Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Fibrosis and carcinoid syndrome: from causation to future therapy

Abstract

Carcinoid tumors are part of a heterogeneous group of gastrointestinal and pancreatic endocrine tumors that are characterized by their capacity to produce and secrete hormones, 5-hydroxytryptamine, tachykinins and other mediators. These substances are thought to be responsible for the collection of symptoms, which include diarrhea, flushing and wheezing, that is known as carcinoid syndrome. Fibrosis that occurs either local to or distant from the primary tumor is one of the hallmarks of carcinoid tumors that originate from the midgut. The fibrotic process can occur in the mesentery as a desmoplastic response and may lead to obstruction of the small bowel, but it can also occur in the lungs, skin or retroperitoneum. Importantly, up to one-third of patients develop cardiac valvulopathy. One or more products that are secreted by the tumor and enter into the circulation are likely to have a role in this process. This Review discusses the incidence and prevalence of fibrosis in carcinoid syndrome and explores evidence to date for causative agents, in particular the roles of 5-hydroxytryptamine and elements of the downstream signaling pathway. Improved understanding of the etiology of carcinoid-tumor-related fibrosis may lead to better treatments for this condition than those we currently have.

Key Points

  • Fibrosis that develops either local to or distant from the primary tumor is a hallmark of carcinoid tumors that originate from the midgut

  • Fibrosis is an important clinical complication of carcinoid syndrome and is associated with ischemia and obstruction in the small bowel, and cardiac valvulopathy

  • The biology of carcinoid-syndrome-related fibrosis is not fully understood, but evidence suggests that 5-hydroxytryptamine and the 5-hydroxytryptamine 2B receptor both have a role

  • Other mediators, including TGF-β and growth factors, may also be important in the development of carcinoid-syndrome-related fibrosis

  • Improved understanding of the etiology of carcinoid-tumor-related fibrosis may lead to better treatments for this condition than those we currently have

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Axial CT image of a calcified mesenteric mass (arrow) with indrawing of the mesentery.
Figure 2: Axial CT image of a patient with a metastatic carcinoid tumor that demonstrates retroperitoneal thickening and fibrosis (arrow).
Figure 3: Axial CT image that shows calcified mesenteric mass (arrow) with indrawing of the mesentery and appearance of misty mesentery.
Figure 4: Axial CT image of a patient with a metastatic carcinoid tumor and marked calcification within the mesenteric mass (arrow).
Figure 5: MRI scans of a patient with metastatic carcinoid tumor.
Figure 6: Serotonin synthesis pathway.

Similar content being viewed by others

References

  1. Modlin, I. M., Shapiro, M. D. & Kidd, M. Siegfried Oberndorfer: origins and perspectives of carcinoid tumors. Hum. Pathol. 35, 1440–1451 (2004).

    Article  Google Scholar 

  2. Kloppel, G., Perren, A. & Heitz, P. U. The gastroenteropancreatic neuroendocrine cell system and its tumors: the WHO classification. Ann. NY Acad. Sci. 1014, 13–27 (2004).

    Article  Google Scholar 

  3. Modlin, I. M., Kidd, M., Latich, I., Zikusoka, M. N. & Shapiro, M. D. Current status of gastrointestinal carcinoids. Gastroenterology 128, 1717–1751 (2005).

    Article  Google Scholar 

  4. Eriksson, B. et al. Consensus guidelines for the management of patients with digestive neuroendocrine tumors—well-differentiated jejunal-ileal tumor/carcinoma. Neuroendocrinology 87, 8–19 (2008).

    Article  CAS  Google Scholar 

  5. Modlin, I. M., Shapiro, M. D. & Kidd, M. Carcinoid tumors and fibrosis: an association with no explanation. Am. J. Gastroenterol. 99, 2466–2478 (2004).

    Article  Google Scholar 

  6. Morgan, J. G., Marks, C. & Hearn, D. Carcinoid tumors of the gastrointestinal tract. Ann. Surg. 180, 720–727 (1974).

    Article  CAS  Google Scholar 

  7. Kidd, M., Shapiro, M. D. & Lye, K. D. Connective tissue growth factor (CTGF) is overexpressed in ileal carcinoids. Presented at the Gastrointestinal Cancers Symposium of the American Society of Clinical Oncology, January 22–24, San Francisco, California, USA (2004).

    Google Scholar 

  8. Hellman, P. et al. Effect of surgery on the outcome of midgut carcinoid disease with lymph node and liver metastases. World J. Surg. 26, 991–997 (2002).

    Article  Google Scholar 

  9. Cai, Y. C. et al. Florid angiogenesis in mucosa surrounding an ileal carcinoid tumor expressing transforming growth factor-α. Am. J. Surg. Pathol. 21, 1373–1377 (1997).

    Article  CAS  Google Scholar 

  10. Kottra, J. J. & Dunnick, N. R. Retroperitoneal fibrosis. Radiol. Clin. North Am. 34, 1259–1275 (1996).

    CAS  PubMed  Google Scholar 

  11. Dev., S., al Dujaily, S. & Subbuswamy, S. G. A case of ureteric obstruction, retroperitoneal fibrosis, and carcinoid tumour. Postgrad. Med. J. 75, 38–40 (1999).

    Article  CAS  Google Scholar 

  12. Morand, J. J. et al. Edema caused by retroperitoneal and tricuspid fibrosis with sclerodermatous cutaneous involvement disclosing carcinoid tumor. Apropos of a case and review of the literature [French]. Rev. Med. Interne. 18, 388–395 (1997).

    Article  CAS  Google Scholar 

  13. Nelson, D. R., Stachura, M. E. & Dunlap, D. B. Ileal carcinoid tumor complicated by retroperitoneal fibrosis and a prolactinoma. Am. J. Med. Sci. 296, 129–133 (1988).

    Article  CAS  Google Scholar 

  14. Scott, J., Foster, R. & Moore, A. Retroperitoneal fibrosis and nonmalignant ileal carcinoid. J. Urol. 138, 1435 (1987).

    Article  CAS  Google Scholar 

  15. Gupta, A., Saibil, F., Kassim, O. & McKee, J. Retroperitoneal fibrosis caused by carcinoid tumour. Q. J. Med. 56, 367–375 (1985).

    CAS  PubMed  Google Scholar 

  16. Moss, S. F. et al. Pleural involvement in the carcinoid syndrome. Q. J. Med. 86, 49–53 (1993).

    CAS  PubMed  Google Scholar 

  17. Tamagno, G., Goglia, U., Villa, G. & Murialdo, G. Lung fibrosis in carcinoid syndrome. Intern. Med. 46, 425–426 (2007).

    Article  Google Scholar 

  18. Seo, J. W., Im, J. G., Kim, Y. W., Kim, J. H. & Sheppard, M. N. Synchronous double primary lung cancers of squamous and neuroendocrine type associated with cryptogenic fibrosing alveolitis. Thorax 46, 857–858 (1991).

    Article  CAS  Google Scholar 

  19. Miller, R. R. & Muller, N. L. Neuroendocrine cell hyperplasia and obliterative bronchiolitis in patients with peripheral carcinoid tumors. Am. J. Surg. Pathol. 19, 653–658 (1995).

    Article  CAS  Google Scholar 

  20. Kucuk, O. et al. Lower extremity vasospasm associated with ischemic neuropathy, dermal fibrosis, and digital gangrene in a patient with carcinoid syndrome. Cancer 62, 1026–1029 (1988).

    Article  CAS  Google Scholar 

  21. Bell, H. K., Poston, G. J., Vora, J. & Wilson, N. J. Cutaneous manifestations of the malignant carcinoid syndrome. Br. J. Dermatol. 152, 71–75 (2005).

    Article  CAS  Google Scholar 

  22. Ratnavel, R. C., Burrows, N. P. & Pye, R. J. Scleroderma and the carcinoid syndrome. Clin. Exp. Dermatol. 19, 83–85 (1994).

    Article  CAS  Google Scholar 

  23. Thorson, A., Biorck, G., Bjorkman, G. & Waldenstrom, J. Malignant carcinoid of the small intestine with metastases to the liver, valvular disease of the right side of the heart (pulmonary stenosis and tricuspid regurgitation without septal defects), peripheral vasomotor symptoms, bronchoconstriction, and an unusual type of cyanosis; a clinical and pathologic syndrome. Am. Heart J. 47, 795–817 (1954).

    Article  CAS  Google Scholar 

  24. Ferrans, V. J. & Roberts, W. C. The carcinoid endocardial plaque; an ultrastructural study. Hum. Pathol. 7, 387–409 (1976).

    Article  CAS  Google Scholar 

  25. Norheim, I. et al. Malignant carcinoid tumors. An analysis of 103 patients with regard to tumor localization, hormone production, and survival. Ann. Surg. 206, 115–125 (1987).

    Article  CAS  Google Scholar 

  26. Lundin, L., Norheim, I., Landelius, J., Oberg, K. & Theodorsson-Norheim, E. Carcinoid heart disease: relationship of circulating vasoactive substances to ultrasound-detectable cardiac abnormalities. Circulation 77, 264–269 (1988).

    Article  CAS  Google Scholar 

  27. Bhattacharyya, S., Toumpanakis, C., Caplin, M. E. & Davar, J. Analysis of 150 patients with carcinoid syndrome seen in a single year at one institution in the first decade of the twenty-first century. Am. J. Cardiol. 101, 378–381 (2008).

    Article  Google Scholar 

  28. Bhattacharyya, S., Davar, J., Dreyfus, G. & Caplin, M. E. Carcinoid heart disease. Circulation 116, 2860–2865 (2007).

    Article  Google Scholar 

  29. Howard, R. J. et al. Carcinoid heart disease: diagnosis by two-dimensional echocardiography. Circulation 66, 1059–1065 (1982).

    Article  CAS  Google Scholar 

  30. Zanettini, R. et al. Valvular heart disease and the use of dopamine agonists for Parkinson's disease. N. Engl. J. Med. 356, 39–46 (2007).

    Article  CAS  Google Scholar 

  31. Bader, T. R., Semelka, R. C., Chiu, V. C., Armao, D. M. & Woosley, J. T. MRI of carcinoid tumors: spectrum of appearances in the gastrointestinal tract and liver. J. Magn. Reson. Imaging 14, 261–269 (2001).

    Article  CAS  Google Scholar 

  32. Woodard, P. K., Feldman, J. M., Paine, S. S. & Baker, M. E. Midgut carcinoid tumors: CT findings and biochemical profiles. J. Comput. Assist. Tomogr. 19, 400–405 (1995).

    Article  CAS  Google Scholar 

  33. Pantongrag-Brown, L., Buetow, P. C., Carr, N. J., Lichtenstein, J. E. & Buck, J. L. Calcification and fibrosis in mesenteric carcinoid tumor: CT findings and pathologic correlation. AJR Am. J. Roentgenol. 164, 387–391 (1995).

    Article  CAS  Google Scholar 

  34. Horton, K. M., Lawler, L. P. & Fishman, E. K. CT findings in sclerosing mesenteritis (panniculitis): spectrum of disease. Radiographics 23, 1561–1567 (2003).

    Article  Google Scholar 

  35. Levy, A. D., Rimola, J., Mehrotra, A. K. & Sobin, L. H. From the archives of the AFIP: benign fibrous tumors and tumorlike lesions of the mesentery: radiologic–pathologic correlation. Radiographics 26, 245–264 (2006).

    Article  Google Scholar 

  36. Coulier, B. et al. Carcinoid tumor of the small intestine: MDCT findings with pathologic correlation. JBR-BTR 90, 507–515 (2007).

    CAS  PubMed  Google Scholar 

  37. Lesurtel, M., Soll, C., Graf, R. & Clavien, P. A. Role of serotonin in the hepato-gastrointestinal tract: an old molecule for new perspectives. Cell. Mol. Life Sci. 65, 940–952 (2008).

    Article  CAS  Google Scholar 

  38. Barnes, N. M. & Sharp, T. A review of central 5-HT receptors and their function. Neuropharmacology 38, 1083–1152 (1999).

    Article  CAS  Google Scholar 

  39. Kim, D. Y. & Camilleri, M. Serotonin: a mediator of the brain–gut connection. Am. J. Gastroenterol. 95, 2698–2709 (2000).

    CAS  PubMed  Google Scholar 

  40. Launay, J. M. et al. Ras involvement in signal transduction by the serotonin 5-HT2B receptor. J. Biol. Chem. 271, 3141–3147 (1996).

    Article  CAS  Google Scholar 

  41. Nebigil, C. G., Launay, J. M., Hickel, P., Tournois, C. & Maroteaux, L. 5-hydroxytryptamine 2B receptor regulates cell-cycle progression: crosstalk with tyrosine kinase pathways. Proc. Natl Acad. Sci. USA 97, 2591–2596 (2000).

    Article  CAS  Google Scholar 

  42. Mason, J. W., Billingham, M. E. & Friedman, J. P. Methysergide-induced heart disease: a case of multivalvular and myocardial fibrosis. Circulation 56, 889–890 (1977).

    Article  CAS  Google Scholar 

  43. Connolly, H. et al. Valvular heart disease associated with fenfluramine–phentermine. N. Engl. J. Med. 337, 581–588 (1997).

    Article  CAS  Google Scholar 

  44. Antonini, A. & Poewe, W. Fibrotic heart-valve reactions to dopamine-agonist treatment in Parkinson's disease. Lancet Neurol. 6, 826–829 (2007).

    Article  CAS  Google Scholar 

  45. Jagroop, I. A. & Mikhailidis, D. P. An investigation of the serotonergic effects of fenfluramine, dexfenfluramine and dexnorfenfluramine using platelets as neuronal models. Platelets 11, 161–165 (2000).

    Article  CAS  Google Scholar 

  46. Gustafsson, B. I. et al. Long-term serotonin administration induces heart valve disease in rats. Circulation 111, 1517–1522 (2005).

    Article  CAS  Google Scholar 

  47. Mekontso-Dessap, A. et al. Deficiency of the 5-hydroxytryptamine transporter gene leads to cardiac fibrosis and valvulopathy in mice. Circulation 113, 81–89 (2006).

    Article  CAS  Google Scholar 

  48. Musunuru, S., Carpenter, J. E., Sippel, R. S., Kunnimalaiyaan, M. & Chen, H. A mouse model of carcinoid syndrome and heart disease. J. Surg. Res. 126, 102–105 (2005).

    Article  CAS  Google Scholar 

  49. Wang, B. et al. Regulation of collagen synthesis by inhibitory Smad7 in cardiac myofibroblasts. Am. J. Physiol. Heart Circ. Physiol. 293, H1282–H1290 (2007).

    Article  CAS  Google Scholar 

  50. Ruddell, R. G. et al. A role for serotonin (5-HT) in hepatic stellate cell function and liver fibrosis. Am. J. Pathol. 169, 861–876 (2006).

    Article  CAS  Google Scholar 

  51. Caplin, M. E. et al. Carcinoid tumour. Lancet 352, 799–805 (1998).

    Article  CAS  Google Scholar 

  52. Kulke, M. H. & Mayer, R. J. Carcinoid tumors. N. Engl. J. Med. 340, 858–868 (1999).

    Article  CAS  Google Scholar 

  53. Jian, B. et al. Serotonin mechanisms in heart valve disease I: serotonin-induced upregulation of transforming growth factor-beta1 via G-protein signal transduction in aortic valve interstitial cells. Am. J. Pathol. 161, 2111–2121 (2002).

    Article  CAS  Google Scholar 

  54. Moller, J. E. et al. Factors associated with progression of carcinoid heart disease. N. Engl. J. Med. 348, 1005–1015 (2003).

    Article  Google Scholar 

  55. Nilsson, C. L., Brodin, E. & Ekman, R. Substance P and related peptides in porcine cortex: whole tissue and nuclear localization. J. Chromatogr. A 800, 21–27 (1998).

    Article  CAS  Google Scholar 

  56. Chaudhry, A., Funa, K. & Oberg, K. Expression of growth factor peptides and their receptors in neuroendocrine tumors of the digestive system. Acta Oncol. 32, 107–114 (1993).

    Article  CAS  Google Scholar 

  57. Waltenberger, J. et al. Involvement of transforming growth factor-beta in the formation of fibrotic lesions in carcinoid heart disease. Am. J. Pathol. 142, 71–78 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Kidd, M. et al. CTGF, intestinal stellate cells and carcinoid fibrogenesis. World J. Gastroenterol. 13, 5208–5216 (2007).

    Article  CAS  Google Scholar 

  59. Lal, A. & Chen, H. Treatment of advanced carcinoid tumors. Curr. Opin. Oncol. 18, 9–15 (2006).

    Article  Google Scholar 

  60. Bhattacharyya, S., Toumpanakis, C., Caplin, M. E. & Davar, J. Usefulness of N-terminal pro-brain natriuretic peptide as a biomarker of the presence of carcinoid heart disease. Am. J. Cardiol. 102, 938–942 (2008).

    Article  CAS  Google Scholar 

  61. Ohrvall, U. et al. Method for dissection of mesenteric metastases in midgut carcinoid tumors. World J. Surg. 24, 1402–1408 (2000).

    Article  CAS  Google Scholar 

  62. Howell, S. B. et al. Intraperitoneal cisplatin with systemic thiosulfate protection. Ann. Intern. Med. 97, 845–851 (1982).

    Article  CAS  Google Scholar 

  63. Moertel, C. G., Kvols, L. K. & Rubin, J. A study of cyproheptadine in the treatment of metastatic carcinoid tumor and the malignant carcinoid syndrome. Cancer 67, 33–36 (1991).

    Article  CAS  Google Scholar 

  64. Robertson, J. I. Carcinoid syndrome and serotonin: therapeutic effects of ketanserin. Cardiovasc. Drugs Ther. 4 (Suppl. 1), S53–S58 (1990).

    Article  Google Scholar 

  65. Noppen, M., Jacobs, A., Van Belle, S., Herregodts, P. & Somers, G. Inhibitory effects of ranitidine on flushing and serum serotonin concentrations in carcinoid syndrome. Br. Med. J. (Clin. Res. Ed.) 296, 682–683 (1988).

    Article  CAS  Google Scholar 

  66. Wymenga, A. N., de Vries, E. G., Leijsma, M. K., Kema, I. P. & Kleibeuker, J. H. Effects of ondansetron on gastrointestinal symptoms in carcinoid syndrome. Eur. J. Cancer 34, 1293–1294 (1998).

    Article  CAS  Google Scholar 

  67. Jacobsen, M. B. Ondansetron in carcinoid syndrome. Lancet 340, 185 (1992).

    Article  CAS  Google Scholar 

  68. Hauso, O. et al. Long-term serotonin effects in the rat are prevented by terguride. Regul. Pept. 143, 39–46 (2007).

    Article  CAS  Google Scholar 

  69. Ciccarelli, E., Touzel, R., Besser, M. & Grossman, A. Terguride—a new dopamine agonist drug: a comparison of its neuroendocrine and side effect profile with bromocriptine. Fertil. Steril. 49, 589–594 (1988).

    Article  CAS  Google Scholar 

  70. Greenblatt, D. Y. et al. Valproic acid activates Notch-1 signaling and regulates the neuroendocrine phenotype in carcinoid cancer cells. Oncologist 12, 942–951 (2007).

    Article  CAS  Google Scholar 

  71. Kunnimalaiyaan, M. & Chen, H. The Raf-1 pathway: a molecular target for treatment of select neuroendocrine tumors? Anticancer Drugs 17, 139–142 (2006).

    Article  CAS  Google Scholar 

  72. Brown, P., Pappas, C., Frazier, K., Turnage, A. & Liu, Q. LX1032: A novel approach for managing gastrointestinal symptoms in carcinoid syndrome. [Abstract C16] Presented at the 6th Annual Conference of the European Neuroendocrine Tumor Society: 2009 March 5–7, Granada, Spain.

    Google Scholar 

Download references

Acknowledgements

Charles P. Vega, University of California, Irvine, CA, is the author of and is solely responsible for the content of the learning objectives, questions and answers of the Medscape-accredited continuing medical education activity associated with this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashley B. Grossman.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Druce, M., Rockall, A. & Grossman, A. Fibrosis and carcinoid syndrome: from causation to future therapy. Nat Rev Endocrinol 5, 276–283 (2009). https://doi.org/10.1038/nrendo.2009.51

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrendo.2009.51

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing