Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Cancer biomarkers: selecting the right drug for the right patient

Abstract

This Perspective highlights biomarkers that are expressed as a consequence of cancer development and progression. We focus on those biomarkers that are most relevant for identifying patients who are likely to respond to a given therapy, as well as those biomarkers that are most effective for measuring patient response to therapy. These two measures are necessary for selecting the right drug for the right patient, regardless of whether the setting is in drug development or in the post-approval use of the drug for patients with cancer. We also discuss the innovative designs of clinical trials and methodologies that are used to validate and qualify biomarkers for use in specific contexts. Furthermore, we look ahead to the promises and challenges in the field of cancer biomarkers.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Rate of cancer development and progression.
Figure 2: Qualification of imaging-based biomarkers as measures of clinical benefit.

Similar content being viewed by others

References

  1. Hanahan, D. & Weinberg, R. A. The hallmarks of cancer. Cell 100, 57–70 (2000).

    Article  CAS  PubMed  Google Scholar 

  2. Hanahan, D. & Weinberg, R. A. Hallmarks of cancer: the next generation. Cell 144, 646–674 (2011).

    Article  CAS  PubMed  Google Scholar 

  3. Luo, J., Solimini, N. L. & Elledge, S. J. Principles of cancer therapy: oncogene and non-oncogene addiction. Cell 136, 823–837 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Polyak, K. & Weinberg, R. A. Transitions between epithelial and mesenchymal states: acquisition of malignant and stem cell traits. Nature Rev. Cancer 9, 265–273 (2009).

    Article  CAS  Google Scholar 

  5. Paul, S. M. et al. How to improve R&D productivity: the pharmaceutical industry's grand challenge. Nature Rev. Drug Discov. 9, 203–214 (2010).

    Article  CAS  Google Scholar 

  6. Polyak, K., Shipitsin, M., Campbell-Marrotta, L., Bloushtain-Qimron, N. & Park, S. Y. Breast tumor heterogeneity: causes and consequences. Breast Cancer Res. 11 (Suppl. 1), 18 (2009).

    Article  Google Scholar 

  7. Polyak, K. & Kalluri, R. The role of the microenvironment in mammary gland development and cancer. Cold Spring Harb. Perspect. Biol. 2, a003244 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Pegram, M. D., Pauletti, G. & Slamon, D. J. HER-2/neu as a predictive marker of response to breast cancer therapy. Breast Cancer Res. Treat 52, 65–77 (1998).

    Article  CAS  PubMed  Google Scholar 

  9. Druker, B. J. Perspectives on the development of imatinib and the future of cancer research. Nature Med. 15, 1149–1152 (2009).

    Article  CAS  PubMed  Google Scholar 

  10. Vultur, A., Villanueva, J. & Herlyn, M. Targeting BRAF in advanced melanoma: a first step toward manageable disease. Clin. Cancer Res. 17, 1658–1663 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Chapman, P. B. et al. Improved survival with vemurafenib in melanoma with BRAF V600E mutation. N. Engl. J. Med. 364, 2507–2516 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. US Food and Drug Administration. FDA labeling information — Zelboraf. FDA website [online], (2011).

  13. Soda, M. et al. Identification of the transforming EML4–ALK fusion gene in non-small-cell lung cancer. Nature 448, 561–566 (2007).

    Article  CAS  PubMed  Google Scholar 

  14. Kwak, E. L. et al. Anaplastic lymphoma kinase inhibition in non-small-cell lung cancer. N. Engl. J. Med. 363, 1693–1703 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Cui, J. J. et al. Structure based drug design of crizotinib (PF-02341066), a potent and selective dual inhibitor of mesenchymal-epithelial transition factor (c-MET) kinase and anaplastic lymphoma kinase (ALK). J. Med. Chem. 54, 6342–6363 (2011).

    Article  CAS  PubMed  Google Scholar 

  16. US Food and Drug Administration. FDA labeling information — Xalkori. FDA website [online], (2011).

  17. Dancey, J. E. Epidermal growth factor receptor inhibitors in non-small cell lung cancer. Drugs 67, 1125–1138 (2007).

    Article  CAS  PubMed  Google Scholar 

  18. Park, J. W. et al. Rationale for biomarkers and surrogate end points in mechanism-driven oncology drug development. Clin. Cancer Res. 10, 3885–3896 (2004).

    Article  CAS  PubMed  Google Scholar 

  19. Gutman, S. & Kessler, L. G. The US Food and Drug Administration perspective on cancer biomarker development. Nature Rev. Cancer 6, 565–571 (2006).

    Article  CAS  Google Scholar 

  20. Amur, S., Frueh, F. W., Lesko, L. J. & Huang, S. M. Integration and use of biomarkers in drug development, regulation and clinical practice: a US regulatory perspective. Biomark. Med. 2, 305–311 (2008).

    Article  CAS  PubMed  Google Scholar 

  21. Majewski, I. J. & Bernards, R. Taming the dragon: genomic biomarkers to individualize the treatment of cancer. Nature Med. 17, 304–312 (2011).

    Article  CAS  PubMed  Google Scholar 

  22. Dancey, J. E. et al. Guidelines for the development and incorporation of biomarker studies in early clinical trials of novel agents. Clin. Cancer Res. 16, 1745–1755 (2010).

    Article  CAS  PubMed  Google Scholar 

  23. Merlo, L. M., Pepper, J. W., Reid, B. J. & Maley, C. C. Cancer as an evolutionary and ecological process. Nature Rev. Cancer 6, 924–935 (2006).

    Article  CAS  Google Scholar 

  24. Anderson, L. Candidate-based proteomics in the search for biomarkers of cardiovascular disease. J. Physiol. 563, 23–60 (2005).

    Article  CAS  PubMed  Google Scholar 

  25. Kelloff, G. J. et al. Progress in chemoprevention drug development: the promise of molecular biomarkers for prevention of intraepithelial neoplasia and cancer — a plan to move forward. Clin. Cancer Res. 12, 3661–3697 (2006).

    Article  CAS  PubMed  Google Scholar 

  26. Sidransky, D. Emerging molecular markers of cancer. Nature Rev. Cancer 2, 210–219 (2002).

    Article  CAS  Google Scholar 

  27. Vogelstein, B. et al. Genetic alterations during colorectal-tumor development. N. Engl. J. Med. 319, 525–532 (1988).

    Article  CAS  PubMed  Google Scholar 

  28. Le, Q. T. & Giaccia, A. J. Therapeutic exploitation of the physiological and molecular genetic alterations in head and neck cancer. Clin. Cancer Res. 9, 4287–4295 (2003).

    CAS  PubMed  Google Scholar 

  29. Ilyas, M., Straub, J., Tomlinson, I. P. & Bodmer, W. F. Genetic pathways in colorectal and other cancers. Eur. J. Cancer 35, 1986–2002 (1999).

    Article  CAS  PubMed  Google Scholar 

  30. Fearon, E. R. & Vogelstein, B. A genetic model for colorectal tumorigenesis. Cell 61, 759–767 (1990).

    Article  CAS  PubMed  Google Scholar 

  31. Dillon, D. A., Howe, C. L., Bosari, S. & Costa, J. The molecular biology of breast cancer: accelerating clinical applications. Crit. Rev. Oncog. 9, 125–140 (1998).

    Article  CAS  PubMed  Google Scholar 

  32. Leslie, N. R. & Downes, C. P. PTEN function: how normal cells control it and tumour cells lose it. Biochem. J. 382, 1–11 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Parsons, R. Human cancer, PTEN and the PI-3 kinase pathway. Semin. Cell Dev. Biol. 15, 171–176 (2004).

    Article  CAS  PubMed  Google Scholar 

  34. Sansal, I. & Sellers, W. R. The biology and clinical relevance of the PTEN tumor suppressor pathway. J. Clin. Oncol. 22, 2954–2963 (2004).

    Article  CAS  PubMed  Google Scholar 

  35. Vande Woude, G. F. et al. Reanalysis of cancer drugs: old drugs, new tricks. Clin. Cancer Res. 10, 3897–3907 (2004).

    Article  CAS  PubMed  Google Scholar 

  36. Maley, C. C. et al. Selectively advantageous mutations and hitchhikers in neoplasms: p16 lesions are selected in Barrett's esophagus. Cancer Res. 64, 3414–3427 (2004).

    Article  CAS  PubMed  Google Scholar 

  37. Reid, B. J., Blount, P. L. & Rabinovitch, P. S. Biomarkers in Barrett's esophagus. Gastrointest. Endosc. Clin. N. Am. 13, 369–397 (2003).

    Article  PubMed  Google Scholar 

  38. Polyak, K. & Garber, J. Targeting the missing links for cancer therapy. Nature Med. 17, 283–284 (2011).

    Article  CAS  PubMed  Google Scholar 

  39. Polyak, K. Molecular markers for the diagnosis and management of ductal carcinoma in situ. J. Natl Cancer Inst. Monogr. 2010, 210–213 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Peppercorn, J., Perou, C. M. & Carey, L. A. Molecular subtypes in breast cancer evaluation and management: divide and conquer. Cancer Invest. 26, 1–10 (2008).

    Article  CAS  PubMed  Google Scholar 

  41. Nielsen, T. O. et al. A comparison of PAM50 intrinsic subtyping with immunohistochemistry and clinical prognostic factors in tamoxifen-treated estrogen receptor-positive breast cancer. Clin. Cancer Res. 16, 5222–5232 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Lenz, G. et al. Stromal gene signatures in large-B-cell lymphomas. N. Engl. J. Med. 359, 2313–2323 (2008).

    Article  CAS  PubMed  Google Scholar 

  43. Jones, S. et al. Core signaling pathways in human pancreatic cancers revealed by global genomic analyses. Science 321, 1801–1806 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Bozic, I. et al. Accumulation of driver and passenger mutations during tumor progression. Proc. Natl Acad. Sci. USA 107, 18545–18550 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Parsons, D. W. et al. An integrated genomic analysis of human glioblastoma multiforme. Science 321, 1807–1812 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Salk, J. J., Fox, E. J. & Loeb, L. A. Mutational heterogeneity in human cancers: origin and consequences. Annu. Rev. Pathol. 5, 51–75 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Kelloff, G. J. et al. Perspectives on surrogate end points in the development of drugs that reduce the risk of cancer. Cancer Epidemiol. Biomarkers Prev. 9, 127–137 (2000).

    CAS  PubMed  Google Scholar 

  48. Boone, C. W., Kelloff, G. J. & Freedman, L. S. Intraepithelial and postinvasive neoplasia as a stochastic continuum of clonal evolution, and its relationship to mechanisms of chemopreventive drug action. J. Cell Biochem. 53 (Suppl. 17G), 14–25 (1993).

    Article  Google Scholar 

  49. Boone, C. W., Kelloff, G. J. & Steele, V. E. The natural history of intraepithelial neoplasia: relevance to the search for intermediate endpoint biomarkers. J. Cell Biochem. 50 (Suppl. 16G), 23–26 (1992).

    Article  Google Scholar 

  50. Boone, C. W., Kelloff, G. J. & Steele, V. E. Natural history of intraepithelial neoplasia in humans with implications for cancer chemoprevention strategy. Cancer Res. 52, 1651–1659 (1992).

    CAS  PubMed  Google Scholar 

  51. Schwarz, R. A. et al. Noninvasive evaluation of oral lesions using depth-sensitive optical spectroscopy. Cancer 115, 1669–1679 (2009).

    Article  PubMed  Google Scholar 

  52. Thekkek, N. & Richards-Kortum, R. Optical imaging for cervical cancer detection: solutions for a continuing global problem. Nature Rev. Cancer 8, 725–731 (2008).

    Article  CAS  Google Scholar 

  53. Kelloff, G. J. et al. Progress and promise of FDG-PET imaging for cancer patient management and oncologic drug development. Clin. Cancer Res. 11, 2785–2808 (2005).

    Article  CAS  PubMed  Google Scholar 

  54. Vander Heiden, M. G., Cantley, L. C. & Thompson, C. B. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 324, 1029–1033 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Weber, W. A. et al. Positron emission tomography in non-small-cell lung cancer: prediction of response to chemotherapy by quantitative assessment of glucose use. J. Clin. Oncol. 21, 2651–2657 (2003).

    Article  CAS  PubMed  Google Scholar 

  56. Aukema, T. S. et al. Is 18F-FDG PET/CT useful for the early prediction of histopathologic response to neoadjuvant erlotinib in patients with non-small cell lung cancer? J. Nucl. Med. 51, 1344–1348 (2010).

    Article  CAS  PubMed  Google Scholar 

  57. Zander, T. et al. Early prediction of nonprogression in advanced non-small-cell lung cancer treated with erlotinib by using [18F]fluorodeoxyglucose and [18F]fluorothymidine positron emission tomography. J. Clin. Oncol. 29, 1701–1708 (2011).

    Article  CAS  PubMed  Google Scholar 

  58. Mileshkin, L. et al. Changes in 18F-fluorodeoxyglucose and 18F-fluorodeoxythymidine positron emission tomography imaging in patients with non-small cell lung cancer treated with erlotinib. Clin. Cancer Res. 17, 3304–3315 (2011).

    Article  CAS  PubMed  Google Scholar 

  59. Galanina, N., Bossuyt, V. & Harris, L. N. Molecular predictors of response to therapy for breast cancer. Cancer J. 17, 96–103 (2011).

    Article  PubMed  Google Scholar 

  60. Tang, G. et al. Comparison of the prognostic and predictive utilities of the 21-gene Recurrence Score assay and Adjuvant! for women with node-negative, ER-positive breast cancer: results from NSABP B-14 and NSABP B-20. Breast Cancer Res. Treat. 127, 133–142 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Glas, A. M. et al. Converting a breast cancer microarray signature into a high-throughput diagnostic test. BMC Genomics 7, 278 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Alizadeh, A. A. et al. Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling. Nature 403, 503–511 (2000).

    Article  CAS  PubMed  Google Scholar 

  63. Barker, A. D. et al. I-SPY 2: an adaptive breast cancer trial design in the setting of neoadjuvant chemotherapy. Clin. Pharmacol. Ther. 86, 97–100 (2009).

    Article  CAS  PubMed  Google Scholar 

  64. Slamon, D. J. et al. Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. N. Engl. J. Med. 344, 783–792 (2001).

    Article  CAS  PubMed  Google Scholar 

  65. Pao, W. et al. EGF receptor gene mutations are common in lung cancers from “never smokers” and are associated with sensitivity of tumors to gefitinib and erlotinib. Proc. Natl Acad. Sci. USA 101, 13306–13311 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Audeh, M. W. et al. Oral poly(ADP-ribose) polymerase inhibitor olaparib in patients with BRCA1 or BRCA2 mutations and recurrent ovarian cancer: a proof-of-concept trial. Lancet 376, 245–251 (2010).

    Article  CAS  PubMed  Google Scholar 

  67. Tutt, A. et al. Oral poly(ADP-ribose) polymerase inhibitor olaparib in patients with BRCA1 or BRCA2 mutations and advanced breast cancer: a proof-of-concept trial. Lancet 376, 235–244 (2010).

    Article  CAS  PubMed  Google Scholar 

  68. Molinari, F. et al. Increased detection sensitivity for KRAS mutations enhances the prediction of anti-EGFR monoclonal antibody resistance in metastatic colorectal cancer. Clin. Cancer Res. 17, 4901–4914 (2011).

    Article  CAS  PubMed  Google Scholar 

  69. Hulka, B. S. & Wilcosky, T. Biological markers in epidemiologic research. Arch. Environ. Health 43, 83–89 (1988).

    Article  CAS  PubMed  Google Scholar 

  70. Frank, R. & Hargreaves, R. Clinical biomarkers in drug discovery and development. Nature Rev. Drug Discov. 2, 566–580 (2003).

    Article  CAS  Google Scholar 

  71. Fearon, E. R. Human cancer syndromes: clues to the origin and nature of cancer. Science 278, 1043–1050 (1997).

    Article  CAS  PubMed  Google Scholar 

  72. Lesko, L. J. & Woodcock, J. Pharmacogenomic-guided drug development: regulatory perspective. Pharmacogenomics J. 2, 20–24 (2002).

    Article  CAS  PubMed  Google Scholar 

  73. Kelloff, G. J. & Sigman, C. C. New science-based endpoints to accelerate oncology drug development. Eur. J. Cancer 41, 491–501 (2005).

    Article  PubMed  Google Scholar 

  74. Gail, M. H. & Mai, P. L. Comparing breast cancer risk assessment models. J. Natl Cancer Inst. 102, 665–668 (2010).

    Article  PubMed  Google Scholar 

  75. Lee, S. Y. & McLeod, H. L. Pharmacogenetic tests in cancer chemotherapy: what physicians should know for clinical application. J. Pathol. 223, 15–27 (2011).

    Article  CAS  PubMed  Google Scholar 

  76. Tan, D. S. et al. Biomarker-driven early clinical trials in oncology: a paradigm shift in drug development. Cancer J. 15, 406–420 (2009).

    Article  CAS  PubMed  Google Scholar 

  77. Eisenhauer, E. A. et al. New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). Eur. J. Cancer 45, 228–247 (2009).

    Article  CAS  PubMed  Google Scholar 

  78. Danila, D. C., Fleisher, M. & Scher, H. I. Circulating tumor cells as biomarkers in prostate cancer. Clin. Cancer Res. 17, 3903–3912 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Swaby, R. F. & Cristofanilli, M. Circulating tumor cells in breast cancer: a tool whose time has come of age. BMC Med. 9, 43 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  80. Wagner, J. A., Williams, S. A. & Webster, C. J. Biomarkers and surrogate end points for fit-for-purpose development and regulatory evaluation of new drugs. Clin. Pharmacol. Ther. 81, 104–107 (2007).

    Article  CAS  PubMed  Google Scholar 

  81. Johnson, J. R. et al. Accelerated approval of oncology products: the food and drug administration experience. J. Natl Cancer Inst. 103, 636–644 (2011).

    Article  PubMed  Google Scholar 

  82. Danila, D. C., Pantel, K., Fleisher, M. & Scher, H. I. Circulating tumors cells as biomarkers: progress toward biomarker qualification. Cancer J. 17, 438–450 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Tran, L. N. et al. Comparison of treatment response classifications between unidimensional, bidimensional, and volumetric measurements of metastatic lung lesions on chest computed tomography. Acad. Radiol. 11, 1355–1360 (2004).

    Article  PubMed  Google Scholar 

  84. Zhao, B., Schwartz, L. H. & Larson, S. M. Imaging surrogates of tumor response to therapy: anatomic and functional biomarkers. J. Nucl. Med. 50, 239–249 (2009).

    Article  PubMed  Google Scholar 

  85. Beckman, R. A., Clark, J. & Chen, C. Integrating predictive biomarkers and classifiers into oncology clinical development programmes. Nature Rev. Drug Discov. 10, 735–748 (2011).

    Article  CAS  Google Scholar 

  86. Maitournam, A. & Simon, R. On the efficiency of targeted clinical trials. Stat. Med. 24, 329–339 (2005).

    Article  CAS  PubMed  Google Scholar 

  87. Freidlin, B., McShane, L. M. & Korn, E. L. Randomized clinical trials with biomarkers: design issues. J. Natl Cancer Inst. 102, 152–160 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Freidlin, B., Jiang, W. & Simon, R. The cross-validated adaptive signature design. Clin. Cancer Res. 16, 691–698 (2010).

    Article  PubMed  Google Scholar 

  89. Berry, D. A. Bayesian clinical trials. Nature Rev. Drug Discov. 5, 27–36 (2006).

    Article  CAS  Google Scholar 

  90. Simon, R. Validation of pharmacogenomic biomarker classifiers for treatment selection. Cancer Biomark. 2, 89–96 (2006).

    Article  CAS  PubMed  Google Scholar 

  91. Simon, R. Development and evaluation of therapeutically relevant predictive classifiers using gene expression profiling. J. Natl Cancer Inst. 98, 1169–1171 (2006).

    Article  CAS  PubMed  Google Scholar 

  92. Simon, R. Development and validation of biomarker classifiers for treatment selection. J. Stat. Plan. Inference 138, 308–320 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  93. Hoering, A., Leblanc, M. & Crowley, J. J. Randomized Phase III clinical trial designs for targeted agents. Clin. Cancer Res. 14, 4358–4367 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Orloff, J. et al. The future of drug development: advancing clinical trial design. Nature Rev. Drug Discov. 8, 949–957 (2009).

    Article  CAS  Google Scholar 

  95. Fukuoka, M. et al. Biomarker analyses and final overall survival results from a Phase III, randomized, open-label, first-line study of gefitinib versus carboplatin/paclitaxel in clinically selected patients with advanced non-small-cell lung cancer in Asia (IPASS). J. Clin. Oncol. 29, 2866–2874 (2011).

    Article  CAS  PubMed  Google Scholar 

  96. Mok, T. S. et al. Gefitinib or carboplatin-paclitaxel in pulmonary adenocarcinoma. N. Engl. J. Med. 361, 947–957 (2009).

    Article  CAS  PubMed  Google Scholar 

  97. Temple, R. J. Enrichment designs: efficiency in development of cancer treatments. J. Clin. Oncol. 23, 4838–4839 (2005).

    Article  PubMed  Google Scholar 

  98. Clark, G. M. in Diseases of the Breast (eds Harris, J. R., Lippman, M. E., Morrow, M. & Osborne, C. K.) 489–514 (Lippincott Williams & Wilkins, Philadelphia, 2000).

    Google Scholar 

  99. Rubin, E. H., Anderson, K. M. & Gause, C. K. The BATTLE Trial: a bold step toward improving the efficiency of biomarker-based drug development. Cancer Discov. 1, 17–20 (2011).

    Article  CAS  PubMed  Google Scholar 

  100. Gold, K. A. et al. The BATTLE to personalize lung cancer prevention through reverse migration. Cancer Prev. Res. (Phila.) 4, 962–972 (2011).

    Article  CAS  Google Scholar 

  101. Kim, E. S. et al. The BATTLE Trial: personalizing therapy for lung cancer. Cancer Discov. 1, 45–53 (2011).

    Article  CAS  Google Scholar 

  102. Kris, M. G. et al. Identification of driver mutations in tumor speciments from 1,000 patients with lung adenocarcinoma: the NCI's Lung Cancer Mutation Consortium. J. Clin. Oncol. 29, abstract CRA7506 (2011).

    Article  Google Scholar 

  103. Berry, D. A. Adaptive clinical trials in oncology. Nature Rev. Clin. Oncol. 8 Nov 2011 (doi: 10.1038/nrclinonc.2011.165).

  104. Freidlin, B. & Simon, R. Adaptive signature design: an adaptive clinical trial design for generating and prospectively testing a gene expression signature for sensitive patients. Clin. Cancer Res. 11, 7872–7878 (2005).

    Article  CAS  PubMed  Google Scholar 

  105. Freidlin, B. & Korn, E. L. Biomarker-adaptive clinical trial designs. Pharmacogenomics 11, 1679–1682 (2010).

    Article  PubMed  Google Scholar 

  106. Horning, S. J. et al. Interim positron emission tomography scans in diffuse large B-cell lymphoma: an independent expert nuclear medicine evaluation of the Eastern Cooperative Oncology Group E3404 study. Blood 115, 775–777 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Seymour, L. et al. The design of Phase II clinical trials testing cancer therapeutics: consensus recommendations from the clinical trial design task force of the National Cancer Institute Investigational Drug Steering Committee. Clin. Cancer Res. 16, 1764–1769 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Ratain, M. J. & Sargent, D. J. Optimising the design of Phase II oncology trials: the importance of randomisation. Eur. J. Cancer 45, 275–280 (2009).

    Article  PubMed  Google Scholar 

  109. Cancer Genome Atlas Research Network. Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature 455, 1061–1068 (2008).

  110. Cancer Genome Atlas Research Network. Integrated genomic analyses of ovarian carcinoma. Nature 474, 609–615 (2011).

  111. Chin, L., Andersen, J. N. & Futreal, P. A. Cancer genomics: from discovery science to personalized medicine. Nature Med. 17, 297–303 (2011).

    Article  CAS  PubMed  Google Scholar 

  112. Boumber, Y. & Issa, J. P. Epigenetics in cancer: what's the future? Oncology 25, 220–226, 228 (2011).

    PubMed  Google Scholar 

  113. Schulman, K. A. & Tunis, S. R. A policy approach to the development of molecular diagnostic tests. Nature Biotech. 28, 1157–1159 (2010).

    Article  CAS  Google Scholar 

  114. Lee, J. W. et al. Fit-for-purpose method development and validation for successful biomarker measurement. Pharm. Res. 23, 312–328 (2006).

    Article  CAS  PubMed  Google Scholar 

  115. Teutsch, S. M. et al. The Evaluation of Genomic Applications in Practice and Prevention (EGAPP) Initiative: methods of the EGAPP Working Group. Genet. Med. 11, 3–14 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  116. Pepe, M. S., Feng, Z., Janes, H., Bossuyt, P. M. & Potter, J. D. Pivotal evaluation of the accuracy of a biomarker used for classification or prediction: standards for study design. J. Natl Cancer Inst. 100, 1432–1438 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Gary J. Kelloff or Caroline C. Sigman.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information Box S1

Clinical study designs with biomarkers: adaptive randomization (PDF 196 kb)

Related links

Related links

FURTHER INFORMATION

http://clinicaltrials.gov

FDA website — Class II Special Controls Guidance Document

FDA website — Critical Path Initiative

FDA website — Draft Guidance for Industry: Qualification Process for Drug Development Tools

FDA website — Drug–diagnostic Co-Development Concept Paper

FDA website — Guidance for Industry: Adaptive Design Clinical Trials for Drugs and Biologics

FDA website — Guidance on Pharmacogenetic Tests and Genetic Tests for Heritable Markers

FDA website — Interactive Review for Medical Device Submissions: 510(k)s, Original PMAs, PMA Supplements, Original BLAs, and BLA Supplements

FDA website — In Vitro Diagnostic Devices: Guidance for the Preparation of 510(k) Submissions

Glossary

Adaptive clinical trial designs

Defined by the US Food and Drug Administration as study designs that include prospectively planned opportunities for the modification of one or more specified aspects of the study design and hypotheses based on analyses of data (usually interim data).

Analytical and clinical validation

The process of assessing the biomarker assay and measuring of its performance characteristics, and determining the range of conditions (including clinical settings) under which the assay will give reproducible and accurate data.

Biomarker qualification

The evidentiary process of linking a biomarker with biological processes and clinical end points. Qualification refers to the verification that the biomarker is 'fit for purpose'.

Biomarkers

Factors that are objectively measured and evaluated as indicators of normal biological or pathological processes, or are pharmacological responses to therapeutic intervention.

BRAFV600E mutation

A mutation in the BRAF gene leading to valine being substituted by glutamate at codon 600; found in human cancers such as papillary thyroid carcinoma, colorectal cancer, melanoma, non-small-cell lung cancer and hairy cell leukaemia.

Clinical Laboratory Improvement Amendments

(CLIA). US legislation defining quality assurance practices in clinical laboratories, and requiring them to measure performance at each step of the testing process from the beginning to the test result.

Companion diagnostics

In vitro diagnostic devices (assays) that provide information that is essential for the safe and effective use of a corresponding therapeutic product. The use of a companion diagnostic with a particular therapeutic product is stipulated in the instructions for use in the labelling of both the diagnostic and the corresponding therapeutic product, as well as in the labelling of any generic equivalents of the therapeutic product.

DNA ploidy

A term used to describe the number of chromosome sets or deviation from the normal number of chromosomes in a cell.

Driver mutations

Mutations that are causally associated with cancer development. Their presence is not required for maintenance of the final cancer (although it often is) but it must have been selected at some point during cancer development.

Epigenetic modulation

Heritable changes in gene expression or cellular phenotype caused by mechanisms of interaction with the genome other than changes in the underlying DNA sequence. Examples of such changes include DNA methylation and histone deacetylation, both of which serve to suppress gene expression without altering the sequence of the silenced genes.

Epithelial to mesenchymal transition

A cellular transition associated with cancer metastases in which an epithelial cell loses polarity and intercellular adhesion, and degrades basement membrane components to become a migratory mesenchymal cell.

Fit for purpose

A term used in the context of biomarker qualification. A biomarker is qualified on the basis of data that support its use in specific contexts — that is, evidence linking the biomarker to specific biology and clinical end points. The biomarker is considered to be 'fit for purpose' or qualified for use in those settings in which the supporting evidence is sufficiently robust.

Gail risk model

An algorithm formulated by Mitchell Gail (US National Cancer Institute) that uses personal and family history to estimate a woman's absolute risk of developing breast cancer.

Investigational new drug application

An application that is submitted to a regulatory agency before a drug can be studied in humans. This application contains experimental data on: how, where and by whom the new studies will be conducted; the chemical structure of the drug; the drug's mechanism of action and metabolism; any toxic effects; and how the compound is manufactured.

Next-generation gene sequencing

New technologies for high-throughput and high-speed sequencing, and potentially cost-effective sequencing of the human genome, epigenome and transcriptome (the part of the genome transcribed into RNA).

Passenger mutations

Mutations that are not selected during cancer development and do not directly contribute to cancer development. Cells that acquire driver mutations already carry biologically inert somatic passenger mutations, which are included in the clonal expansion that follows and will be present in all cells of the resulting cancer.

Standard uptake value

(SUV). A value that quantifies positron emission tomography imaging; calculated as a ratio of tissue radioactivity concentration at a specific time and injected dose at the time of injection, divided by body weight.

Umbrella clinical trial

A clinical trial protocol into which patients are enrolled, their biomarker status is obtained and then they are assigned to treatment in one of a group of clinical trials of targeted drugs. Patients are assigned to the drug that is most likely to benefit them based on their biomarker status.

Warburg phenomenon

The observation that cancer cells, unlike normal cells, preferentially utilize the glycolytic pathway rather than the Kreb's cycle to metabolize glucose.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kelloff, G., Sigman, C. Cancer biomarkers: selecting the right drug for the right patient. Nat Rev Drug Discov 11, 201–214 (2012). https://doi.org/10.1038/nrd3651

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrd3651

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer