Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Peptide-receptor radionuclide therapy for endocrine tumors

Abstract

Peptide-receptor radionuclide therapy (PRRT) with radiolabeled somatostatin analogs is a promising option for the treatment of somatostatin-receptor-positive endocrine tumors. Treatment with somatostatin analogs labeled with 111In, 90Y or 177Lu can result in symptomatic improvement, although tumor remission is seldom achieved with 111In-labeled analogs. In this Review, the findings of several studies on the use of PRRT for endocrine tumors are evaluated. Large variation in the antitumor effects of 90Y-octreotide was reported between studies: an objective response (≥50% tumor regression) was achieved in 9–33% of patients. After treatment with 177Lu-octreotate, an objective response was achieved in 29% of patients and a minor response (25–50% tumor regression) was achieved in 16% of patients; stable disease was present in 35% of patients. Treatment with 177Lu-octreotate resulted in a survival benefit of several years and markedly improved quality of life. Serious, delayed adverse effects were rare after PRRT. Although randomized, clinical trials have not yet been performed, data on the use of PRRT compare favorably with those from other treatment approaches, such as chemotherapy. If these results can be replicated in large, controlled trials, PRRT might become the preferred option in patients with metastatic or inoperable gastroenteropancreatic neuroendocrine tumors.

Key Points

  • Peptide-receptor radionuclide therapy (PRRT) with radiolabeled somatostatin analogs is a promising treatment modality for patients with somatostatin-receptor-positive gastroenteropancreatic neuroendocrine tumors

  • 177Lu-octreotate resulted in tumor remission in 46% and stable disease in 35% of patients; a median time to progression of 40 months and a survival benefit of several years was indicated

  • PRRT is generally well tolerated if treating physicians adhere to dose limits and renal protection is administered

  • PRRT can also be effective for patients with nongastroenteropancreatic tumors, such as non-radioiodine-avid thyroid carcinoma and paraganglioma; however, further studies are needed to determine PRRT's role in this setting

  • Studies are ongoing to improve the antitumor effects of PRRT, reduce its adverse effects, increase patients' long-term survival prospects, and improve their quality of life

  • PRRT might become the preferred option for patients with progressive gastroenteropancreatic neuroendocrine tumors if these data can be confirmed

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Improved tumor uptake of 177Lu-octreotate versus that of 111In-octreotide.
Figure 2: Patient with a carcinoid tumor and liver metastases.
Figure 3: Overall survival of patients with GEPNETs.

Similar content being viewed by others

References

  1. Arnold, R., Benning, R., Neuhaus, C., Rolwage, M. & Trautmann, M. E. Gastroenteropancreatic endocrine tumours: effect of Sandostatin on tumour growth. The German Sandostatin Study Group. Digestion 54 (Suppl. 1), 72–75 (1993).

    Article  Google Scholar 

  2. Janson, E. T. & Oberg, K. Long-term management of the carcinoid syndrome. Treatment with octreotide alone and in combination with alpha-interferon. Acta Oncol. 32, 225–229 (1993).

    Article  CAS  Google Scholar 

  3. Ducreux, M. et al. The antitumoral effect of the long-acting somatostatin analog lanreotide in neuroendocrine tumors. Am. J. Gastroenterol. 95, 3276–3281 (2000).

    Article  CAS  Google Scholar 

  4. O'Toole, D., Hentic, O., Corcos, O. & Ruszniewski, P. Chemotherapy for gastro-enteropancreatic endocrine tumours. Neuroendocrinology 80 (Suppl. 1), 79–84 (2004).

    Article  CAS  Google Scholar 

  5. Kwekkeboom, D. J. et al. Treatment with the radiolabeled somatostatin analogue [177Lu-DOTA0, Tyr3]octreotate in patients with gastro-entero-pancreatic (GEP) tumors. J. Clin. Oncol. 23, 2754–2762 (2005).

    Article  CAS  Google Scholar 

  6. Kwekkeboom, D. J. et al. Treatment with the radiolabeled somatostatin analog [177Lu-DOTA0, Tyr3]octreotate: toxicity, efficacy, and survival. J. Clin. Oncol. 26, 2124–2130 (2008).

    Article  CAS  Google Scholar 

  7. Valkema, R. et al. Phase I study of peptide receptor radionuclide therapy with [111In-DTPA0]octreotide: the Rotterdam experience. Semin. Nucl. Med. 32, 110–122 (2002).

    Article  Google Scholar 

  8. Anthony, L. B. et al. Indium-111-pentetreotide prolongs survival in gastroenteropancreatic malignancies. Semin. Nucl. Med. 32, 123–132 (2002).

    Article  Google Scholar 

  9. Buscombe, J. R., Caplin, M. E. & Hilson, A. J. Long-term efficacy of high-activity 111In-pentetreotide therapy in patients with disseminated neuroendocrine tumors. J. Nucl. Med. 44, 1–6 (2003).

    CAS  PubMed  Google Scholar 

  10. Delpassand, E. S. et al. Safety and efficacy of radionuclide therapy with high-activity In-111 pentetreotide in patients with progressive neuroendocrine tumors. Cancer Biother. Radiopharm. 23, 292–300 (2008).

    Article  CAS  Google Scholar 

  11. Stokkel, M. P., Verkooijen, R. B., Bouwsma, H. & Smit, J. W. Six month follow-up after 111-In-DTPA-octreotide therapy in patients with progressive radioiodine non-responsive thyroid cancer: a pilot study. Nucl. Med. Commun. 25, 683–690 (2004).

    Article  CAS  Google Scholar 

  12. Otte, A. et al. Yttrium-90 DOTATOC: first clinical results. Eur. J. Nucl. Med. 26, 1439–1447 (1999).

    Article  CAS  Google Scholar 

  13. Waldherr, C., Pless, M., Maecke, H. R., Haldemann, A. & Mueller-Brand, J. The clinical value of [90Y-DOTA]-D-Phe1-Tyr3-octreotide (90Y-DOTATOC) in the treatment of neuroendocrine tumours: a clinical phase II study. Ann. Oncol. 12, 941–945 (2001).

    Article  CAS  Google Scholar 

  14. Waldherr, C. et al. Tumor response and clinical benefit in neuroendocrine tumors after 7.4 GBq 90Y-DOTATOC. J. Nucl. Med. 43, 610–616 (2002).

    CAS  PubMed  Google Scholar 

  15. Waldherr, C. et al. Does tumor response depend on the number of treatment sessions at constant injected dose using 90Yttrium-DOTATOC in neuroendocrine tumors? Eur. J. Nucl. Med. Mol. Imaging 29 (Suppl. 1), S100 (2002).

    Google Scholar 

  16. Chinol, M., Bodei, L., Cremonesi, M. & Paganelli, G. Receptor-mediated radiotherapy with Y-DOTA-D-Phe-Tyr-octreotide: the experience of the European Institute of Oncology group. Semin. Nucl. Med. 32, 141–147 (2002).

    Article  Google Scholar 

  17. Paganelli, G. et al. 90Y-DOTA-D-Phe1-Tyr3-octreotide in therapy of neuroendocrine malignancies. Biopolymers 66, 393–398 (2002).

    Article  CAS  Google Scholar 

  18. Bodei, L. et al. Receptor-mediated radionuclide therapy with 90Y-DOTATOC in association with amino acid infusion: a phase I study. Eur. J. Nucl. Med. Mol. Imaging 30, 207–216 (2003).

    Article  CAS  Google Scholar 

  19. Valkema, R. et al. Survival and response after peptide receptor radionuclide therapy with [90Y-DOTA0, Tyr3]octreotide in patients with advanced gastroenteropancreatic neuroendocrine tumors. Semin. Nucl. Med. 36, 147–156 (2006).

    Article  Google Scholar 

  20. Valkema, R. et al. Long-term follow-up of renal function after peptide receptor radiation therapy with 90Y-DOTA0, Tyr3-octreotide and 177Lu-DOTA0, Tyr3-octreotate. J. Nucl. Med. 46 (Suppl. 1), S83–S91 (2005).

    Google Scholar 

  21. Teunissen, J. J., Kwekkeboom, D. J. & Krenning, E. P. Staging and treatment of differentiated thyroid carcinoma with radiolabeled somatostatin analogs. Trends Endocrinol. Metab. 17, 19–25 (2006).

    Article  CAS  Google Scholar 

  22. Forrer, F., Riedweg, I., Maecke, H. R. & Mueller-Brand, J. Radiolabeled DOTATOC in patients with advanced paraganglioma and pheochromocytoma. Q. J. Nucl. Med. Mol. Imaging 52, 334–340 (2008).

    CAS  PubMed  Google Scholar 

  23. Reubi, J. C., Waser, B., Schaer, J. C. & Laissue, J. A. Somatostatin receptor SST1–SST5 expression in normal and neoplastic human tissues using receptor autoradiography with subtype-selective ligands. Eur. J. Nucl. Med. 28, 836–846 (2001).

    Article  CAS  Google Scholar 

  24. Reubi, J. C. et al. Affinity profiles for human somatostatin receptor subtypes SST1-SST5 of somatostatin radiotracers selected for scintigraphic and radiotherapeutic use. Eur. J. Nucl. Med. 27, 273–282 (2000).

    Article  CAS  Google Scholar 

  25. de Jong, M. et al. [177Lu-DOTA0, Tyr3] octreotate for somatostatin receptor-targeted radionuclide therapy. Int . J. Cancer 92, 628–633 (2001).

    CAS  Google Scholar 

  26. Kwekkeboom, D. J. et al. [177Lu-DOTA0Tyr3]octreotate: comparison with [111In-DTPA0]octreotide in patients. Eur. J. Nucl. Med. 28, 1319–1325 (2001).

    Article  CAS  Google Scholar 

  27. Esser, J. P. et al. Comparison of [177Lu-DOTA0, Tyr3]octreotate and [177Lu-DOTA0, Tyr3]octreotide: which peptide is preferable for PRRT? Eur. J. Nucl. Med. Mol. Imaging 33, 1346–1351 (2006).

    Article  CAS  Google Scholar 

  28. Bodei, L. et al. Receptor radionuclide therapy with 177Lu-DOTATATE in neuroendocrine tumours. Eur. J. Nucl. Med. Mol. Imaging 33, S214 (2006).

    Google Scholar 

  29. Ezziddin, S. et al. Targeted radiotherapy of neuroendocrine tumors using Lu-177-DOTA octreotate with prolonged intervals [Abstract]. J. Nucl. Med. 48 (Suppl. 2), 394P (2007).

    Google Scholar 

  30. Kwekkeboom, D. J. et al. Treatment of patients with gastro-entero-pancreatic (GEP) tumours with the novel radiolabeled somatostatin analogue [177Lu-DOTA0, Tyr3]octreotate. Eur. J. Nucl. Med. Mol. Imaging 30, 417–422 (2003).

    Article  CAS  Google Scholar 

  31. Sowby, F. Nonstochastic Effects of Ionizing Radiation, ICRP Publication 41 (Pergamon, New York, 1984).

    Google Scholar 

  32. de Keizer, B. et al. Hormonal crises following receptor radionuclide therapy with the radiolabeled somatostatin analogue [177Lu-DOTA0, Tyr3]octreotate. Eur. J. Nucl. Med. Mol. Imaging 35, 749–755 (2008).

    Article  Google Scholar 

  33. van Essen, M. et al. Peptide receptor radionuclide therapy with 177Lu-octreotate in patients with foregut carcinoid tumours of bronchial, gastric and thymic origin. Eur. J. Nucl. Med. Mol. Imaging 34, 1219–1227 (2007).

    Article  CAS  Google Scholar 

  34. Clancy, T. E. et al. Alkaline phosphatase predicts survival in patients with metastatic neuroendocrine tumors. Dig Dis. Sci. 51, 877–884 (2006).

    Article  CAS  Google Scholar 

  35. Janson, E. T. et al. Carcinoid tumors: analysis of prognostic factors and survival in 301 patients from a referral center. Ann. Oncol. 8, 685–690 (1997).

    Article  CAS  Google Scholar 

  36. Quaedvlieg, P. F., Visser, O., Lamers, C. B., Janssen-Heijen, M. L. & Taal, B. G. Epidemiology and survival in patients with carcinoid disease in The Netherlands. An epidemiological study with 2,391 patients. Ann. Oncol. 9, 1295–1300 (2001).

    Article  Google Scholar 

  37. Mazzaglia, P. J., Berber, E., Milas, M. & Siperstein, A. E. Laparoscopic radiofrequency ablation of neuroendocrine liver metastases: a 10-year experience evaluating predictors of survival. Surgery 142, 10–19 (2007).

    Article  Google Scholar 

  38. Asnacios, A. et al. Indium-111-pentetreotide scintigraphy and somatostatin receptor subtype 2 expression: new prognostic factors for malignant well-differentiated endocrine tumors. J. Clin. Oncol. 26, 963–970 (2008).

    Article  Google Scholar 

  39. Nilsson, O. et al. Poorly differentiated carcinomas of the foregut (gastric, duodenal and pancreatic). Neuroendocrinology 84, 212–215 (2006).

    Article  CAS  Google Scholar 

  40. Teunissen, J. J., Kwekkeboom, D. J. & Krenning, E. P. Quality of life in patients with gastroenteropancreatic tumors treated with [177Lu-DOTA0, Tyr3]octreotate. J. Clin. Oncol. 22, 2724–2729 (2004).

    Article  CAS  Google Scholar 

  41. Teunissen, J. J., Kwekkeboom, D. J., Kooij, P. P., Bakker, W. H. & Krenning, E. P. Peptide receptor radionuclide therapy for non-radioiodine-avid differentiated thyroid carcinoma. J. Nucl. Med. 46 (Suppl. 1), S107–S114 (2005).

    Google Scholar 

  42. van Essen, M. et al. Effects of therapy with [177Lu-DOTA0, Tyr3]octreotate in patients with paraganglioma, meningioma, small cell lung carcinoma, and melanoma. J. Nucl. Med. 47, 1599–1606 (2006).

    PubMed  Google Scholar 

  43. Virgolini, I. et al. In- and Y-DOTA-lanreotide: results and implications of the MAURITIUS trial. Semin. Nucl. Med. 32, 148–155 (2002).

    Article  Google Scholar 

  44. Forrer, F., Uusijarvi, H., Storch, D., Maecke, H. R. & Mueller-Brand, J. Treatment with 177Lu-DOTATOC of patients with relapse of neuroendocrine tumors after treatment with 90Y-DOTATOC. J. Nucl. Med. 46, 1310–1316 (2005).

    CAS  PubMed  Google Scholar 

  45. Wild, D. et al. DOTA-NOC, a high-affinity ligand of somatostatin receptor subtypes 2, 3 and 5 for labelling with various radiometals. Eur. J. Nucl. Med. Mol. Imaging. 30, 1338–1347 (2003).

    Article  CAS  Google Scholar 

  46. Valkema, R. et al. Peptide receptor scintigraphy (PRS) with In-111-DOTANOC and peptide receptor radionuclide therapy (PRRT) with Lu-177-DOTANOC [abstract]. J. Nucl. Med. 48 (Suppl. 2), 394P (2007).

    Google Scholar 

  47. Wehrmann, C., Senftleben, S., Zachert, C., Müller, D. & Baum, R. P. Results of individual patient dosimetry in peptide receptor radionuclide therapy with 177Lu DOTA-TATE and 177Lu DOTA-NOC. Cancer Biother. Radiopharm. 22, 406–416 (2007).

    Article  CAS  Google Scholar 

  48. Baum, R. P., Soldner, J., Schmucking, M. & Niesen, A. Peptidrezeptorvermittelte radiotherapie (PRRT) neuroendokriner tumoren klinischen indikationen und erfahrung mit 90Yttrium-markierten somatostatinanaloga [German]. Der Onkologe 10, 1098–1110 (2004).

    Article  Google Scholar 

  49. Baum, R. P., Soldner, J., Schmucking, M. & Niesen, A. Intravenous and intra-arterial peptide receptor radionuclide therapy (PRRT) using Y-90-DOTA-Tyr3-octreotate (Y-90-DOTA-TATE) in patients with metastatic neuroendocrine tumors. Eur. J. Nucl. Med. 31 (Suppl. 2), S238 (2004).

    Google Scholar 

  50. Rolleman, E. J., Valkema, R., de Jong, M., Kooij, P. P. & Krenning, E. P. Safe and effective inhibition of renal uptake of radiolabelled octreotide by a combination of lysine and arginine. Eur. J. Nucl. Med. Mol. Imaging 30, 9–15 (2003).

    Article  CAS  Google Scholar 

  51. Rolleman, E. J. et al. Molecular imaging of reduced renal uptake of radiolabelled [DOTA0, Tyr3]octreotate by the combination of lysine and Gelofusine in rats. Nuklearmedizin 47, 110–115 (2008).

    Article  CAS  Google Scholar 

  52. Sasse, A. D., Clark, L. G., Sasse, E. C. & Clark, O. A. Amifostine reduces side effects and improves complete response rate during radiotherapy: results of a meta-analysis. Int. J. Radiat. Oncol. Biol. Phys. 64, 784–791 (2006).

    Article  CAS  Google Scholar 

  53. Rolleman, E. J. et al. Amifostine protects rat kidneys during peptide receptor radionuclide therapy with [177Lu-DOTA0, Tyr3]octreotate. Eur. J. Nucl. Med. Mol. Imaging 34, 763–771 (2007).

    Article  CAS  Google Scholar 

  54. De Jong, M. et al. Somatostatin receptor-targeted radionuclide therapy of tumors: preclinical and clinical findings. Semin. Nucl. Med. 32, 133–140 (2002).

    Article  Google Scholar 

  55. Behe, M. et al. Irradiation-induced upregulation of somatostatin and gastrin receptors in vitro and in vivo. Eur. J. Nucl. Med. Mol. Imaging 31 (Suppl. 2), S237 (2004).

    Google Scholar 

  56. Oddstig, J., Bernhardt, P., Nilsson, O., Ahlman, H. & Forssell-Aronsson, E. Radiation-induced up-regulation of somatostatin receptor expression in small cell lung cancer in vitro . Nucl. Med. Biol. 33, 841–846 (2006).

    Article  CAS  Google Scholar 

  57. Capello, A. et al. 111In-labelled somatostatin analogues in a rat tumour model: somatostatin receptor status and effects of peptide receptor radionuclide therapy. Eur. J. Nucl. Med. Mol. Imaging 32, 1288–1295 (2005).

    Article  CAS  Google Scholar 

  58. Melis, M. et al. Up-regulation of somatostatin receptor density on rat CA20948 tumors escaped from low dose [177Lu-DOTA0, Tyr3]octreotate therapy. Q. J. Nucl. Med. Mol. Imaging 51, 324–333 (2007).

    CAS  PubMed  Google Scholar 

  59. Hofland, L. J., Capello, A., Krenning, E. P., de Jong, M. & van Hagen, M. P. Induction of apoptosis with hybrids of Arg-Gly-Asp molecules and peptides and antimitotic effects of hybrids of cytostatic drugs and peptides. J. Nucl. Med. 46 (Suppl. 1), S191–S198 (2005).

    Google Scholar 

  60. Capello, A. et al. Increased cell death after therapy with an Arg-Gly-Asp-linked somatostatin analog. J. Nucl. Med. 45, 1716–1720 (2004).

    CAS  PubMed  Google Scholar 

  61. Bernard, B. et al. Radiolabeled RGD-DTPA-Tyr3-octreotate for receptor-targeted radionuclide therapy. Cancer Biother. Radiopharm. 19, 173–180 (2004).

    Article  CAS  Google Scholar 

  62. Capello, A. et al. Anticancer activity of targeted proapoptotic peptides. J. Nucl. Med. 47, 122–129 (2006).

    CAS  PubMed  Google Scholar 

  63. Ginj, M. et al. Radiolabeled somatostatin receptor antagonists are preferable to agonists for in vivo peptide receptor targeting of tumors. Proc. Natl Acad. Sci. USA 103, 16436–16441 (2006).

    Article  CAS  Google Scholar 

  64. Breeman, W. A. et al. Anti-tumor effect and increased survival after treatment with [177Lu-DOTA0, Tyr3]octreotate in a rat liver micrometastases model. Int. J. Cancer 104, 376–379 (2003).

    Article  CAS  Google Scholar 

  65. Wong, J. Y. et al. A phase I trial of 90Y-anti-carcinoembryonic antigen chimeric T84.66 radioimmunotherapy with 5-fluorouracil in patients with metastatic colorectal cancer. Clin. Cancer Res. 9, 5842–5852 (2003).

    CAS  PubMed  Google Scholar 

  66. Kong, G., Lau, E., Ramdave, S. & Hicks, R. J. High-dose 111In-octreotide therapy in combination with radiosensitizing 5-FU chemotherapy for treatment of SSR-expressing neuroendocrine tumors. J. Nucl. Med. 46 (Suppl. 2), 151P (2005).

    Google Scholar 

  67. Rich, T. A., Shepard, R. C. & Mosley, S. T. Four decades of continuing innovation with fluorouracil: current and future approaches to fluorouracil chemoradiation therapy. J. Clin. Oncol. 22, 2214–2232 (2004).

    Article  CAS  Google Scholar 

  68. Dunst, J. et al. Phase I trial evaluating the concurrent combination of radiotherapy and capecitabine in rectal cancer. J. Clin. Oncol. 20, 3983–3991 (2002).

    Article  CAS  Google Scholar 

  69. van Essen, M. et al. Report on short-term side effects of treatments with 177Lu-octreotate in combination with capecitabine in seven patients with gastroenteropancreatic neuroendocrine tumours. Eur. J. Nucl. Med. Mol. Imaging 35, 743–748 (2008).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank personnel from the departments of Nuclear Medicine and Internal Medicine of the Erasmus Medical Centre for their expert help and cooperation, especially research nurses Daniëlle Verwaal, Agnes van Uden and Els Montijn.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martijn van Essen.

Ethics declarations

Competing interests

E. P. Krenning declares associations with the following companies: BioSynthema (consultant, stock holder/director, patent holder/applicant), Covidien (consultant, grant/research support) and Novartis (grant/research support, patent holder/applicant).

D. J. Kwekkeboom declares an association with the following company: BioSynthema (stock holder/director).

M. van Essen, B. L. R. Kam, M. de Jong, and R. Valkema declare no competing interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

van Essen, M., Krenning, E., Kam, B. et al. Peptide-receptor radionuclide therapy for endocrine tumors. Nat Rev Endocrinol 5, 382–393 (2009). https://doi.org/10.1038/nrendo.2009.105

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrendo.2009.105

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing