Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Radioiodine for remnant ablation and therapy of metastatic disease

A Correction to this article was published on 12 January 2012

This article has been updated

Abstract

Radioiodine is considered an effective and low-risk therapy modality of advanced differentiated thyroid cancer. For patients without lymph-node or distant metastases and low stages of the primary tumor, debate is ongoing about the necessity of thyroid remnant tissue ablation in an adjuvant setting. On the basis of evidence from retrospective studies, and until results of ongoing controlled prospective randomized trials become available, 131I ablation of remnant thyroid tissue in patients with primary tumors >1 cm is advisable. For thyroid remnant ablation, individual dosimetry is not obligatory. By contrast, the effectiveness of 131I therapy of locally advanced and/or metastatic disease can be improved by individual dosimetry. For practical reasons, an approach delivering the maximal possible radiation dose to the tumor without exceeding a critical blood dose of approximately 2 Gy seems advantageous. The availability of recombinant human TSH (rhTSH) has improved the quality of life of patients and reduces the radiation exposure of healthy nonthyroid tissue compared with TSH stimulation through levothyroxine withdrawal. In patients with distant metastases, rhTSH stimulation is possible only in off-label use, from which especially elderly and frail patients may benefit, as they most severely suffer from hypothyroidism caused by thyroid hormone withdrawal.

Key Points

  • Radioiodine is an effective and low-risk therapy of advanced differentiated thyroid cancer

  • For low-risk patients, the indication for radioiodine (131I) therapy is subject of debate

  • For thyroid remnant ablation, individual dosimetry is not obligatory

  • The effectiveness of 131I therapy of advanced differentiated thyroid cancer can be improved by individual dosimetry

  • Stimulation with recombinant human TSH (rhTSH) for 131I ablation maintains quality of life and lowers the radiation exposure of healthy nonthyroid tissue compared with TSH stimulation through levothyroxine withdrawal

  • For 131I therapy of advanced disease, rhTSH stimulation in off-label use might benefit elderly and frail patients

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Cumulative survival rates according to the UICC TNM stages I (n = 798), II (n = 383), III (n = 152) and IV (n = 110) in a patient population treated for differentiated thyroid cancer at the University of Würzburg, Würzburg, Germany, compared to cumulative survival rates expected on the basis of age and sex of the population.

Similar content being viewed by others

Change history

  • 12 January 2012

    In the version of this article initially published online the legend of Figure 1 should read "The 5th edition of the UICC TNM system was used to classify patients. We performed a visual, illustrative comparison using data on expected survival on the basis of group composition regarding age and sex for each stage group. These data were obtained from the German Federal Bureau of Statistics (Bundesamt für Statistik). No further statistical analysis was performed, as the visual illustration of the good prognosis of patients with differentiated thyroid cancer was the only goal of this figure." The error has been corrected for the HTML and PDF versions of the article.

References

  1. Cooper, D. S. et al. Revised American Thyroid Association management guidelines for patients with thyroid nodules and differentiated thyroid cancer. Thyroid 19, 1167–1214 (2009).

    Article  PubMed  Google Scholar 

  2. Pacini, F. et al. European consensus for the management of patients with differentiated thyroid carcinoma of the follicular epithelium. Eur. J. Endocrinol. 154, 787–803 (2006).

    Article  CAS  PubMed  Google Scholar 

  3. Pacini, F., Castagna, M. G., Brilli, L. & Pentheroudakis, G. Thyroid cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 21 (Suppl. 5), v214–v219 (2010).

    Article  PubMed  Google Scholar 

  4. Luster, M. et al. Guidelines for radioiodine therapy of differentiated thyroid cancer. Eur. J. Nucl. Med. Mol. Imaging 35, 1941–1959 (2008).

    Article  CAS  PubMed  Google Scholar 

  5. Mazzaferri, E. L. & Jhiang, S. M. Long-term impact of initial surgical and medical therapy on papillary and follicular thyroid cancer. Am. J. Med. 97, 418–428 (1994).

    Article  CAS  PubMed  Google Scholar 

  6. Eskandari, S. et al. Thyroid Na+/I symporter. Mechanism, stoichiometry, and specificity. J. Biol. Chem. 272, 27230–27238 (1997).

    Article  CAS  PubMed  Google Scholar 

  7. Van Nostrand, D. Sialoadenitis secondary to 131I therapy for well-differentiated thyroid cancer. Oral Dis. 17, 154–161 (2011).

    Article  CAS  PubMed  Google Scholar 

  8. Iyer, N. G., Morris, L. G., Tuttle, R. M., Shaha, A. R. & Ganly, I. Rising incidence of second cancers in patients with low-risk (T1N0) thyroid cancer who receive radioactive iodine therapy. Cancer doi:10.1002/cncr.26070.

  9. Schlumberger, M. J. Papillary and follicular thyroid carcinoma. N. Engl. J. Med. 338, 297–306 (1998).

    Article  CAS  PubMed  Google Scholar 

  10. Verburg, F. A., de Keizer, B., Lips, C. J., Zelissen, P. M. & de Klerk, J. M. Prognostic significance of successful ablation with radioiodine of differentiated thyroid cancer patients. Eur. J. Endocrinol. 152, 33–37 (2005).

    Article  CAS  PubMed  Google Scholar 

  11. Mazzaferri, E. L. & Kloos, R. T. Clinical review 128: Current approaches to primary therapy for papillary and follicular thyroid cancer. J. Clin. Endocrinol. Metab. 86, 1447–1463 (2001).

    Article  CAS  PubMed  Google Scholar 

  12. Tubiana, M. et al. Long-term results and prognostic factors in patients with differentiated thyroid carcinoma. Cancer 55, 794–804 (1985).

    Article  CAS  PubMed  Google Scholar 

  13. Simpson, W. J., Panzarella, T., Carruthers, J. S., Gospodarowicz, M. K. & Sutcliffe, S. B. Papillary and follicular thyroid cancer: impact of treatment in 1578 patients. Int. J. Radiat. Oncol. Biol. Phys. 14, 1063–1075 (1988).

    Article  CAS  PubMed  Google Scholar 

  14. Utiger, R. D. Follow-up of patients with thyroid carcinoma. N. Engl. J. Med. 337, 928–930 (1997).

    Article  CAS  PubMed  Google Scholar 

  15. Verburg, F. A., Dietlein, M., Lassmann, M., Luster, M. & Reiners, C. Why radioiodine remnant ablation is right for most patients with differentiated thyroid carcinoma. Eur. J. Nucl. Med. Mol. Imaging 36, 343–346 (2009).

    Article  PubMed  Google Scholar 

  16. Shattuck, T. M., Westra, W. H., Ladenson, P. W. & Arnold, A. Independent clonal origins of distinct tumor foci in multifocal papillary thyroid carcinoma. N. Engl. J. Med. 352, 2406–2412 (2005).

    Article  CAS  PubMed  Google Scholar 

  17. Sherman, S. I., Tielens, E. T., Sostre, S., Wharam, M. D. Jr & Ladenson, P. W. Clinical utility of posttreatment radioiodine scans in the management of patients with thyroid carcinoma. J. Clin. Endocrinol. Metab. 78, 629–634 (1994).

    CAS  PubMed  Google Scholar 

  18. Tenenbaum, F., Corone, C., Schlumberger, M. & Parmentier, C. Thyroglobulin measurement and postablative iodine-131 total body scan after total thyroidectomy for differentiated thyroid carcinoma in patients with no evidence of disease. Eur. J. Cancer 32A, 1262 (1996).

    Article  CAS  PubMed  Google Scholar 

  19. Travagli, J. P. et al. Combination of radioiodine (131I) and probe-guided surgery for persistent or recurrent thyroid carcinoma. J. Clin. Endocrinol. Metab. 83, 2675–2680 (1998).

    Article  CAS  PubMed  Google Scholar 

  20. Taylor, T. et al. Outcome after treatment of high-risk papillary and non-Hurthle-cell follicular thyroid carcinoma. Ann. Intern. Med. 129, 622–627 (1998).

    Article  CAS  PubMed  Google Scholar 

  21. Hay, I. D. et al. Papillary thyroid carcinoma managed at the Mayo Clinic during six decades (1940–1999): temporal trends in initial therapy and long-term outcome in 2,444 consecutively treated patients. World J. Surg. 26, 879–885 (2002).

    Article  PubMed  Google Scholar 

  22. Sawka, A. M. et al. Clinical review 170: a systematic review and metaanalysis of the effectiveness of radioactive iodine remnant ablation for well-differentiated thyroid cancer. J. Clin. Endocrinol. Metab. 89, 3668–3676 (2004).

    Article  CAS  PubMed  Google Scholar 

  23. Pacini, F. et al. Post-surgical use of radioiodine (131I) in patients with papillary and follicular thyroid cancer and the issue of remnant ablation: a consensus report. Eur. J. Endocrinol. 153, 651–659 (2005).

    Article  CAS  PubMed  Google Scholar 

  24. Rosario, P. W. et al. Is adjuvant therapy useful in patients with papillary carcinoma smaller than 2 cm? Thyroid 17, 1225–1228 (2007).

    Article  PubMed  Google Scholar 

  25. Sawka, A. M. et al. An updated systematic review and commentary examining the effectiveness of radioactive iodine remnant ablation in well-differentiated thyroid cancer. Endocrinol. Metab. Clin. North Am. 37, 457–480 (2008).

    Article  PubMed  Google Scholar 

  26. DeGroot, L. J., Kaplan, E. L., Shukla, M. S., Salti, G. & Straus, F. H. Morbidity and mortality in follicular thyroid cancer. J. Clin. Endocrinol. Metab. 80, 2946–2953 (1995).

    CAS  PubMed  Google Scholar 

  27. Mazzaferri, E. L. Thyroid remnant 131I ablation for papillary and follicular thyroid carcinoma. Thyroid 7, 265–271 (1997).

    Article  CAS  PubMed  Google Scholar 

  28. Samaan, N. A. et al. The results of various modalities of treatment of well differentiated thyroid carcinomas: a retrospective review of 1,599 patients. J. Clin. Endocrinol. Metab. 75, 714–720 (1992).

    CAS  PubMed  Google Scholar 

  29. Robbins, R. J. et al. Real-time prognosis for metastatic thyroid carcinoma based on 2-[18F]fluoro-2-deoxy-D-glucose-positron emission tomography scanning. J. Clin. Endocrinol. Metab. 91, 498–505 (2006).

    Article  CAS  PubMed  Google Scholar 

  30. Demidchik, Y. E. et al. Comprehensive clinical assessment of 740 cases of surgically treated thyroid cancer in children of Belarus. Ann. Surg. 243, 525–532 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Reiners, C., Demidchik, Y. E., Drozd, V. M. & Biko, J. Thyroid cancer in infants and adolescents after Chernobyl. Minerva Endocrinol. 33, 381–395 (2008).

    CAS  PubMed  Google Scholar 

  32. Dottorini, M. E., Lomuscio, G., Mazzucchelli, L., Vignati, A. & Colombo, L. Assessment of female fertility and carcinogenesis after iodine-131 therapy for differentiated thyroid carcinoma. J. Nucl. Med. 36, 21–27 (1995).

    CAS  PubMed  Google Scholar 

  33. Hay, I. D. et al. Long-term outcome in 215 children and adolescents with papillary thyroid cancer treated during 1940 through 2008. World J. Surg. 34, 1192–1202 (2010).

    Article  PubMed  Google Scholar 

  34. Biko, J. et al. Favourable course of disease after incomplete remission on 131I therapy in children with pulmonary metastases of papillary thyroid carcinoma: 10 years follow-up. Eur. J. Nucl. Med. Mol. Imaging 38, 651–655 (2011).

    Article  PubMed  Google Scholar 

  35. Verburg, F. A. et al. Dosimetry-guided high-activity 131I therapy in patients with advanced differentiated thyroid carcinoma: initial experience. Eur. J. Nucl. Med. Mol. Imaging 37, 896–903 (2010).

    Article  PubMed  Google Scholar 

  36. Lassmann, M., Reiners, C. & Luster, M. Dosimetry and thyroid cancer: the individual dosage of radioiodine. Endocr. Relat Cancer 17, R161–R172 (2010).

    Article  CAS  PubMed  Google Scholar 

  37. Verburg, F. A., Mäder, U., Luster, M. & Reiners, C. Primary tumor diameter as a risk factor for advanced disease features of differentiated thyroid carcinoma. Clin. Endocrinol. (Oxf.) 71, 291–297 (2008).

    Article  Google Scholar 

  38. Verburg, F. A., Mäder, U., Luster, M. & Reiners, C. Histology does not influence prognosis in differentiated thyroid carcinoma when accounting for age, tumour diameter, invasive growth and metastases. Eur. J. Endocrinol. 160, 619–624 (2009).

    Article  CAS  PubMed  Google Scholar 

  39. Seidlin, S. M., Marinelli, L. D. & Oshry, E. Radioactive iodine therapy: Effect on functioning metastases of adenocarcinoma of the thyroid. JAMA 132, 838–847 (1946).

    Article  CAS  Google Scholar 

  40. Tuttle, R. M. et al. Thyroid carcinoma. J. Natl Compr. Canc. Netw. 8, 1228–1274 (2010).

    Article  PubMed  Google Scholar 

  41. Hackshaw, A. & Mallick, U. Low versus high I-131 dose for remnant ablation in differentiated thyroid cancer. Clin. Med. Res. 7, 1–3 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Mallick, U., Harmer, C. & Hackshaw, A. The HiLo trial: a multicentre randomised trial of high- versus low-dose radioiodine, with or without recombinant human thyroid stimulating hormone, for remnant ablation after surgery for differentiated thyroid cancer. Clin. Oncol. (R. Coll. Radiol.) 20, 325–326 (2008).

    Article  CAS  Google Scholar 

  43. Doi, S. A. & Woodhouse, N. J. Ablation of the thyroid remnant and 131I dose in differentiated thyroid cancer. Clin. Endocrinol. (Oxf.) 52, 765–773 (2000).

    Article  CAS  Google Scholar 

  44. Hackshaw, A., Harmer, C., Mallick, U., Haq, M. & Franklyn, J. A. 131I activity for remnant ablation in patients with differentiated thyroid cancer: A systematic review. J. Clin. Endocrinol. Metab. 92, 28–38 (2007).

    Article  CAS  PubMed  Google Scholar 

  45. Doi, S. A., Woodhouse, N. J., Thalib, L. & Onitilo, A. Ablation of the thyroid remnant and I-131 dose in differentiated thyroid cancer: a meta-analysis revisited. Clin. Med. Res. 5, 87–90 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Schlumberger, M. et al. Radioactive iodine treatment and external radiotherapy for lung and bone metastases from thyroid carcinoma. J. Nucl. Med. 37, 598–605 (1996).

    CAS  PubMed  Google Scholar 

  47. Menzel, C. et al. “High-dose” radioiodine therapy in advanced differentiated thyroid carcinoma. J. Nucl. Med. 37, 1496–1503 (1996).

    CAS  PubMed  Google Scholar 

  48. Van Nostrand, D. in Thyroid Cancer: A Comprehensive Guide to Clinical Management 2nd edn (eds Wartofsky, L. & Van Nostrand, D.) 411–425 (Humana Press, Totowa, 2006).

    Book  Google Scholar 

  49. Samuel, A. M., Rajashekharrao, B. & Shah, D. H. Pulmonary metastases in children and adolescents with well-differentiated thyroid cancer. J. Nucl. Med. 39, 1531–1536 (1998).

    CAS  PubMed  Google Scholar 

  50. Chiesa, C. et al. Individualized dosimetry in the management of metastatic differentiated thyroid cancer. Q. J. Nucl. Med. Mol. Imaging 53, 546–561 (2009).

    CAS  PubMed  Google Scholar 

  51. Hänscheid, H. et al. Iodine biokinetics and dosimetry in radioiodine therapy of thyroid cancer: procedures and results of a prospective international controlled study of ablation after rhTSH or hormone withdrawal. J. Nucl. Med. 47, 648–654 (2006).

    PubMed  Google Scholar 

  52. Benua, R. S., Cicale, N. R., Sonenberg, M. & Rawson, R. W. The relation of radioiodine dosimetry to results and complications in the treatment of metastatic thyroid cancer. AJR 1962, 171–182 (1962).

    Google Scholar 

  53. Maxon, H. R. et al. Relation between effective radiation dose and outcome of radioiodine therapy for thyroid cancer. N. Engl. J. Med. 309, 937–941 (1983).

    Article  CAS  PubMed  Google Scholar 

  54. Maxon, H. R. III et al. Radioiodine-131 therapy for well-differentiated thyroid cancer—a quantitative radiation dosimetric approach: outcome and validation in 85 patients. J. Nucl. Med. 33, 1132–1136 (1992).

    PubMed  Google Scholar 

  55. Dorn, R. et al. Dosimetry-guided radioactive iodine treatment in patients with metastatic differentiated thyroid cancer: largest safe dose using a risk-adapted approach. J. Nucl. Med. 44, 451–456 (2003).

    CAS  PubMed  Google Scholar 

  56. Tuttle, R. M. et al. Empiric radioactive iodine dosing regimens frequently exceed maximum tolerated activity levels in elderly patients with thyroid cancer. J. Nucl. Med. 47, 1587–1591 (2006).

    PubMed  Google Scholar 

  57. Kulkarni, K. et al. The relative frequency in which empiric dosages of radioiodine would potentially overtreat or undertreat patients who have metastatic well-differentiated thyroid cancer. Thyroid 16, 1019–1023 (2006).

    Article  CAS  PubMed  Google Scholar 

  58. Hänscheid, H., Lassmann, M., Luster, M., Kloos, R. & Reiners, C. Blood dosimetry from a single measurement of the whole body radioiodine retention in patients with differentiated thyroid carcinoma. Endocr. Relat. Cancer 16, 1283–1289 (2009).

    Article  PubMed  Google Scholar 

  59. Hänscheid, H. et al. Success of the postoperative 131I therapy in young Belarusian patients with differentiated thyroid cancer after Chernobyl depends on the radiation absorbed dose to the blood and the thyroglobulin level. Eur. J. Nucl. Med. Mol. Imaging 38, 1296–1302 (2011).

    Article  PubMed  Google Scholar 

  60. Verburg, F. A. et al. The absorbed dose to the blood is a better predictor of ablation success than the administered (131)I activity in thyroid cancer patients. Eur. J. Nucl. Med. Mol. Imaging 38, 673–680 (2011).

    Article  CAS  PubMed  Google Scholar 

  61. Van Nostrand, D. et al. Dosimetrically determined doses of radioiodine for the treatment of metastatic thyroid carcinoma. Thyroid 12, 121–134 (2002).

    Article  PubMed  Google Scholar 

  62. Flux, G. D. et al. A dose-effect correlation for radioiodine ablation in differentiated thyroid cancer. Eur. J. Nucl. Med. Mol. Imaging 37, 270–275 (2010).

    Article  CAS  PubMed  Google Scholar 

  63. Sgouros, G. et al. Patient-specific dosimetry for 131I thyroid cancer therapy using 124I PET and 3-dimensional-internal dosimetry (3D-ID) software. J. Nucl. Med. 45, 1366–1372 (2004).

    CAS  PubMed  Google Scholar 

  64. Bolch, W. E., Eckerman, K. F., Sgouros, G. & Thomas, S. R. MIRD pamphlet No. 21: a generalized schema for radiopharmaceutical dosimetry—standardization of nomenclature. J. Nucl. Med. 50, 477–484 (2009).

    Article  CAS  PubMed  Google Scholar 

  65. Prideaux, A. R. et al. Three-dimensional radiobiologic dosimetry: application of radiobiologic modeling to patient-specific 3-dimensional imaging-based internal dosimetry. J. Nucl. Med. 48, 1008–1016 (2007).

    Article  PubMed  Google Scholar 

  66. Mazzaferri, E. L. & Massoll, N. Management of papillary and follicular (differentiated) thyroid cancer: new paradigms using recombinant human thyrotropin. Endocr. Relat. Cancer 9, 227–247 (2002).

    Article  CAS  PubMed  Google Scholar 

  67. Maxon, H. R. et al. Low iodine diet in I-131 ablation of thyroid remnants. Clin. Nucl. Med. 8, 123–126 (1983).

    Article  CAS  PubMed  Google Scholar 

  68. Sawka, A. M. et al. Basis for physician recommendations for adjuvant radioiodine therapy in early-stage thyroid carcinoma: principal findings of the Canadian–American thyroid cancer survey. Endocr. Pract. 14, 175–184 (2008).

    Article  PubMed  Google Scholar 

  69. Morsch, E. P., Vanacor, R., Furlanetto, T. W. & Schmid, H. Two weeks of a low-iodine diet are equivalent to 3 weeks for lowering urinary iodine and increasing thyroid radioactive iodine uptake. Thyroid 21, 61–67 (2011).

    Article  CAS  PubMed  Google Scholar 

  70. Weintraub, B. D. & Szkudlinski, M. W. Development and in vitro characterization of human recombinant thyrotropin. Thyroid 9, 447–450 (1999).

    Article  CAS  PubMed  Google Scholar 

  71. Haugen, B. R. et al. A comparison of recombinant human thyrotropin and thyroid hormone withdrawal for the detection of thyroid remnant or cancer. J. Clin. Endocrinol. Metab. 84, 3877–3885 (1999).

    CAS  PubMed  Google Scholar 

  72. Duntas, L. H. & Biondi, B. Short-term hypothyroidism after levothyroxine-withdrawal in patients with differentiated thyroid cancer: clinical and quality of life consequences. Eur. J. Endocrinol. 156, 13–19 (2007).

    Article  CAS  PubMed  Google Scholar 

  73. Luster, M., Felbinger, R., Dietlein, M. & Reiners, C. Thyroid hormone withdrawal in patients with differentiated thyroid carcinoma: a one hundred thirty-patient pilot survey on consequences of hypothyroidism and a pharmacoeconomic comparison to recombinant thyrotropin administration. Thyroid 15, 1147–1155 (2005).

    Article  CAS  PubMed  Google Scholar 

  74. Dow, K. H., Ferrell, B. R. & Anello, C. Quality-of-life changes in patients with thyroid cancer after withdrawal of thyroid hormone therapy. Thyroid 7, 613–619 (1997).

    Article  CAS  PubMed  Google Scholar 

  75. Chow, S. M. et al. Health-related quality-of-life study in patients with carcinoma of the thyroid after thyroxine withdrawal for whole body scanning. Laryngoscope 116, 2060–2066 (2006).

    Article  PubMed  Google Scholar 

  76. Tagay, S. et al. Health-related quality of life, anxiety and depression in thyroid cancer patients under short-term hypothyroidism and TSH-suppressive levothyroxine treatment. Eur. J. Endocrinol. 153, 755–763 (2005).

    Article  CAS  PubMed  Google Scholar 

  77. Schroeder, P. R. et al. A comparison of short-term changes in health-related quality of life in thyroid carcinoma patients undergoing diagnostic evaluation with recombinant human thyrotropin compared with thyroid hormone withdrawal. J. Clin. Endocrinol. Metab. 91, 878–884 (2006).

    Article  CAS  PubMed  Google Scholar 

  78. Remy, H. et al. 131I effective half-life and dosimetry in thyroid cancer patients. J. Nucl. Med. 49, 1445–1450 (2008).

    Article  CAS  PubMed  Google Scholar 

  79. Vaiano, A. et al. Comparison between remnant and red-marrow absorbed dose in thyroid cancer patients submitted to 131I ablative therapy after rh-TSH stimulation versus hypothyroidism induced by L-thyroxine withdrawal. Nucl. Med. Commun. 28, 215–223 (2007).

    Article  CAS  PubMed  Google Scholar 

  80. Luster, M. et al. Comparison of radioiodine biokinetics following the administration of recombinant human thyroid stimulating hormone and after thyroid hormone withdrawal in thyroid carcinoma. Eur. J. Nucl. Med. Mol. Imaging 30, 1371–1377 (2003).

    Article  CAS  PubMed  Google Scholar 

  81. Löffler, M., Weckesser, M., Franzius, C., Kies, P. & Schober, O. Iodine excretion during stimulation with rhTSH in differentiated thyroid carcinoma. Nuklearmedizin 42, 240–243 (2003).

    Article  PubMed  Google Scholar 

  82. Rosário, P. W., Borges, M. A. & Purisch, S. Preparation with recombinant human thyroid-stimulating hormone for thyroid remnant ablation with 131I is associated with lowered radiotoxicity. J. Nucl. Med. 49, 1776–1782 (2008).

    Article  PubMed  Google Scholar 

  83. Frigo, A. et al. Chromosome translocation frequency after radioiodine thyroid remnant ablation: a comparison between recombinant human thyrotropin stimulation and prolonged levothyroxine withdrawal. J. Clin. Endocrinol. Metab. 94, 3472–3476 (2009).

    Article  CAS  PubMed  Google Scholar 

  84. Chen, A. Y., Jemal, A. & Ward, E. M. Increasing incidence of differentiated thyroid cancer in the United States, 1988–2005. Cancer 115, 3801–3807 (2009).

    Article  PubMed  Google Scholar 

  85. Tuttle, R. M., Leboeuf, R. & Shaha, A. R. Medical Management of thyroid cancer: a risk adapted approach. J. Surg. Oncol. 97, 712–716 (2008).

    Article  PubMed  Google Scholar 

  86. Gramza, A. & Schuff, K. G. Recombinant human thyroid stimulating hormone in 2008: focus on thyroid cancer management. Onco. Targets Ther. 1, 87–101 (2009).

    PubMed  PubMed Central  Google Scholar 

  87. Pacini, F. et al. Radioiodine ablation of thyroid remnants after preparation with recombinant human thyrotropin in differentiated thyroid carcinoma: results of an international, randomized, controlled study. J. Clin. Endocrinol. Metab. 91, 926–932 (2006).

    Article  CAS  PubMed  Google Scholar 

  88. Elisei, R. et al. Follow-up of low-risk differentiated thyroid cancer patients who underwent radioiodine ablation of postsurgical thyroid remnants after either recombinant human thyrotropin or thyroid hormone withdrawal. J. Clin. Endocrinol. Metab. 94, 4171–4179 (2009).

    Article  CAS  PubMed  Google Scholar 

  89. Luster, M. et al. Use of recombinant human thyrotropin before radioiodine therapy in patients with advanced differentiated thyroid carcinoma. J. Clin. Endocrinol. Metab. 85, 3640–3645 (2000).

    Article  CAS  PubMed  Google Scholar 

  90. de Keizer, B. et al. Tumour dosimetry and response in patients with metastatic differentiated thyroid cancer using recombinant human thyrotropin before radioiodine therapy. Eur. J. Nucl. Med. Mol. Imaging 30, 367–373 (2003).

    Article  CAS  PubMed  Google Scholar 

  91. Robbins, R. J., Driedger, A. & Magner, J. Recombinant human thyrotropin-assisted radioiodine therapy for patients with metastatic thyroid cancer who could not elevate endogenous thyrotropin or be withdrawn from thyroxine. Thyroid 16, 1121–1130 (2006).

    Article  CAS  PubMed  Google Scholar 

  92. Borget, I. et al. Length and cost of hospital stay of radioiodine ablation in thyroid cancer patients: comparison between preparation with thyroid hormone withdrawal and thyrogen. Eur. J. Nucl. Med. Mol. Imaging 35, 1457–1463 (2008).

    Article  CAS  PubMed  Google Scholar 

  93. Borget, I. et al. Sick leave for follow-up control in thyroid cancer patients: comparison between stimulation with Thyrogen and thyroid hormone withdrawal. Eur. J. Endocrinol. 156, 531–538 (2007).

    Article  CAS  PubMed  Google Scholar 

  94. Mernagh, P. et al. Cost-effectiveness of using recombinant human TSH prior to radioiodine ablation for thyroid cancer, compared with treating patients in a hypothyroid state: the German perspective. Eur. J. Endocrinol. 155, 405–414 (2006).

    Article  CAS  PubMed  Google Scholar 

  95. Zanotti-Fregonara, P. et al. Overview on the use of recombinant human thyrotropin in thyroid cancer of follicular cell origin. Minerva Endocrinol. 33, 53–65 (2008).

    CAS  PubMed  Google Scholar 

  96. Barbaro, D. et al. Recombinant human TSH and ablation of post-surgical thyroid remnants in differentiated thyroid cancer: the effect of pre-treatment with furosemide and furosemide plus lithium. Eur. J. Nucl. Med. Mol. Imaging 37, 242–249 (2010).

    Article  CAS  PubMed  Google Scholar 

  97. Tala Jury, H. P. et al. Lack of association between urinary iodine excretion and successful thyroid ablation in thyroid cancer patients. J. Clin. Endocrinol. Metab. 95, 230–237 (2010).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors researched the data for the article and provided a substantial contribution to discussions of the content. C. Reiners, H. Hänscheid, M. Luster and F. A. Verburg contributed equally to writing the article. All authors reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Christoph Reiners.

Ethics declarations

Competing interests

C. Reiners, M. Luster, M. Lassmann and F. A. Verburg declare an association with the following company: Genzyme. C. Reiners and M. Lassmann have received research support from Genzyme. M. Luster and F. A. Verburg have received research support and speakers fees from Genzyme. H. Hänscheid declares no competing interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reiners, C., Hänscheid, H., Luster, M. et al. Radioiodine for remnant ablation and therapy of metastatic disease. Nat Rev Endocrinol 7, 589–595 (2011). https://doi.org/10.1038/nrendo.2011.134

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrendo.2011.134

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing