithelial deposits of immunoglobulin G1 and activated complement colocalise with the Mr 40kD putative autoantigen in ulcerative colitis. Gut 34, 650–657 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Geng, X. et al. Tropomyosin isoform in intestinal mucosa: production of autoantibodies to tropomyosin isoforms in ulcerative colitis. Gastroenterology 114, 912–922 (1998).

    CAS  PubMed  Google Scholar 

  81. Duerr, R. H. et al. Neutrophil cytoplasmic antibodies: a link between sclerosing cholangitis and ulcerative colitis. Gastroenterology 100, 1385–1391 (1991).

    CAS  PubMed  Google Scholar 

  82. McKenzie, H., Main, J., Pennington, C. R. & Parratt, D. Antibody to selected strains of Saccharomyces cerevisiae (baker's and brewer' yeast) and Candida albicans in Crohn's disease. Gut 31, 536–538 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Murphy, K. M. & Stockinger, B. Effector T cell plasticity: flexibility in the face of changing circumstances. Nat. Immunol. 11, 674–680 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. O'Connor, W., Zenewicz, L. A. & Flavell, R. A. The dual function of TH17 cells: shifting the focus to function. Nat. Immunol. 11, 471–476 (2010).

    CAS  PubMed  Google Scholar 

  85. Weaver, C. T. & Hatton, R. D. Interplay between the TH17 and Treg cell lineages: a (co-)evolutionary perspective. Nat. Rev. Immunol. 9, 883–889 (2009).

    CAS  PubMed  Google Scholar 

  86. Berg, D. J. et al. Enterocolitis and colon cancer in interleukin-10-deficient mice are associated with aberrant cytokine production and CD4+ TH1-like responses. J. Clin. Invest. 98, 1010–1020 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Becker, C. et al. Cutting edge: IL-23 cross-regulates IL-12 production in T cell-dependent experimental colitis. J. Immunol. 177, 2760–2764 (2006).

    CAS  PubMed  Google Scholar 

  88. Annunziato, F. et al. Phenotypic and functional features of human Th17 cells. J. Exp. Med. 204, 1849–1861 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Fujino, S. et al. Increased expression of interleukin 17 in inflammatory bowel disease. Gut 52, 65–70 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Monteleone, G. et al. Interleukin-21 enhances T-helper cell type I signaling and interferon-gamma production in Crohn's disease. Gastroenterology 128, 687–694 (2005).

    CAS  PubMed  Google Scholar 

  91. Fina, D. et al. Regulation of gut inflammation and TH17 cell response by interleukin-21. Gastroenterology 134, 1038–1048 (2008).

    CAS  PubMed  Google Scholar 

  92. Brand, S. et al. IL-22 is increased in active Crohn's disease and promotes proinflammatory gene expression and intestinal epithelial cell migration. Am. J. Physiol. Gastrointest. Liver Physiol. 290, G827–G838 (2006).

    CAS  PubMed  Google Scholar 

  93. Leung, J. M. et al. IL-22-producing CD4+ cells are depleted in actively inflamed colitis tissue. Mucosal Immunol. 7, 124–133 (2014).

    CAS  PubMed  Google Scholar 

  94. Sugimoto, K. et al. IL-22 ameliorates intestinal inflammation in a mouse model of ulcerative colitis. J. Clin. Invest. 118, 534–544 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. van Beelen, A. J. et al. Stimulation of the intracellular bacterial sensor NOD2 programs dendritic cells to promote interleukin-17 production in human memory T cells. Immunity 27, 660–669 (2007).

    CAS  PubMed  Google Scholar 

  96. Gerlach, K. et al. TH9 cells that express the transcription factor PU.1 drive T cell-mediated colitis via IL-9 receptor signaling in intestinal epithelial cells. Nat. Immunol. 15, 676–686 (2014).

    CAS  PubMed  Google Scholar 

  97. Harrison, O. J. & Powrie, F. M. Regulatory T cells and immune tolerance in the intestine. Cold Spring Harb. Perspect. Biol. 5, a018341 (2013).

    PubMed  PubMed Central  Google Scholar 

  98. Mayne, C. G. & Williams, C. B. Induced and natural regulatory T cells in the development of inflammatory bowel disease. Inflamm. Bowel Dis. 19, 1772–1788 (2013).

    PubMed  Google Scholar 

  99. Mottet, C., Uhlig, H. H. & Powrie, F. Cure of colitis by CD4+CD25+ regulatory T cells. J. Immunol. 170, 3939–3943 (2003).

    CAS  PubMed  Google Scholar 

  100. Maul, J. et al. Peripheral and intestinal regulatory CD4+CD25+high T cells in inflammatory bowel disease. Gastroenterology 128, 1868–1878 (2005).

    CAS  PubMed  Google Scholar 

  101. Makita, S. et al. CD4+CD25bright T cells in human intestinal lamina propria as regulatory cells. J. Immunol. 173, 3119–3130 (2004).

    CAS  PubMed  Google Scholar 

  102. Huibregtse, I. L., vanLent, A. U. & van Deventer, S. J. H. Immunopathogenesis of IBD: insufficient suppressor function in the gut? Gut 56, 584–592 (2007).

    CAS  PubMed  Google Scholar 

  103. Valencia, X. et al. TNF downmodulates the function of human CD4+CD25hi T-regulatory cells. Blood 108, 253–261 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Ricciardelli, I., Lindley, K. J., Londei, M. & Quaratino, S. Anti tumour necrosis-alpha therapy increases the number of FOXP3 regulatory T cells in children affected by Crohn's disease. Immunology 125, 178–183 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Veltkamp, C. et al. Apoptosis of regulatory T lymphocytes is increased in chronic inflammatory bowel disease and reversed by anti-TNFα treatment. Gut 60, 1345–1353 (2011).

    CAS  PubMed  Google Scholar 

  106. Kanai, T., Mikami, Y., Sujino, T., Hisamatsu, T. & Hibi, T. RORγt-dependent IL-17A-producing cells in the pathogenesis of intestinal inflammation. Mucosal Immunol. 5, 240–7 (2012).

    CAS  PubMed  Google Scholar 

  107. Mizuno, S. et al. Cross-talk between RORγt+ innate lymphoid cells and intestinal macrophages induces mucosal IL-22 production in Crohn's disease. Inflamm. Bowel Dis. 20, 1426–1434 (2014).

    PubMed  Google Scholar 

  108. Takayama, T. et al. Imbalance of NKp44+NKp46 and NKp44NKp46+ natural killer cells in the intestinal mucosa of patients with Crohn's disease. Gastroenterology 139, 882–892.e1–e3 (2010).

    CAS  PubMed  Google Scholar 

  109. Pariente, B. et al. Activation of the receptor NKG2D leads to production of Th17 cytokines in CD4+ T cells of patients with Crohn's disease. Gastroenterology 141, 217–226, 226 e1–e2 (2011).

    CAS  PubMed  Google Scholar 

  110. Fuss, I. J. et al. IL-13Rα2-bearing, type II NKT cells reactive to sulfatide self-antigen populate the mucosa of ulcerative colitis. Gut 63, 1728–1736 (2014).

    CAS  PubMed  Google Scholar 

  111. Buonocore, S. et al. Innate lymphoid cells drive interleukin-23-dependent innate intestinal pathology. Nature 464, 1371–1375 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Geremia, A. et al. IL-23-responsive innate lymphoid cells are increased in inflammatory bowel disease. J. Exp. Med. 208, 1127–1133 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Tait Wojno, E. D. & Artis, D. Innate lymphoid cells: balancing immunity, inflammation, and tissue repair in the intestine. Cell Host Microbe 12, 445–457 (2012).

    CAS  PubMed  Google Scholar 

  114. Goldberg, R., Prescott, N., Lord, G. M., MacDonald, T. T. & Powell, N. The unusual suspects—innate lymphoid cells as novel therapeutic targets in IBD. Nat. Rev. Gastroenterol. Hepatol. 12, 271–283 (2015).

    CAS  PubMed  Google Scholar 

  115. Strasser, A. & Pellegrini, M. T-lymphocyte death during shutdown of an immune response. Trends Immunol. 11, 610–615 (2004).

    Google Scholar 

  116. Boirivant, M. et al. Stimulated human lamina propria T cells manifest enhanced Fas-mediated apoptosis. J. Clin. Invest. 98, 2616–2622 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Ina, K. et al. Resistance of Crohn's disease T-cells to multiple apoptotic stimuli is associated with a Bcl-2/Bax mucosal imbalance. J. Immunol. 163, 1081–1090 (1999).

    CAS  PubMed  Google Scholar 

  118. Sturm, A., Itoh, J., Jacobberger, J. W. & Fiocchi, C. p53 negatively regulates intestinal immunity by delaying mucosal T cell cycling. J. Clin. Invest. 109, 1481–1492 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Sturm, A. et al. Divergent cell cycle kinetics underlie the distinct functional capacity of mucosal T-cells in Crohn's disease (CD) and ulcerative colitis (UC). Gut 53, 1624–1631 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Atreya, R. et al. Blockade of interleukin 6 trans signaling suppresses T-cell resistance against apoptosis in chronic intestinal inflammation: evidence in Crohn disease and experimental colitis in vivo. Nat. Med. 6, 583–588 (2000).

    CAS  PubMed  Google Scholar 

  121. de Souza, H. S. et al. Increased levels of survivin, via association with heat shock protein 90, in mucosal T cells from patients with Crohn's disease. Gastroenterology 143, 1017–1026.e9 (2012).

    CAS  PubMed  Google Scholar 

  122. Tiede, I. et al. CD28-dependent Rac1 activation is the molecular target of azothioprine in primary human CD4+ T lymphocytes. J. Clin. Invest. 111, 1133–1145 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. ten Hove, T., van Montfrans, C., Peppelenbosch, M. P. & van Deventer, S. J. H. Infliximab treatment induces apoptosis of lamina propria T-lymphocytes in Crohn's disease. Gut 50, 206–211 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Shen, C. et al. Adalimumab induces apoptosis of human monocytes: a comparative study with infliximab and etanercept. Aliment. Pharmacol. Ther. 21, 251–258 (2005).

    CAS  PubMed  Google Scholar 

  125. Van den Brande, J. M. et al. Infliximab but not etanercept induces apoptosis in lamina propria T-lymphocytes from patients with Crohn's disease. Gastroenterology 124, 1774–1785 (2003).

    CAS  PubMed  Google Scholar 

  126. Nesbitt, A. et al. Mechanism of action of certolizumab (CDP870): in vitro comparison with other anti-tumor necrosis factors α agents. Inflamm. Bowel Dis. 13, 1323–1332 (2007).

    PubMed  Google Scholar 

  127. Neurath, M. F. Cytokines in inflammatory bowel disease. Nat. Rev. Immunol. 14, 329–342 (2014).

    CAS  PubMed  Google Scholar 

  128. Neurath, M. F. New targets for mucosal healing and therapy in inflammatory bowel diseases. Mucosal Immunol. 7, 6–19 (2014).

    CAS  PubMed  Google Scholar 

  129. Fiocchi, C. & Podolsky, D. K. in Inflammatory Bowel Disease (eds Kirsner, J. B. & Shorter, R. G.) 252–280 (Williams & Wilkins, Baltimore, 1995).

    Google Scholar 

  130. Fuss, I. J. et al. Disparate CD4+ lamina propria lymphokine secretion profiles in inflammatory bowel disease. Crohn's disease LP cells manifest increased secretion of IFN-γ, whereas ulcerative colitis LP cells manifest increased secretion of IL-5. J. Immunol. 157, 1261–1270 (1996).

    CAS  PubMed  Google Scholar 

  131. Monteleone, G. et al. Interleukin 12 is expressed and actively released by Crohn's disease intestinal lamina propria mononuclear cells. Gastroenterology 112, 1169–1178 (1997).

    CAS  PubMed  Google Scholar 

  132. Pizarro, T. P. et al. IL-18, a novel immunoregulatory cytokine, is up-regulated in Crohn's disease: expression and localization in intestinal mucosal cells. J. Immunol. 162, 6829–6835 (1999).

    CAS  PubMed  Google Scholar 

  133. West, G. A., Matsuura, T., Levine, A. D., Klein, J. S. & Fiocchi, C. Interleukin-4 in inflammatory bowel disease and mucosal immune reactivity. Gastroenterology 110, 1683–1695 (1996).

    CAS  PubMed  Google Scholar 

  134. Fuss, I. J. et al. Nonclassical CD1d-restricted NK T cells that produce IL-13 characterize an atypical Th2 response in ulcerative colitis. J. Clin. Invest. 113, 1490–1497 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Schreiber, S., Heinig, T., Thiele, H.-G. & Raedler, A. Immunoregulatory role of interleukin 10 in patients with inflammatory bowel disease. Gastroenterology 108, 1434–1444 (1995).

    CAS  PubMed  Google Scholar 

  136. Autschbach, F. et al. In situ expression of interleukin-10 in noninflamed human gut and in inflammatory bowel disease. Am. J. Pathol. 153, 121–130 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Youngman, K. R. et al. Localization of intestinal interleukin 1 activity, protein and gene expression to lamina propria cells. Gastroenterology 104, 749–758 (1993).

    CAS  PubMed  Google Scholar 

  138. Mudter, J. & Neurath, M. F. Apoptosis of T cells and the control of inflammatory bowel disease: therapeutic implications. Gut 56, 293–303 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  139. Braegger, C. P., Nicholls, S., Murch, S. H., Stephens, S. & MacDonald, T. T. Tumour necrosis factor alpha in stool as a marker of intestinal inflammation. Lancet 339, 89–91 (1992).

    CAS  PubMed  Google Scholar 

  140. Targan, S. R. et al. A short-term study of chimeric monoclonal antibody cA2 to tumor necrosis factor a for Crohn's disease. N. Engl. J. Med. 337, 1029–1035 (1997).

    CAS  PubMed  Google Scholar 

  141. Li, M. O. & Flavell, R. A. TGF-beta: a master of all T cell trades. Cell 134, 392–404 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Monteleone, G. et al. Blocking Smad7 restores TGF-β1 signaling in chronic inflammatory bowel disease. J. Clin. Invest. 108, 601–609 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  143. Monteleone, G. et al. Mongersen, an oral SMAD7 antisense oligonucleotide, and Crohn's disease. N. Engl. J. Med. 372, 1104–1113 (2015).

    CAS  PubMed  Google Scholar 

  144. Charo, I. F. & Ransohoff, R. M. The many roles of chemokines and chemokine receptors in inflammation. N. Engl. J. Med. 354, 610–621 (2006).

    CAS  PubMed  Google Scholar 

  145. Johnson, Z., Schwarz, M., Power, C. A., Wells, T. N. & Proudfoot, A. E. Multi-faceted strategies to combat disease by interference with the chemokine system. Trends Immunol. 26, 268–274 (2005).

    CAS  PubMed  Google Scholar 

  146. Mahida, Y. R. et al. Enhanced synthesis of neutrophil-activating peptide-I/interleukin-8 in active ulcerative colitis. Clin. Sci. 82, 273–275 (1992).

    CAS  Google Scholar 

  147. Grimm, M. C. & Doe, W. F. Chemokines in inflammatory bowel disease mucosa: expression of RANTES, macrophage inflammatory protein (MIP)-1a, MIP-1b, and g-interferon-inducible protein 10 by macrophages, lymphocytes, endothelial cells, and granulomas. Inflamm. Bowel Dis. 2, 88–96 (1996).

    CAS  PubMed  Google Scholar 

  148. Uguccioni, M. et al. Increased expression of IP-10, IL-8, MCP-1 and MCP-3 in ulcerative colitis. Am. J. Pathol. 155, 331–336 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  149. Sans, M. et al. Enhanced recruitment of CX3CR1+ T-cells by mucosal endothelial cell-derived fractalkine in inflammatory bowel disease Gastroenterology 132, 139–153 (2007).

    CAS  PubMed  Google Scholar 

  150. Papadakis, K. A. et al. CCR9-positive lymphocytes and thymus-expressed chemokine distinguish small bowel from colonic Crohn's disease. Gastroenterology 121, 246–254 (2001).

    CAS  PubMed  Google Scholar 

  151. Kang, S. G. et al. Identification of a chemokine network that recruits FoxP3+ regulatory T cells into chronically inflamed intestine. Gastroenterology 132, 966–981 (2007).

    CAS  PubMed  Google Scholar 

  152. Gebbers, J. O. & Otto, H. F. Alterations of the intestinal mucosal block in ulcerative colitis and Crohn's disease—immunological and ultrastructural findings, and considerations of the pathogenesis. Klin. Padiatr. 197, 341–348 (1985).

    CAS  PubMed  Google Scholar 

  153. Mayer, L. & Shlien, R. Evidence for function of Ia molecules on gut epithelial cells in man. J. Exp. Med. 166, 1471–1483 (1987).

    CAS  PubMed  Google Scholar 

  154. Mayer, L. & Eisenhardt, D. Lack of induction of suppressor T cells by intestinal epithelial cells from patients with inflammatory bowel disease. J. Clin. Invest. 86, 1255–1260 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  155. Dubuquoy, L. et al. Impaired expression of peroxisome proliferator-activated receptor gamma in ulcerative colitis. Gastroenterology 124, 1538–1542 (2003).

    Google Scholar 

  156. Birchenough, G. M. H. et al. New developments in goblet cell mucus secretion and function. Mucosal Immunol. 8, 712–719 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  157. Jakobsson, H. E. et al. The composition of the gut microbiota shapes the colon mucus barrier. EMBO Rep. 16, 164–177 (2015).

    CAS  PubMed  Google Scholar 

  158. Van der Sluis, M. et al. Muc2-deficient mice spontaneously develop colitis, indicating that MUC2 is critical for colonic protection. Gastroenterology 131, 117–129 (2006).

    CAS  PubMed  Google Scholar 

  159. Buisine, M. P. et al. Abnormalities in mucin gene expression in Crohn's disease. Inflamm. Bowel Dis. 5, 24–32 (1999).

    CAS  PubMed  Google Scholar 

  160. Johansson, M. E. et al. Bacteria penetrate the normally impenetrable inner colon mucus layer in both murine colitis models and patients with ulcerative colitis. Gut 63, 281–291 (2014).

    CAS  PubMed  Google Scholar 

  161. Uehara, A., Fujimoto, Y., Fukase, K. & Takada, H. Various human epithelial cells express functional Toll-like receptors, NOD1 and NOD2 to produce anti-microbial peptides, but not proinflammatory cytokines Mol. Immunol. 44, 3100–3111 (2007).

    CAS  PubMed  Google Scholar 

  162. Turner, J. R. Intestinal mucosal barrier function in health and disease. Nat. Rev. Immunol. 9, 799–809 (2009).

    CAS  PubMed  Google Scholar 

  163. Bjarnason, I., O'Morain, C., Levi, A. J. & Peters, T. J. Absorption of 51-chromium-labelled ethylenediaminetetracetate in inflammatory bowel disease. Gastroenterology 85, 318–322 (1983).

    CAS  PubMed  Google Scholar 

  164. Wyatt, J., Vogelsang, H., Hubl, W., Waldhoer, T. & Lochs, H. Intestinal permeability and the prediction of relapse in Crohn's disease. Lancet 341, 1437–1439 (1993).

    CAS  PubMed  Google Scholar 

  165. Hollander, D. et al. Increased intestinal permeability in patients with Crohn's disease and their relatives. Ann. Intern. Med. 105, 883–885 (1986).

    CAS  PubMed  Google Scholar 

  166. Visser, J., Rozing, J., Sapone, A., Lammers, K. & Fasano, A. Tight junctions, intestinal permeability, and autoimmunity: celiac disease and type 1 diabetes paradigms. Ann. N. Y. Acad. Sci. 1165, 195–205 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  167. Buhner, S. et al. Genetic basis for increased intestinal permeability in families with Crohn's disease: role of CARD15 3020insC mutation? Gut 55, 342–347 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  168. Prager, M. et al. The JAK2 variant rs10758669 in Crohn's disease: altering the intestinal barrier as one mechanism of action. Int. J. Colorectal Dis. 27, 565–573 (2012).

    PubMed  Google Scholar 

  169. Sheng, Y. H. et al. MUC1 and MUC13 differentially regulate epithelial inflammation in response to inflammatory and infectious stimuli. Mucosal Immunol. 6, 557–568 (2013).

    CAS  PubMed  Google Scholar 

  170. Rieder, F. & Fiocchi, C. Intestinal fibrosis in IBD–a dynamic, multifactorial process. Nat. Rev. Gastroenterol. Hepatol. 6, 228–235 (2009).

    CAS  PubMed  Google Scholar 

  171. Burke, J. P. et al. Fibrogenesis in Crohn's disease. Am. J. Gastroenterol. 102, 439–448 (2007).

    CAS  PubMed  Google Scholar 

  172. Rieder, F., Zimmermann, E. M., Remzi, F. H. & Sandborn, W. J. Crohn's disease complicated by strictures: a systematic review. Gut 62, 1072–1084 (2013).

    CAS  PubMed  Google Scholar 

  173. Gordon, I. O., Agrawal, N., Goldblum, J. R., Fiocchi, C. & Rieder, F. Fibrosis in ulcerative colitis: mechanisms, features, and consequences of a neglected problem. Inflamm. Bowel Dis. 20, 2198–2206 (2014).

    PubMed  Google Scholar 

  174. Wynn, T. A. & Ramalingam, T. R. Mechanisms of fibrosis: therapeutic translation for fibrotic disease. Nat. Med. 18, 1028–1040 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  175. Leeb, S. N. et al. Reduced migration of fibroblasts in inflammatory bowel disease: role of inflammatory mediators and focal adhesion kinase. Gastroenterology 125, 1341–1354 (2003).

    CAS  PubMed  Google Scholar 

  176. Heuschkel, R. B. et al. Imbalance of stromelysin-1 and TIMP-1 in the mucosal lesions of children wih inflammatory bowel disease. Gut 47, 57–62 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  177. Kirkegaard, T., Hansen, A., Bruun, E. & Brynskov, J. Expression and localisation of matrix metalloproteinases and their natural inhibitors in fistulae of patients with Crohn's disease. Gut 53, 701–709 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  178. Speca, S., Giusti, I., Rieder, F. & Latella, G. Cellular and molecular mechanisms of intestinal fibrosis. World J. Gastroenterol. 18, 3635–3661 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  179. Rieder, F. The gut microbiome in intestinal fibrosis: environmental protector or provocateur? Sci. Transl. Med. 5, 190ps10 (2013).

    PubMed  Google Scholar 

  180. Danese, S. et al. Angiogenesis as a novel components of inflammatory bowel disease pathogenesis. Gastroenterology 130, 2060–2073 (2006).

    CAS  PubMed  Google Scholar 

  181. Scaldaferri, F. et al. VEGF-A links angiogenesis and inflammation in inflammatory bowel disease pathogenesis. Gastroenterology 136, 585–595.e5 (2009).

    CAS  PubMed  Google Scholar 

  182. Schirbel, A. et al. Pro-angiogenic activity of TLRs and NLRs: a novel link between gut microbiota and intestinal angiogenesis. Gastroenterology 144, 613–623 e9 (2013).

    CAS  PubMed  Google Scholar 

  183. Danese, S. et al. Angiogenesis blockade as a new therapeutic approach to experimental colitis. Gut 56, 855–862 (2007).

    CAS  PubMed  Google Scholar 

  184. Danese, S. et al. Platelets trigger a CD40-dependent inflammatory response in the microvasculature of inflammatory bowel disease patients. Gastroenterology 124, 1249–1264 (2003).

    CAS  PubMed  Google Scholar 

  185. Van Kruiningen, H. J. & Colombel, J. F. The forgotten role of lymphangitis in Crohn's disease. Gut 57, 1–4 (2008).

    CAS  PubMed  Google Scholar 

  186. Alitalo, K., Tammela, T. & Petrova, T. V. Lymphangiogenesis in development and human disease. Nature 438, 946–953 (2005).

    CAS  PubMed  Google Scholar 

  187. Liao, S. & von der Weid, P. Y. Inflammation-induced lymphangiogenesis and lymphatic dysfunction. Angiogenesis 17, 325–334 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  188. D'Alessio, S. et al. VEGF-C-dependent stimulation of lymphatic function ameliorates experimental inflammatory bowel disease. J. Clin. Invest. 124, 3863–3878 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  189. Kubota, Y. et al. Colonic vasoactive intestinal peptide nerves in inflammatory bowel disease. A digitized morphometric immunohistochemical study. Gastroenterology 102, 1242–1251 (1992).

    CAS  PubMed  Google Scholar 

  190. Gross, K. J. & Pothoulakis, C. Role of neuropeptides in inflammatory bowel disease. Inflamm. Bowel Dis. 13, 918–932 (2007).

    PubMed  Google Scholar 

  191. Bohorquez, D. V. & Liddle, R. A. The gut connectome: making sense of what you eat. J. Clin. Invest. 125, 888–890 (2015).

    PubMed  PubMed Central  Google Scholar 

  192. Kabouridis, P. S. & Pachnis, V. Emerging roles of gut microbiota and the immune system in the development of the enteric nervous system. J. Clin. Invest. 125, 956–964 (2015).

    PubMed  PubMed Central  Google Scholar 

  193. Mayer, E. A., Tillisch, K. & Gupta, A. Gut/brain axis and the microbiota. J. Clin. Invest. 125, 926–938 (2015).

    PubMed  PubMed Central  Google Scholar 

  194. Nathan, C. Epidemic inflammation: pondering obesity. Mol. Med. 14, 485–492 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  195. Weisberg, S. P. et al. Obesity is associated with macrophage accumulation in adipose tissue. J. Clin. Invest. 112, 1796–1808 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  196. Henao-Mejia, J., Elinav, E., Strowig, T. & Flavell, R. A. Inflammasomes: far beyond inflammation. Nat. Immunol. 13, 321–324 (2012).

    CAS  PubMed  Google Scholar 

  197. Schaffler, A., Scholmerich, J. & Buchler, C. Mechanisms of disease: adipocytokines and visceral adipose tissue—emerging role in intestinal and mesenteric diseases. Nat. Clin. Pract. Gastroenterol. Hepatol. 2, 103–111 (2005).

    PubMed  Google Scholar 

  198. Blain, A. et al. Crohn's disease clinical course and severity in obese patients. Clin. Nutr. 21, 51–57 (2002).

    CAS  PubMed  Google Scholar 

  199. Uko, V. et al. Impact of abdominal visceral adipose tissue on disease outcome in pediatric Crohn's disease. Inflamm. Bowel Dis. 20, 2286–2269 (2014).

    PubMed  Google Scholar 

  200. Paul, G. et al. Profiling adipocytokine secretion from creeping fat in Crohn's disease. Inflamm. Bowel Dis. 12, 471–477 (2006).

    PubMed  Google Scholar 

  201. Peyrin-Biroulet, L. et al. Mesenteric fat as a source of C reactive protein and as a target for bacterial translocation in Crohn's disease. Gut 61, 78–85 (2012).

    CAS  PubMed  Google Scholar 

  202. Zulian, A. et al. Visceral adipocytes: old actors in obesity and new protagonists in Crohn's disease? Gut 61, 86–94 (2012).

    CAS  PubMed  Google Scholar 

  203. Fink, C., Karagiannides, I., Bakirtzi, K. & Pothoulakis, C. Adipose tissue and inflammatory bowel disease pathogenesis. Inflamm. Bowel Dis. 18, 1550–1557 (2012).

    PubMed  Google Scholar 

  204. Kotas, M. E. & Medzhitov, R. Homeostasis, inflammation, and disease susceptibility. Cell 160, 816–827 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  205. Strowig, T., Henao-Mejia, J., Elinav, E. & Flavell, R. Inflammasomes in health and disease. Nature 481, 278–286 (2012).

    CAS  PubMed  Google Scholar 

  206. Lamkanfi, M. & Dixit, V. M. Mechanisms and functions of inflammasomes. Cell 157, 1013–1022 (2014).

    CAS  PubMed  Google Scholar 

  207. Elinav, E., Henao-Mejia, J. & Flavell, R. A. Integrative inflammasome activity in the regulation of intestinal mucosal immune responses. Mucosal Immunol. 6, 4–13 (2013).

    CAS  PubMed  Google Scholar 

  208. Bauer, C. et al. Colitis induced in mice with dextran sulfate sodium (DSS) is mediated by the NLRP3 inflammasome. Gut 59, 1192–1199 (2010).

    CAS  PubMed  Google Scholar 

  209. Zaki, M. H. et al. The NLRP3 inflammasome protects against loss of epithelial integrity and mortality during experimental colitis. Immunity 32, 379–391 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  210. Opipari, A. & Franchi, L. Role of Inflammasomes in Intestinal Inflammation and Crohn's Disease. Inflamm. Bowel Dis. 21, 173–181 (2015).

    PubMed  Google Scholar 

  211. Rebane, A. & Akdis, C. A. MicroRNAs: Essential players in the regulation of inflammation. J. Allergy Clin. Immunol. 132, 15–26 (2013).

    CAS  PubMed  Google Scholar 

  212. Tay, Y., Rinn, J. & Pandolfi, P. P. The multilayered complexity of ceRNA crosstalk and competition. Nature 505, 344–352 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  213. Kalla, R. et al. MicroRNAs: new players in IBD. Gut 64, 504–517 (2015).

    CAS  PubMed  Google Scholar 

  214. Wu, F. et al. MicroRNAs are differentially expressed in ulcerative colitis and alter expression of macrophage inflammatory peptide-2 alpha. Gastroenterology 135, 1624–1635.e24 (2008).

    CAS  PubMed  Google Scholar 

  215. Pekow, J. R. et al. miR-143 and miR-145 are downregulated in ulcerative colitis: putative regulators of inflammation and protooncogenes. Inflamm. Bowel Dis. 18, 94–100 (2012).

    PubMed  Google Scholar 

  216. Wu, F. et al. Identification of microRNAs associated with ileal and colonic Crohn's disease. Inflamm. Bowel Dis. 16, 1729–1738 (2010).

    PubMed  Google Scholar 

  217. Koukos, G. et al. MicroRNA-124 regulates STAT3 expression and is down-regulated in colon tissues of pediatric patients with ulcerative colitis. Gastroenterology 145, 842–852.e2 (2013).

    CAS  PubMed  Google Scholar 

  218. Coskun, M., Bjerrum, J. T., Seidelin, J. B. & Nielsen, O. H. MicroRNAs in inflammatory bowel disease—pathogenesis, diagnostics and therapeutics. World J. Gastroenterol. 18, 4629–4634 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  219. Rubartelli, A. & Lotze, M. T. Inside, outside, upside down: damage-associated molecular-pattern molecules (DAMPs) and redox. Trends Immunol. 28, 429–436 (2007).

    CAS  PubMed  Google Scholar 

  220. Piccinini, A. M. & Midwood, K. S. DAMPening inflammation by modulating TLR signalling. Mediators Inflamm. 2010, 672395 (2010).

    PubMed  PubMed Central  Google Scholar 

  221. Rock, K. L., Latz, E., Ontiveros, F. & Kono, H. The sterile inflammatory response. Annu. Rev. Immunol. 28, 321–342 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  222. Foell, D., Wittkowski, H. & Roth, J. Monitoring disease activity by stool analyses: from occult blood to molecular markers of intestinal inflammation and damage. Gut 58, 859–868 (2009).

    CAS  PubMed  Google Scholar 

  223. Palone, F. et al. Role of HMGB1 as a Suitable Biomarker of Subclinical Intestinal Inflammation and Mucosal Healing in Patients with Inflammatory Bowel Disease. Inflamm. Bowel Dis. 20, 1448–1457 (2014).

    PubMed  Google Scholar 

  224. Neves, A. R. et al. Overexpression of ATP-activated P2X7 receptors in the intestinal mucosa is implicated in the pathogenesis of Crohn's disease. Inflamm. Bowel Dis. 20, 444–57 (2014).

    PubMed  Google Scholar 

  225. Maeda, S. et al. Essential roles of high-mobility group BOX 1 in the development of murine colitis and colitis-associated cancer. Biochem. Biophys. Res. Commun. 360, 394–400 (2007).

    CAS  PubMed  Google Scholar 

  226. Dave, S. H. et al. Ethyl pyruvate decreases HMGB1 release and ameliorates murine colitis. J. Leukoc. Biol. 86, 633–643 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  227. Schiering, C. et al. The alarmin IL-33 promotes regulatory T-cell function in the intestine. Nature 513, 564–568 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  228. Scarpa, M. et al. Interleukin-1α, an epithelial danger signal, is a potent activator of fibroblasts and reactivator of intestinal inflammation. Am. J. Pathol. 185, 1624–1637 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  229. El Mezayen, R. et al. Endogenous signals released from necrotic cells augment inflammatory responses to bacterial endotoxin. Immunol. Lett. 111, 36–44 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  230. Nathan, C. & Ding, A. Nonresolving inflammation. Cell 140, 871–882 (2010).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Both authors contributed equally to all aspects of this manuscript.

Corresponding author

Correspondence to Claudio Fiocchi.

Ethics declarations

Competing interests

H.S.P.d.S. and C.F. declare no competing interests.

Supplementary information

Supplementary Table 1

Genetic polymorphisms associated with Crohn's disease and implications for pathogenic mechanisms (DOC 70 kb)

Supplementary Table 2

Genetic polymorphisms associated with ulcerative colitis and implications for pathogenic mechanisms (DOC 56 kb)

Supplementary Table 3

Genetic polymorphisms associated with both Crohn's disease and ulcerative colitis and implications for pathogenic mechanisms (DOC 169 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Souza, H., Fiocchi, C. Immunopathogenesis of IBD: current state of the art. Nat Rev Gastroenterol Hepatol 13, 13–27 (2016). https://doi.org/10.1038/nrgastro.2015.186

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrgastro.2015.186

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing