Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Membrane transporters in drug development

Key Points

  • Membrane transporters are increasingly being recognized as important determinants of pharmacokinetics and have been found to play a role in the absorption and disposition of many drugs.

  • In this report, the findings of the International Transporter Consortium (ITC), a group of individuals from academia, industry and regulatory agencies with expertise in membrane transporters, are presented. The goals of the ITC were to identify key transporters with a role in drug absorption and disposition; evaluate methodologies for characterization of drug transporter interactions; and develop criteria to inform the conduct of clinical drug–drug interaction (DDI) studies focused on transporters, which could be presented in the form of decision trees.

  • The key transporters, P-glycoprotein (P-gp, ABCB1); breast cancer resistance protein (BCRP); organic anion transporters (OAT1 and OAT3); organic cation transporter (OCT2); and organic anion transporting polypeptides (OATP1B1 and OATP1B3), described in this report were selected based on evidence in the literature demonstrating that the transporters play a role in governing drug absorption and disposition and in mediating clinical DDIs.

  • For each of the key transporters, substrate and inhibitors and methodologies for evaluating its function are described. The clinical significance of each transporter is discussed.

  • An overview of the methods for studying drug interactions with transporters is presented including cell- and membrane-based systems, intact organs and in vivo models.

  • A section on computational modelling algorithms using information from crystal structures and ligands is included to inform readers about the use of in silico methods to gain information about transporter–substrate interactions.

  • A detailed discussion and suggested decision trees related to studying membrane transporters in drug development are described. The focus of the decision trees is on informing clinical DDI studies.

Abstract

Membrane transporters can be major determinants of the pharmacokinetic, safety and efficacy profiles of drugs. This presents several key questions for drug development, including which transporters are clinically important in drug absorption and disposition, and which in vitro methods are suitable for studying drug interactions with these transporters. In addition, what criteria should trigger follow-up clinical studies, and which clinical studies should be conducted if needed. In this article, we provide the recommendations of the International Transporter Consortium on these issues, and present decision trees that are intended to help guide clinical studies on the currently recognized most important drug transporter interactions. The recommendations are generally intended to support clinical development and filing of a new drug application. Overall, it is advised that the timing of transporter investigations should be driven by efficacy, safety and clinical trial enrolment questions (for example, exclusion and inclusion criteria), as well as a need for further understanding of the absorption, distribution, metabolism and excretion properties of the drug molecule, and information required for drug labelling.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Selected human transport proteins for drugs and endogenous substances.
Figure 2: Decision tree for computer modelling of transporter proteins.

Similar content being viewed by others

References

  1. Giacomini, K. M. & Sugiyama, Y. in Goodman & Gilman's The Pharmacological Basis of Therapeutics (eds Brunton, L. L., Lazo, J. S. & Parker, R. L.) 41–70 (McGraw-Hill, New York, 2006). This chapter in a textbook provides an excellent overview of transporters.

    Google Scholar 

  2. Schinkel, A. H. & Jonker, J. W. Mammalian drug efflux transporters of the ATP binding cassette (ABC) family: an overview. Adv. Drug Deliv. Rev. 55, 3–29 (2003). This manuscript provides an excellent review of ABC transporters that are important in drug response.

    Article  CAS  PubMed  Google Scholar 

  3. Sai, Y. Biochemical and molecular pharmacological aspects of transporters as determinants of drug disposition. Drug Metab. Pharmacokinet. 20, 91–99 (2005).

    Article  CAS  PubMed  Google Scholar 

  4. Cascorbi, I. Role of pharmacogenetics of ATP-binding cassette transporters in the pharmacokinetics of drugs. Pharmacol. Ther. 112, 457–473 (2006).

    Article  CAS  PubMed  Google Scholar 

  5. Choudhuri, S. & Klaassen, C. D. Structure, function, expression, genomic organization, and single nucleotide polymorphisms of human ABCB1 (MDR1), ABCC (MRP), and ABCG2 (BCRP) efflux transporters. Int. J. Toxicol. 25, 231–259 (2006).

    Article  CAS  PubMed  Google Scholar 

  6. Hediger, M. A. et al. The ABCs of solute carriers: physiological, pathological and therapeutic implications of human membrane transport proteins. Pflugers Arch. 447, 465–468 (2004).

    Article  CAS  PubMed  Google Scholar 

  7. Koepsell, H., Lips, K. & Volk, C. Polyspecific organic cation transporters: structure, function, physiological roles, and biopharmaceutical implications. Pharm. Res. 24, 1227–1251 (2007). This manuscript provides an excellent review of various transporters for organic cations (OCTs, OCTNs and MATEs).

    Article  CAS  PubMed  Google Scholar 

  8. Jonker, J. W., Wagenaar, E., Van Eijl, S. & Schinkel, A. H. Deficiency in the organic cation transporters 1 and 2 (Oct1/Oct2 [Slc22a1/Slc22a2]) in mice abolishes renal secretion of organic cations. Mol. Cell Biol. 23, 7902–7908 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Schinkel, A. H. et al. Multidrug resistance and the role of P-glycoprotein knockout mice. Eur. J. Cancer 31A, 1295–1298 (1995).

    Article  CAS  PubMed  Google Scholar 

  10. Maeda, K. & Sugiyama, Y. Impact of genetic polymorphisms of transporters on the pharmacokinetic, pharmacodynamic and toxicological properties of anionic drugs. Drug Metab. Pharmacokinet. 23, 223–235 (2008).

    Article  CAS  PubMed  Google Scholar 

  11. Sissung, T. M., Gardner, E. R., Gao, R. & Figg, W. D. Pharmacogenetics of membrane transporters: a review of current approaches. Methods Mol. Biol. 448, 41–62 (2008).

    Article  CAS  PubMed  Google Scholar 

  12. Huang, S. M., Temple, R., Throckmorton, D. C. & Lesko, L. J. Drug interaction studies: study design, data analysis, and implications for dosing and labeling. Clin. Pharmacol. Ther. 81, 298–304 (2007).

    Article  CAS  PubMed  Google Scholar 

  13. Huang, S. M. et al. New era in drug interaction evaluation: US Food and Drug Administration update on CYP enzymes, transporters, and the guidance process. J. Clin. Pharmacol. 48, 662–670 (2008).

    Article  CAS  PubMed  Google Scholar 

  14. US Department of Health and Human Services, Food and Drug Administration, Center for Drug Evaluation and Research (CDER), Center for Biologics Evaluation and Research (CBER). Guidance for Industry. Drug Interaction Studies — Study Design, Data Analysis, and Implications for Dosing and Labeling. US FDA website [online], (2006). This website provides current FDA guidances for DDI studies. For updated guidances see the websites in Further information.

  15. Zhang, L., Zhang, Y. D., Strong, J. M., Reynolds, K. S. & Huang, S. M. A regulatory viewpoint on transporter-based drug interactions. Xenobiotica 38, 709–724 (2008). This article provides an FDA perspective about the role of transporters in DDIs.

    Article  CAS  PubMed  Google Scholar 

  16. Zhang, L., Strong, J. M., Qiu, W., Lesko, L. J. & Huang, S. M. Scientific perspectives on drug transporters and their role in drug interactionst. Mol. Pharm. 3, 62–69 (2006).

    Article  CAS  PubMed  Google Scholar 

  17. Raub, T. J. P-glycoprotein recognition of substrates and circumvention through rational drug design. Mol. Pharm. 3, 3–25 (2006).

    Article  CAS  PubMed  Google Scholar 

  18. Miller, D. S., Bauer, B. & Hartz, A. M. Modulation of P-glycoprotein at the blood–brain barrier: opportunities to improve central nervous system pharmacotherapy. Pharmacol. Rev. 60, 196–209 (2008).

    Article  CAS  PubMed  Google Scholar 

  19. Kimura, Y., Morita, S. Y., Matsuo, M. & Ueda, K. Mechanism of multidrug recognition by MDR1/ABCB1. Cancer Sci. 98, 1303–1310 (2007).

    Article  CAS  PubMed  Google Scholar 

  20. Chinn, L. W. & Kroetz, D. L. ABCB1 pharmacogenetics: progress, pitfalls, and promise. Clin. Pharmacol. Ther. 81, 265–269 (2007).

    Article  CAS  PubMed  Google Scholar 

  21. Zhou, S. F. Structure, function and regulation of P-glycoprotein and its clinical relevance in drug disposition. Xenobiotica 38, 802–832 (2008).

    Article  CAS  PubMed  Google Scholar 

  22. Aller, S. G. et al. Structure of P-glycoprotein reveals a molecular basis for poly-specific drug binding. Science 323, 1718–1722 (2009). This manuscript describes the first molecular structure of mouse P-gp.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Zhou, Y., Gottesman, M. M. & Pastan, I. Studies of human MDR1–MDR2 chimeras demonstrate the functional exchangeability of a major transmembrane segment of the multidrug transporter and phosphatidylcholine flippase. Mol. Cell Biol. 19, 1450–1459 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Carrier, I., Julien, M. & Gros, P. Analysis of catalytic carboxylate mutants E552Q and E1197Q suggests asymmetric ATP hydrolysis by the two nucleotide-binding domains of P-glycoprotein. Biochemistry 42, 12875–12885 (2003).

    Article  CAS  PubMed  Google Scholar 

  25. Loo, T. W., Bartlett, M. C. & Clarke, D. M. Val133 and Cys137 in transmembrane segment 2 are close to Arg935 and Gly939 in transmembrane segment 11 of human P-glycoprotein. J. Biol. Chem. 279, 18232–18238 (2004).

    Article  CAS  PubMed  Google Scholar 

  26. Feng, B. et al. In vitro P-glycoprotein assays to predict the in vivo interactions of P-glycoprotein with drugs in the central nervous system. Drug Metab. Dispos. 36, 268–275 (2008).

    Article  CAS  PubMed  Google Scholar 

  27. Yamazaki, M. et al. In vitro substrate identification studies for P-glycoprotein-mediated transport: species difference and predictability of in vivo results. J. Pharmacol. Exp. Ther. 296, 723–735 (2001).

    CAS  PubMed  Google Scholar 

  28. Sasongko, L. et al. Imaging P-glycoprotein transport activity at the human blood–brain barrier with positron emission tomography. Clin. Pharmacol. Ther. 77, 503–514 (2005).

    Article  CAS  PubMed  Google Scholar 

  29. Kurnik, D. et al. Tariquidar, a selective P-glycoprotein inhibitor, does not potentiate loperamide's opioid brain effects in humans despite full inhibition of lymphocyte P-glycoprotein. Anesthesiology 109, 1092–1099 (2008).

    Article  CAS  PubMed  Google Scholar 

  30. Sadeque, A. J., Wandel, C., He, H., Shah, S. & Wood, A. J. Increased drug delivery to the brain by P-glycoprotein inhibition. Clin. Pharmacol. Ther. 68, 231–237 (2000).

    Article  CAS  PubMed  Google Scholar 

  31. Eyal, S., Hsiao, P. & Unadkat, J. D. Drug interactions at the blood–brain barrier: fact or fantasy? Pharmacol. Ther. 123, 80–104 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Williams, J. A. et al. PhRMA white paper on ADME pharmacogenomics. J. Clin. Pharmacol. 48, 849–889 (2008).

    Article  CAS  PubMed  Google Scholar 

  33. Wakabayashi, K., Tamura, A., Saito, H., Onishi, Y. & Ishikawa, T. Human ABC transporter ABCG2 in xenobiotic protection and redox biology. Drug Metab. Rev. 38, 371–391 (2006).

    Article  CAS  PubMed  Google Scholar 

  34. Robey, R. W. et al. ABCG2: a perspective. Adv. Drug Deliv. Rev. 61, 3–13 (2009).

    Article  CAS  PubMed  Google Scholar 

  35. Doyle, L. A. et al. A multidrug resistance transporter from human MCF-7 breast cancer cells. Proc. Natl Acad. Sci. USA 95, 15665–15670 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. van Herwaarden, A. E. & Schinkel, A. H. The function of breast cancer resistance protein in epithelial barriers, stem cells and milk secretion of drugs and xenotoxins. Trends Pharmacol. Sci. 27, 10–16 (2006).

    Article  CAS  PubMed  Google Scholar 

  37. Vlaming, M. L., Lagas, J. S. & Schinkel, A. H. Physiological and pharmacological roles of ABCG2 (BCRP): recent findings in Abcg2 knockout mice. Adv. Drug Deliv. Rev. 61, 14–25 (2009).

    Article  CAS  PubMed  Google Scholar 

  38. Matsson, P. et al. A global drug inhibition pattern for the human ATP-binding cassette transporter breast cancer resistance protein (ABCG2). J. Pharmacol. Exp. Ther. 323, 19–30 (2007).

    Article  CAS  PubMed  Google Scholar 

  39. Nicolle, E. et al. QSAR analysis and molecular modeling of ABCG2-specific inhibitors. Adv. Drug Deliv. Rev. 61, 34–46 (2009).

    Article  CAS  PubMed  Google Scholar 

  40. Saito, H. et al. A new strategy of high-speed screening and quantitative structure–activity relationship analysis to evaluate human ATP-binding cassette transporter ABCG2-drug interactions. J. Pharmacol. Exp. Ther. 317, 1114–1124 (2006).

    Article  CAS  PubMed  Google Scholar 

  41. Hirano, M. et al. Involvement of BCRP (ABCG2) in the biliary excretion of pitavastatin. Mol. Pharmacol. 68, 800–807 (2005).

    Article  CAS  PubMed  Google Scholar 

  42. Enokizono, J., Kusuhara, H. & Sugiyama, Y. Effect of breast cancer resistance protein (Bcrp/Abcg2) on the disposition of phytoestrogens. Mol. Pharmacol. 72, 967–975 (2007).

    Article  CAS  PubMed  Google Scholar 

  43. Hegedus, C. et al. Ins and outs of the ABCG2 multidrug transporter: an update on in vitro functional assays. Adv. Drug Deliv. Rev. 61, 47–56 (2009).

    Article  CAS  PubMed  Google Scholar 

  44. de Vries, N. A. et al. P-glycoprotein and breast cancer resistance protein: two dominant transporters working together in limiting the brain penetration of topotecan. Clin. Cancer Res. 13, 6440–6449 (2007).

    Article  CAS  PubMed  Google Scholar 

  45. Zaher, H. et al. Breast cancer resistance protein (Bcrp/abcg2) is a major determinant of sulfasalazine absorption and elimination in the mouse. Mol. Pharm. 3, 55–61 (2006).

    Article  CAS  PubMed  Google Scholar 

  46. Merino, G., Jonker, J. W., Wagenaar, E., van Herwaarden, A. E. & Schinkel, A. H. The breast cancer resistance protein (BCRP/ABCG2) affects pharmacokinetics, hepatobiliary excretion, and milk secretion of the antibiotic nitrofurantoin. Mol. Pharmacol. 67, 1758–1764 (2005).

    Article  CAS  PubMed  Google Scholar 

  47. Merino, G. et al. Breast cancer resistance protein (BCRP/ABCG2) transports fluoroquinolone antibiotics and affects their oral availability, pharmacokinetics, and milk secretion. Drug Metab. Dispos. 34, 690–695 (2006).

    Article  CAS  PubMed  Google Scholar 

  48. Oostendorp, R. L., Buckle, T., Beijnen, J. H., van Tellingen, O. & Schellens, J. H. The effect of P-gp (Mdr1a/1b), BCRP (Bcrp1) and P-gp/BCRP inhibitors on the in vivo absorption, distribution, metabolism and excretion of imatinib. Invest. New Drugs 27, 31–40 (2009).

    Article  CAS  PubMed  Google Scholar 

  49. Yamasaki, Y. et al. Pharmacogenetic characterization of sulfasalazine disposition based on NAT2 and ABCG2 (BCRP) gene polymorphisms in humans. Clin. Pharmacol. Ther. 84, 95–103 (2008).

    Article  CAS  PubMed  Google Scholar 

  50. Cusatis, G. & Sparreboom, A. Pharmacogenomic importance of ABCG2. Pharmacogenomics 9, 1005–1009 (2008).

    Article  CAS  PubMed  Google Scholar 

  51. Cusatis, G. et al. Pharmacogenetics of ABCG2 and adverse reactions to gefitinib. J. Natl Cancer Inst. 98, 1739–1742 (2006).

    Article  CAS  PubMed  Google Scholar 

  52. Polgar, O., Robey, R. W. & Bates, S. E. ABCG2: structure, function and role in drug response. Expert Opin. Drug Metab. Toxicol. 4, 1–15 (2008).

    Article  CAS  PubMed  Google Scholar 

  53. Keskitalo, J. E. et al. ABCG2 polymorphism markedly affects the pharmacokinetics of atorvastatin and rosuvastatin. Clin. Pharmacol. Ther. 86, 197–203 (2009).

    Article  CAS  PubMed  Google Scholar 

  54. Zhang, W. et al. Role of BCRP 421C>A polymorphism on rosuvastatin pharmacokinetics in healthy Chinese males. Clin. Chim. Acta 373, 99–103 (2006).

    Article  CAS  PubMed  Google Scholar 

  55. Morisaki, K. et al. Single nucleotide polymorphisms modify the transporter activity of ABCG2. Cancer Chemother. Pharmacol. 56, 161–172 (2005).

    Article  CAS  PubMed  Google Scholar 

  56. Aoki, M. et al. Kidney-specific expression of human organic cation transporter 2 (OCT2/SLC22A2) is regulated by DNA methylation. Am. J. Physiol. Renal Physiol. 295, F165–F170 (2008).

    Article  CAS  PubMed  Google Scholar 

  57. Koepsell, H. & Endou, H. The SLC22 drug transporter family. Pflugers Arch. 447, 666–676 (2004).

    Article  CAS  PubMed  Google Scholar 

  58. Wright, S. H. Role of organic cation transporters in the renal handling of therapeutic agents and xenobiotics. Toxicol. Appl. Pharmacol. 204, 309–319 (2005).

    Article  CAS  PubMed  Google Scholar 

  59. Urban, T. J. & Giacomini, K. M. in Drug Transporters (eds You, G. & Morris, M. E.) 11–33 (John Wiley & Sons, New York, 2007).

    Book  Google Scholar 

  60. Ciarimboli, G. Organic cation transporters. Xenobiotica 38, 936–971 (2008).

    Article  CAS  PubMed  Google Scholar 

  61. Nigam, S. K., Bush, K. T. & Bhatnagar, V. Drug and toxicant handling by the OAT organic anion transporters in the kidney and other tissues. Nature Clin. Pract. Nephrol. 3, 443–448 (2007). This manuscript provides an excellent review of OATs.

    Article  CAS  Google Scholar 

  62. Rizwan, A. N. & Burckhardt, G. Organic anion transporters of the SLC22 family: biopharmaceutical, physiological, and pathological roles. Pharm. Res. 24, 450–470 (2007).

    Article  CAS  PubMed  Google Scholar 

  63. Srimaroeng, C., Perry, J. L. & Pritchard, J. B. Physiology, structure, and regulation of the cloned organic anion transporters. Xenobiotica 38, 889–935 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Ahlin, G. et al. Structural requirements for drug inhibition of the liver specific human organic cation transport protein 1. J. Med. Chem. 51, 5932–5942 (2008).

    Article  CAS  PubMed  Google Scholar 

  65. Okura, T., Ito, R., Ishiguro, N., Tamai, I. & Deguchi, Y. Blood–brain barrier transport of pramipexole, a dopamine D2 agonist. Life Sci. 80, 1564–1571 (2007).

    Article  CAS  PubMed  Google Scholar 

  66. Glube, N. & Langguth, P. Caki-1 cells as a model system for the interaction of renally secreted drugs with OCT3. Nephron Physiol. 108, 18–28 (2008).

    Article  CAS  Google Scholar 

  67. Glube, N., Giessl, A., Wolfrum, U. & Langguth, P. Caki-1 cells represent an in vitro model system for studying the human proximal tubule epithelium. Nephron Exp. Nephrol. 107, e47–e56 (2007).

    Article  CAS  PubMed  Google Scholar 

  68. Muller, J. et al. Drug specificity and intestinal membrane localization of human organic cation transporters (OCT). Biochem. Pharmacol. 70, 1851–1860 (2005).

    Article  PubMed  CAS  Google Scholar 

  69. Rytting, E., Bryan, J., Southard, M. & Audus, K. L. Low-affinity uptake of the fluorescent organic cation 4-(4-(dimethylamino)styryl)-N-methylpyridinium iodide (4-Di-1-ASP) in BeWo cells. Biochem. Pharmacol. 73, 891–900 (2007).

    Article  CAS  PubMed  Google Scholar 

  70. Kaler, G. et al. Structural variation governs substrate specificity for organic anion transporter (OAT) homologs. Potential remote sensing by OAT family members. J. Biol. Chem. 282, 23841–23853 (2007).

    Article  CAS  PubMed  Google Scholar 

  71. Truong, D. M., Kaler, G., Khandelwal, A., Swaan, P. W. & Nigam, S. K. Multi-level analysis of organic anion transporters 1, 3, and 6 reveals major differences in structural determinants of antiviral discrimination. J. Biol. Chem. 283, 8654–8663 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Jonker, J. W. et al. Reduced hepatic uptake and intestinal excretion of organic cations in mice with a targeted disruption of the organic cation transporter 1 (Oct1 [Slc22a1]) gene. Mol. Cell Biol. 21, 5471–5477 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Shu, Y. et al. Effect of genetic variation in the organic cation transporter 1 (OCT1) on metformin action. J. Clin. Invest. 117, 1422–1431 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Wang, D. S. et al. Involvement of organic cation transporter 1 in hepatic and intestinal distribution of metformin. J. Pharmacol. Exp. Ther. 302, 510–515 (2002).

    Article  CAS  PubMed  Google Scholar 

  75. Eraly, S. A. et al. Decreased renal organic anion secretion and plasma accumulation of endogenous organic anions in OAT1 knock-out mice. J. Biol. Chem. 281, 5072–5083 (2006).

    Article  CAS  PubMed  Google Scholar 

  76. Vallon, V. et al. Overlapping in vitro and in vivo specificities of the organic anion transporters OAT1 and OAT3 for loop and thiazide diuretics. Am. J. Physiol. Renal Physiol. 294, F867–F873 (2008).

    Article  CAS  PubMed  Google Scholar 

  77. Shu, Y. et al. Effect of genetic variation in the organic cation transporter 1, OCT1, on metformin pharmacokinetics. Clin. Pharmacol. Ther. 83, 273–280 (2008).

    Article  CAS  PubMed  Google Scholar 

  78. Zhou, K. et al. Reduced-function SLC22A1 polymorphisms encoding organic cation transporter 1 and glycemic response to metformin: a GoDARTS study. Diabetes 58, 1434–1439 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. White, D. L. et al. OCT-1-mediated influx is a key determinant of the intracellular uptake of imatinib but not nilotinib (AMN107): reduced OCT-1 activity is the cause of low in vitro sensitivity to imatinib. Blood 108, 697–704 (2006).

    Article  CAS  PubMed  Google Scholar 

  80. White, D. L. et al. Most CML patients who have a suboptimal response to imatinib have low OCT-1 activity: higher doses of imatinib may overcome the negative impact of low OCT-1 activity. Blood 110, 4064–4072 (2007).

    Article  CAS  PubMed  Google Scholar 

  81. Wang, Z. J., Yin, O. Q., Tomlinson, B. & Chow, M. S. OCT2 polymorphisms and in-vivo renal functional consequence: studies with metformin and cimetidine. Pharmacogenet. Genomics 18, 637–645 (2008).

    Article  CAS  PubMed  Google Scholar 

  82. Song, I. S. et al. Genetic variants of the organic cation transporter 2 influence the disposition of metformin. Clin. Pharmacol. Ther. 84, 559–562 (2008).

    Article  CAS  PubMed  Google Scholar 

  83. Chen, Y. et al. Effect of genetic variation in the organic cation transporter 2 on the renal elimination of metformin. Pharmacogenet. Genomics 19, 497–504 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Tirona, R. G. & Kim, R. B. in Drug Transporters (eds You, G. & Morris, M. E.) 75–104 (John Wiley & Sons, New York, 2007).

    Book  Google Scholar 

  85. Hagenbuch, B. & Gui, C. Xenobiotic transporters of the human organic anion transporting polypeptides (OATP) family. Xenobiotica 38, 778–801 (2008). This manuscript provides an excellent review of OATPs.

    Article  CAS  PubMed  Google Scholar 

  86. Leuthold, S. et al. Mechanisms of pH-gradient driven transport mediated by organic anion polypeptide transporters. Am. J. Physiol. Cell Physiol. 296, C570–C582 (2009).

    Article  CAS  PubMed  Google Scholar 

  87. Hagenbuch, B. & Meier, P. J. The superfamily of organic anion transporting polypeptides. Biochim. Biophys. Acta 1609, 1–18 (2003).

    Article  CAS  PubMed  Google Scholar 

  88. Tirona, R. G., Leake, B. F., Merino, G. & Kim, R. B. Polymorphisms in OATP-C: identification of multiple allelic variants associated with altered transport activity among European- and African-Americans. J. Biol. Chem. 276, 35669–35675 (2001).

    Article  CAS  PubMed  Google Scholar 

  89. Hsiang, B. et al. A novel human hepatic organic anion transporting polypeptide (OATP2). Identification of a liver-specific human organic anion transporting polypeptide and identification of rat and human hydroxymethylglutaryl-CoA reductase inhibitor transporters. J. Biol. Chem. 274, 37161–37168 (1999).

    Article  CAS  PubMed  Google Scholar 

  90. Konig, J., Cui, Y., Nies, A. T. & Keppler, D. A novel human organic anion transporting polypeptide localized to the basolateral hepatocyte membrane. Am. J. Physiol. Gastrointest. Liver Physiol. 278, G156–G164 (2000).

    Article  CAS  PubMed  Google Scholar 

  91. Abe, T. et al. Identification of a novel gene family encoding human liver-specific organic anion transporter LST-1. J. Biol. Chem. 274, 17159–17163 (1999).

    Article  CAS  PubMed  Google Scholar 

  92. Kullak-Ublick, G. A. et al. Organic anion-transporting polypeptide B (OATP-B) and its functional comparison with three other OATPs of human liver. Gastroenterology 120, 525–533 (2001).

    Article  CAS  PubMed  Google Scholar 

  93. Gui, C. & Hagenbuch, B. Amino acid residues in transmembrane domain 10 of organic anion transporting polypeptide 1B3 are critical for cholecystokinin octapeptide transport. Biochemistry 47, 9090–9097 (2008).

    Article  CAS  PubMed  Google Scholar 

  94. Ismair, M. G. et al. Hepatic uptake of cholecystokinin octapeptide by organic anion-transporting polypeptides OATP4 and OATP8 of rat and human liver. Gastroenterology 121, 1185–1190 (2001).

    Article  CAS  PubMed  Google Scholar 

  95. Shitara, Y., Sato, H. & Sugiyama, Y. Evaluation of drug–drug interaction in the hepatobiliary and renal transport of drugs. Annu. Rev. Pharmacol. Toxicol. 45, 689–723 (2005).

    Article  CAS  PubMed  Google Scholar 

  96. Letschert, K., Komatsu, M., Hummel-Eisenbeiss, J. & Keppler, D. Vectorial transport of the peptide CCK-8 by double-transfected MDCKII cells stably expressing the organic anion transporter OATP1B3 (OATP8) and the export pump ABCC2. J. Pharmacol. Exp. Ther. 313, 549–556 (2005).

    Article  CAS  PubMed  Google Scholar 

  97. Matsushima, S. et al. Identification of the hepatic efflux transporters of organic anions using double-transfected Madin-Darby canine kidney II cells expressing human organic anion-transporting polypeptide 1B1 (OATP1B1)/multidrug resistance-associated protein 2, OATP1B1/multidrug resistance 1, and OATP1B1/breast cancer resistance protein. J. Pharmacol. Exp. Ther. 314, 1059–1067 (2005).

    Article  CAS  PubMed  Google Scholar 

  98. Ishiguro, N. et al. Predominant contribution of OATP1B3 to the hepatic uptake of telmisartan, an angiotensin II receptor antagonist, in humans. Drug Metab. Dispos. 34, 1109–1115 (2006).

    Article  CAS  PubMed  Google Scholar 

  99. Noe, J., Portmann, R., Brun, M. E. & Funk, C. Substrate-dependent drug–drug interactions between gemfibrozil, fluvastatin and other organic anion-transporting peptide (OATP) substrates on OATP1B1, OATP2B1, and OATP1B3. Drug Metab. Dispos. 35, 1308–1314 (2007).

    Article  CAS  PubMed  Google Scholar 

  100. Zaher, H. et al. Targeted disruption of murine organic anion-transporting polypeptide 1b2 (Oatp1b2/Slco1b2) significantly alters disposition of prototypical drug substrates pravastatin and rifampin. Mol. Pharmacol. 74, 320–329 (2008).

    Article  CAS  PubMed  Google Scholar 

  101. Lu, H. et al. Characterization of organic anion transporting polypeptide 1b2-null mice: essential role in hepatic uptake/toxicity of phalloidin and microcystin-LR. Toxicol. Sci. 103, 35–45 (2008).

    Article  CAS  PubMed  Google Scholar 

  102. Neuvonen, P. J., Niemi, M. & Backman, J. T. Drug interactions with lipid-lowering drugs: mechanisms and clinical relevance. Clin. Pharmacol. Ther. 80, 565–581 (2006).

    Article  CAS  PubMed  Google Scholar 

  103. Shitara, Y., Itoh, T., Sato, H., Li, A. P. & Sugiyama, Y. Inhibition of transporter-mediated hepatic uptake as a mechanism for drug–drug interaction between cerivastatin and cyclosporin A. J. Pharmacol. Exp. Ther. 304, 610–616 (2003).

    Article  CAS  PubMed  Google Scholar 

  104. Pasanen, M. K., Neuvonen, P. J. & Niemi, M. Global analysis of genetic variation in SLCO1B1. Pharmacogenomics 9, 19–33 (2008).

    Article  CAS  PubMed  Google Scholar 

  105. Mwinyi, J., Johne, A., Bauer, S., Roots, I. & Gerloff, T. Evidence for inverse effects of OATP-C (SLC21A6) 5 and 1b haplotypes on pravastatin kinetics. Clin. Pharmacol. Ther. 75, 415–421 (2004).

    Article  CAS  PubMed  Google Scholar 

  106. Nishizato, Y. et al. Polymorphisms of OATP-C (SLC21A6) and OAT3 (SLC22A8) genes: consequences for pravastatin pharmacokinetics. Clin. Pharmacol. Ther. 73, 554–565 (2003).

    Article  CAS  PubMed  Google Scholar 

  107. Chung, J. Y. et al. Effect of OATP1B1 (SLCO1B1) variant alleles on the pharmacokinetics of pitavastatin in healthy volunteers. Clin. Pharmacol. Ther. 78, 342–350 (2005).

    Article  CAS  PubMed  Google Scholar 

  108. Pasanen, M. K., Neuvonen, M., Neuvonen, P. J. & Niemi, M. SLCO1B1 polymorphism markedly affects the pharmacokinetics of simvastatin acid. Pharmacogenet. Genomics 16, 873–879 (2006).

    Article  CAS  PubMed  Google Scholar 

  109. Pasanen, M. K., Fredrikson, H., Neuvonen, P. J. & Niemi, M. Different effects of SLCO1B1 polymorphism on the pharmacokinetics of atorvastatin and rosuvastatin. Clin. Pharmacol. Ther. 82, 726–733 (2007).

    Article  CAS  PubMed  Google Scholar 

  110. Lee, E. et al. Rosuvastatin pharmacokinetics and pharmacogenetics in white and Asian subjects residing in the same environment. Clin. Pharmacol. Ther. 78, 330–341 (2005).

    Article  CAS  PubMed  Google Scholar 

  111. Niemi, M. et al. Polymorphic organic anion transporting polypeptide 1B1 is a major determinant of repaglinide pharmacokinetics. Clin. Pharmacol. Ther. 77, 468–478 (2005).

    Article  CAS  PubMed  Google Scholar 

  112. Katz, D. A. et al. Organic anion transporting polypeptide 1B1 activity classified by SLCO1B1 genotype influences atrasentan pharmacokinetics. Clin. Pharmacol. Ther. 79, 186–196 (2006).

    Article  CAS  PubMed  Google Scholar 

  113. Xiang, X. et al. Pharmacogenetics of SLCO1B1 gene and the impact of *1b and *15 haplotypes on irinotecan disposition in Asian cancer patients. Pharmacogenet. Genomics 16, 683–691 (2006).

    Article  CAS  PubMed  Google Scholar 

  114. Oswald, S., Scheuch, E., Cascorbi, I. & Siegmund, W. A LC-MS/MS method to quantify the novel cholesterol lowering drug ezetimibe in human serum, urine and feces in healthy subjects genotyped for SLCO1B1. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 830, 143–150 (2006).

    Article  CAS  PubMed  Google Scholar 

  115. Link, E. et al. SLCO1B1 variants and statin-induced myopathy — a genomewide study. N. Engl. J. Med. 359, 789–799 (2008). This manuscript represents the first genome-wide association study in the pharmacogenomics of, and highlights the important role of, drug transporters in drug safety.

    Article  CAS  PubMed  Google Scholar 

  116. Uchida, Y., Kamiie, J., Ohtsuki, S. & Terasaki, T. Multichannel liquid chromatography-tandem mass spectrometry cocktail method for comprehensive substrate characterization of multidrug resistance-associated protein 4 transporter. Pharm. Res. 24, 2281–2296 (2007).

    Article  CAS  PubMed  Google Scholar 

  117. Ishikawa, T. et al. High-speed screening of human ATP-binding cassette transporter function and genetic polymorphisms: new strategies in pharmacogenomics. Methods Enzymol. 400, 485–510 (2005).

    Article  CAS  PubMed  Google Scholar 

  118. Keppler, D., Jedlitschky, G. & Leier, I. Transport function and substrate specificity of multidrug resistance protein. Methods Enzymol. 292, 607–616 (1998).

    Article  CAS  PubMed  Google Scholar 

  119. Hilgendorf, C. et al. Expression of thirty-six drug transporter genes in human intestine, liver, kidney, and organotypic cell lines. Drug Metab. Dispos. 35, 1333–1340 (2007).

    Article  CAS  PubMed  Google Scholar 

  120. Sauvant, C. et al. Action of EGF and PGE2 on basolateral organic anion uptake in rabbit proximal renal tubules and hOAT1 expressed in human kidney epithelial cells. Am. J. Physiol. Renal Physiol. 286, F774–F783 (2004).

    Article  CAS  PubMed  Google Scholar 

  121. Lee, S. H. & Sinko, P. J. siRNA — getting the message out. Eur. J. Pharm. Sci. 27, 401–410 (2006).

    Article  CAS  PubMed  Google Scholar 

  122. Yue, W., Abe, K. & Brouwer, K. L. Knocking down breast cancer resistance protein (Bcrp) by adenoviral vector-mediated RNA interference (RNAi) in sandwich-cultured rat hepatocytes: a novel tool to assess the contribution of Bcrp to drug biliary excretion. Mol. Pharm. 6, 134–143 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Zhang, W. et al. Silencing the breast cancer resistance protein expression and function in caco-2 cells using lentiviral vector-based short hairpin RNA. Drug Metab. Dispos. 37, 737–744 (2009).

    Article  CAS  PubMed  Google Scholar 

  124. Keppler, D. Uptake and efflux transporters for conjugates in human hepatocytes. Methods Enzymol. 400, 531–542 (2005).

    Article  CAS  PubMed  Google Scholar 

  125. Sasaki, M. et al. Prediction of in vivo biliary clearance from the in vitro transcellular transport of organic anions across a double-transfected Madin-Darby canine kidney II monolayer expressing both rat organic anion transporting polypeptide 4 and multidrug resistance associated protein 2. Mol. Pharmacol. 66, 450–459 (2004).

    Article  CAS  PubMed  Google Scholar 

  126. Sasaki, M., Suzuki, H., Ito, K., Abe, T. & Sugiyama, Y. Transcellular transport of organic anions across a double-transfected Madin-Darby canine kidney II cell monolayer expressing both human organic anion-transporting polypeptide (OATP2/SLC21A6) and multidrug resistance-associated protein 2 (MRP2/ABCC2). J. Biol. Chem. 277, 6497–6503 (2002).

    Article  CAS  PubMed  Google Scholar 

  127. Cui, Y., Konig, J. & Keppler, D. Vectorial transport by double-transfected cells expressing the human uptake transporter SLC21A8 and the apical export pump ABCC2. Mol. Pharmacol. 60, 934–943 (2001).

    Article  CAS  PubMed  Google Scholar 

  128. Bartholome, K. et al. Data-based mathematical modeling of vectorial transport across double-transfected polarized cells. Drug Metab. Dispos. 35, 1476–1481 (2007).

    Article  CAS  PubMed  Google Scholar 

  129. Marion, T. L., Leslie, E. M. & Brouwer, K. L. Use of sandwich-cultured hepatocytes to evaluate impaired bile acid transport as a mechanism of drug-induced hepatotoxicity. Mol. Pharm. 4, 911–918 (2007).

    Article  CAS  PubMed  Google Scholar 

  130. Liu, X. et al. Biliary excretion in primary rat hepatocytes cultured in a collagen-sandwich configuration. Am. J. Physiol. 277, G12–G21 (1999).

    CAS  PubMed  Google Scholar 

  131. LeCluyse, E. L., Audus, K. L. & Hochman, J. H. Formation of extensive canalicular networks by rat hepatocytes cultured in collagen-sandwich configuration. Am. J. Physiol. 266, C1764–C1774 (1994).

    Article  CAS  PubMed  Google Scholar 

  132. Hoffmaster, K. A. et al. P-glycoprotein expression, localization, and function in sandwich-cultured primary rat and human hepatocytes: relevance to the hepatobiliary disposition of a model opioid peptide. Pharm. Res. 21, 1294–1302 (2004).

    Article  CAS  PubMed  Google Scholar 

  133. Abe, K., Bridges, A. S. & Brouwer, K. L. Use of sandwich-cultured human hepatocytes to predict biliary clearance of angiotensin II receptor blockers and HMG-CoA reductase inhibitors. Drug Metab. Dispos. 37, 447–452 (2009).

    Article  CAS  PubMed  Google Scholar 

  134. Klaassen, C. D. & Lu, H. Xenobiotic transporters: ascribing function from gene knockout and mutation studies. Toxicol. Sci. 101, 186–196 (2008).

    Article  CAS  PubMed  Google Scholar 

  135. Schinkel, A. H. et al. Disruption of the mouse Mdr1a P-glycoprotein gene leads to a deficiency in the blood–brain barrier and to increased sensitivity to drugs. Cell 77, 491–502 (1994). This manuscript was the first study that demonstrated the important role of P-gp in the blood–brain barrier in the mouse and its role in determining drug sensitivity.

    Article  CAS  PubMed  Google Scholar 

  136. Polli, J. W. et al. An unexpected synergist role of P-glycoprotein and breast cancer resistance protein on the central nervous system penetration of the tyrosine kinase inhibitor lapatinib (N-{3-chloro-4-[(3-fluorobenzyl)oxy]phenyl}-6-[5-({[2-(methylsulfonyl)ethy l]amino}methyl)-2-furyl]-4-quinazolinamine; GW572016). Drug Metab. Dispos. 37, 439–442 (2009).

    Article  CAS  PubMed  Google Scholar 

  137. Zamek-Gliszczynski, M. J., Kalvass, J. C., Pollack, G. M. & Brouwer, K. L. Relationship between drug/metabolite exposure and impairment of excretory transport function. Drug Metab. Dispos. 37, 386–390 (2009).

    Article  CAS  PubMed  Google Scholar 

  138. Li, M. et al. Identification of interspecies difference in efflux transporters of hepatocytes from dog, rat, monkey and human. Eur. J. Pharm. Sci. 35, 114–126 (2008).

    Article  CAS  PubMed  Google Scholar 

  139. Takekuma, Y. et al. Difference between pharmacokinetics of mycophenolic acid (MPA) in rats and that in humans is caused by different affinities of MRP2 to a glucuronized form. J. Pharm. Pharm. Sci. 10, 71–85 (2007).

    CAS  PubMed  Google Scholar 

  140. Zamek-Gliszczynski, M. J. et al. Differential involvement of Mrp2 (Abcc2) and Bcrp (Abcg2) in biliary excretion of 4-methylumbelliferyl glucuronide and sulfate in the rat. J. Pharmacol. Exp. Ther. 319, 459–467 (2006).

    Article  CAS  PubMed  Google Scholar 

  141. Zamek-Gliszczynski, M. J. et al. The important role of Bcrp (Abcg2) in the biliary excretion of sulfate and glucuronide metabolites of acetaminophen, 4-methylumbelliferone, and harmol in mice. Mol. Pharmacol. 70, 2127–2133 (2006).

    Article  CAS  PubMed  Google Scholar 

  142. Merino, G., van Herwaarden, A. E., Wagenaar, E., Jonker, J. W. & Schinkel, A. H. Sex-dependent expression and activity of the ATP-binding cassette transporter breast cancer resistance protein (BCRP/ABCG2) in liver. Mol. Pharmacol. 67, 1765–1771 (2005).

    Article  CAS  PubMed  Google Scholar 

  143. Vlaming, M. L. et al. Carcinogen and anticancer drug transport by Mrp2 in vivo: studies using Mrp2 (Abcc2) knockout mice. J. Pharmacol. Exp. Ther. 318, 319–327 (2006).

    Article  CAS  PubMed  Google Scholar 

  144. Chu, X. Y. et al. Characterization of mice lacking the multidrug resistance protein MRP2 (ABCC2). J. Pharmacol. Exp. Ther. 317, 579–589 (2006).

    Article  CAS  PubMed  Google Scholar 

  145. van de Steeg, E. et al. Methotrexate pharmacokinetics in transgenic mice with liver-specific expression of human organic anion-transporting polypeptide 1B1 (SLCO1B1). Drug Metab. Dispos. 37, 277–281 (2009).

    Article  CAS  PubMed  Google Scholar 

  146. Hirano, M., Maeda, K., Shitara, Y. & Sugiyama, Y. Drug–drug interaction between pitavastatin and various drugs via OATP1B1. Drug Metab. Dispos. 34, 1229–1236 (2006).

    Article  CAS  PubMed  Google Scholar 

  147. Maeda, K. & Sugiyama, Y. in Drug Transporters (eds You, G. & Morris, M. E.) 557–588 (John Wiley & Sons, Hoboken, New York, 2007).

    Book  Google Scholar 

  148. Hirano, M., Maeda, K., Shitara, Y. & Sugiyama, Y. Contribution of OATP2 (OATP1B1) and OATP8 (OATP1B3) to the hepatic uptake of pitavastatin in humans. J. Pharmacol. Exp. Ther. 311, 139–146 (2004).

    Article  CAS  PubMed  Google Scholar 

  149. Watanabe, T., Kusuhara, H., Maeda, K., Shitara, Y. & Sugiyama, Y. Physiologically based pharmacokinetic modeling to predict transporter-mediated clearance and distribution of pravastatin in humans. J. Pharmacol. Exp. Ther. 328, 652–662 (2009).

    Article  CAS  PubMed  Google Scholar 

  150. Paine, S. W., Parker, A. J., Gardiner, P., Webborn, P. J. & Riley, R. J. Prediction of the pharmacokinetics of atorvastatin, cerivastatin, and indomethacin using kinetic models applied to isolated rat hepatocytes. Drug Metab. Dispos. 36, 1365–1374 (2008).

    Article  CAS  PubMed  Google Scholar 

  151. Poirier, A., Funk, C., Scherrmann, J. M. & Lave, T. Mechanistic modeling of hepatic transport from cells to whole body: application to napsagatran and fexofenadine. Mol. Pharm. 6, 1716–1733 (2009).

    Article  CAS  PubMed  Google Scholar 

  152. Takano, A. et al. Evaluation of in vivo P-glycoprotein function at the blood–brain barrier among MDR1 gene polymorphisms by using 11C-verapamil. J. Nucl. Med. 47, 1427–1433 (2006).

    CAS  PubMed  Google Scholar 

  153. Guhlmann, A. et al. Noninvasive assessment of hepatobiliary and renal elimination of cysteinyl leukotrienes by positron emission tomography. Hepatology 21, 1568–1575 (1995).

    Article  CAS  PubMed  Google Scholar 

  154. de Vries, E. F. et al. Can celecoxib affect P-glycoprotein-mediated drug efflux? A microPET study. Nucl. Med. Biol. 35, 459–466 (2008).

    Article  CAS  PubMed  Google Scholar 

  155. Piwnica-Worms, D. et al. Functional imaging of multidrug-resistant P-glycoprotein with an organotechnetium complex. Cancer Res. 53, 977–984 (1993).

    CAS  PubMed  Google Scholar 

  156. Hendrikse, N. H. et al. In vivo imaging of hepatobiliary transport function mediated by multidrug resistance associated protein and P-glycoprotein. Cancer Chemother. Pharmacol. 54, 131–138 (2004).

    Article  CAS  PubMed  Google Scholar 

  157. Cebecauerova, D. et al. Dual hereditary jaundice: simultaneous occurrence of mutations causing Gilbert's and Dubin–Johnson syndrome. Gastroenterology 129, 315–320 (2005).

    Article  CAS  PubMed  Google Scholar 

  158. Bujanover, Y., Bar-Meir, S., Hayman, I. & Baron, J. 99mTc-HIDA cholescintigraphy in children with Dubin–Johnson syndrome. J. Pediatr. Gastroenterol. Nutr. 2, 311–312 (1983).

    Article  CAS  PubMed  Google Scholar 

  159. Ghibellini, G., Leslie, E. M., Pollack, G. M. & Brouwer, K. L. Use of Tc-99m mebrofenin as a clinical probe to assess altered hepatobiliary transport: integration of in vitro, pharmacokinetic modeling, and simulation studies. Pharm. Res. 25, 1851–1860 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Ghibellini, G. et al. In vitroin vivo correlation of hepatobiliary drug clearance in humans. Clin. Pharmacol. Ther. 81, 406–413 (2007).

    Article  CAS  PubMed  Google Scholar 

  161. Ghibellini, G., Johnson, B. M., Kowalsky, R. J., Heizer, W. D. & Brouwer, K. L. A novel method for the determination of biliary clearance in humans. AAPS J. 6, e33 (2004).

    Article  PubMed  Google Scholar 

  162. Michael, M. et al. Relationship of hepatic functional imaging to irinotecan pharmacokinetics and genetic parameters of drug elimination. J. Clin. Oncol. 24, 4228–4235 (2006).

    Article  CAS  PubMed  Google Scholar 

  163. Wong, M. et al. Predictors of vinorelbine pharmacokinetics and pharmacodynamics in patients with cancer. J. Clin. Oncol. 24, 2448–2455 (2006).

    Article  CAS  PubMed  Google Scholar 

  164. Zhang, Y. & Benet, L. Z. The gut as a barrier to drug absorption: combined role of cytochrome P450 3A and P-glycoprotein. Clin. Pharmacokinet. 40, 159–168 (2001).

    Article  CAS  PubMed  Google Scholar 

  165. Wacher, V. J., Wu, C. Y. & Benet, L. Z. Overlapping substrate specificities and tissue distribution of cytochrome P450 3A and P-glycoprotein: implications for drug delivery and activity in cancer chemotherapy. Mol. Carcinog. 13, 129–134 (1995).

    Article  CAS  PubMed  Google Scholar 

  166. Benet, L. Z. & Cummins, C. L. The drug efflux–metabolism alliance: biochemical aspects. Adv. Drug Deliv. Rev. 50 (Suppl. 1), S3–S11 (2001).

    Article  CAS  PubMed  Google Scholar 

  167. Wacher, V. J., Salphati, L. & Benet, L. Z. Active secretion and enterocytic drug metabolism barriers to drug absorption. Adv. Drug Deliv. Rev. 46, 89–102 (2001).

    Article  CAS  PubMed  Google Scholar 

  168. Lown, K. S. et al. Role of intestinal P-glycoprotein (mdr1) in interpatient variation in the oral bioavailability of cyclosporine. Clin. Pharmacol. Ther. 62, 248–260 (1997).

    Article  CAS  PubMed  Google Scholar 

  169. Gomez, D. Y., Wacher, V. J., Tomlanovich, S. J., Hebert, M. F. & Benet, L. Z. The effects of ketoconazole on the intestinal metabolism and bioavailability of cyclosporine. Clin. Pharmacol. Ther. 58, 15–19 (1995).

    Article  CAS  PubMed  Google Scholar 

  170. Shitara, Y., Horie, T. & Sugiyama, Y. Transporters as a determinant of drug clearance and tissue distribution. Eur. J. Pharm. Sci. 27, 425–446 (2006).

    Article  CAS  PubMed  Google Scholar 

  171. Kusuhara, H. & Sugiyama, Y. In vitroin vivo extrapolation of transporter-mediated clearance in the liver and kidney. Drug Metab. Pharmacokinet. 24, 37–52 (2009).

    Article  CAS  PubMed  Google Scholar 

  172. Amidon, G. L., Lennernas, H., Shah, V. P. & Crison, J. R. A theoretical basis for a biopharmaceutic drug classification: the correlation of in vitro drug product dissolution and in vivo bioavailability. Pharm. Res. 12, 413–420 (1995).

    Article  CAS  PubMed  Google Scholar 

  173. Wu, C. Y. & Benet, L. Z. Predicting drug disposition via application of BCS: transport/absorption/ elimination interplay and development of a biopharmaceutics drug disposition classification system. Pharm. Res. 22, 11–23 (2005).

    Article  CAS  PubMed  Google Scholar 

  174. US Department of Health and Human Services Food, Food and Drug Administration & Center for Drug Evaluation and Research (CDER). Guidance for Industry. Waiver of In Vivo Bioavailability and Bioequivalence Studies for Immediate-Release Solid Oral Dosage Forms Based on a Biopharmaceutics Classification System. US FDA website [online], (2000).

  175. Watanabe, T. et al. Prediction of the hepatic and renal clearance of transporter substrates in rats using in vitro uptake experiments. Drug Metab. Dispos. 37, 1471–1479 (2009).

    Article  CAS  PubMed  Google Scholar 

  176. Shugarts, S. & Benet, L. Z. The role of transporters in the pharmacokinetics of orally administered drugs. Pharm. Res. 26, 2039–2054 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Chang, C., Ekins, S., Bahadduri, P. & Swaan, P. W. Pharmacophore-based discovery of ligands for drug transporters. Adv. Drug Deliv. Rev. 58, 1431–1450 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Gombar, V. K., Polli, J. W., Humphreys, J. E., Wring, S. A. & Serabjit-Singh, C. S. Predicting P-glycoprotein substrates by a quantitative structure–activity relationship model. J. Pharm. Sci. 93, 957–968 (2004).

    Article  CAS  PubMed  Google Scholar 

  179. Ha, S. N., Hochman, J. & Sheridan, R. P. Mini review on molecular modeling of P-glycoprotein (Pgp). Curr. Top. Med. Chem. 7, 1525–1529 (2007).

    Article  CAS  PubMed  Google Scholar 

  180. Ekins, S. et al. In vitro and pharmacophore-based discovery of novel hPEPT1 inhibitors. Pharm. Res. 22, 512–517 (2005).

    Article  CAS  PubMed  Google Scholar 

  181. Ekins, S., Ecker, G. F., Chiba, P. & Swaan, P. W. Future directions for drug transporter modelling. Xenobiotica 37, 1152–1170 (2007).

    Article  CAS  PubMed  Google Scholar 

  182. US Food and Drug Administration. Highlights of Prescribing Information Tykerb (Lapatinib). US FDA website [online], (2007).

  183. US Food and Drug Administration. Drug Development and Drug Interactions. US FDA website [online], (2009).

  184. Tucker, G. T., Houston, J. B. & Huang, S. M. EUFEPS conference report. Optimising drug development: strategies to assess drug metabolism/transporter interaction potential — towards a consensus. European Federation of Pharmaceutical Sciences. Eur. J. Pharm. Sci. 13, 417–428 (2001).

    Article  CAS  PubMed  Google Scholar 

  185. Buckman, S., Huang, S. M. & Murphy, S. Medical product development and regulatory science for the 21st century: the critical path vision and its impact on health care. Clin. Pharmacol. Ther. 81, 141–144 (2007).

    Article  CAS  PubMed  Google Scholar 

  186. US Department of Health and Human Services, Food and Drug Administration, Center for Drug Evaluation and Research (CDER), Center for Biologics Evaluation and Research (CBER). Guidance for Industry. Exposure–Response Relationships — Study Design, Data Analysis and Regulatory Applications. US FDA website [online], (2003).

  187. Huang, S. M. & Temple, R. Is this the drug or dose for you? Impact and consideration of ethnic factors in global drug development, regulatory review, and clinical practice. Clin. Pharmacol. Ther. 84, 287–294 (2008).

    Article  PubMed  Google Scholar 

  188. Fenner, K. S. et al. Drug–drug interactions mediated through P-glycoprotein: clinical relevance and in vitroin vivo correlation using digoxin as a probe drug. Clin. Pharmacol. Ther. 85, 173–181 (2009).

    Article  CAS  PubMed  Google Scholar 

  189. Urquhart, B. L. et al. Breast cancer resistance protein (ABCG2) and drug disposition: intestinal expression, polymorphisms and sulfasalazine as an in vivo probe. Pharmacogenet. Genomics 18, 439–448 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Kitamura, S., Maeda, K., Wang, Y. & Sugiyama, Y. Involvement of multiple transporters in the hepatobiliary transport of rosuvastatin. Drug Metab. Dispos. 36, 2014–2023 (2008).

    Article  CAS  PubMed  Google Scholar 

  191. Zhang, Y. et al. BCRP transports dipyridamole and is inhibited by calcium channel blockers. Pharm. Res. 22, 2023–2034 (2005).

    Article  CAS  PubMed  Google Scholar 

  192. Ito, K. et al. Prediction of pharmacokinetic alterations caused by drug–drug interactions: metabolic interaction in the liver. Pharmacol. Rev. 50, 387–412 (1998).

    CAS  PubMed  Google Scholar 

  193. Kanamitsu, S., Ito, K. & Sugiyama, Y. Quantitative prediction of in vivo drug–drug interactions from in vitro data based on physiological pharmacokinetics: use of maximum unbound concentration of inhibitor at the inlet to the liver. Pharm. Res. 17, 336–343 (2000). This manuscript provides methodologies for the quantitative prediction of in vivo DDIs from in vitro studies of drug–transporter interactions.

    Article  CAS  PubMed  Google Scholar 

  194. Mikkaichi, T. et al. Isolation and characterization of a digoxin transporter and its rat homologue expressed in the kidney. Proc. Natl Acad. Sci. USA 101, 3569–3574 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Nozaki, Y. et al. Species difference in the inhibitory effect of nonsteroidal anti-inflammatory drugs on the uptake of methotrexate by human kidney slices. J. Pharmacol. Exp. Ther. 322, 1162–1170 (2007).

    Article  CAS  PubMed  Google Scholar 

  196. Maeda, A. et al. Evaluation of the interaction between nonsteroidal anti-inflammatory drugs and methotrexate using human organic anion transporter 3-transfected cells. Eur. J. Pharmacol. 596, 166–172 (2008).

    Article  CAS  PubMed  Google Scholar 

  197. Letschert, K., Keppler, D. & Konig, J. Mutations in the SLCO1B3 gene affecting the substrate specificity of the hepatocellular uptake transporter OATP1B3 (OATP8). Pharmacogenetics 14, 441–452 (2004).

    Article  CAS  PubMed  Google Scholar 

  198. Sanna, S. et al. Common variants in the SLCO1B3 locus are associated with bilirubin levels and unconjugated hyperbilirubinemia. Hum. Mol. Genet. 18, 2711–2718 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Treiber, A., Schneiter, R., Hausler, S. & Stieger, B. Bosentan is a substrate of human OATP1B1 and OATP1B3: inhibition of hepatic uptake as the common mechanism of its interactions with cyclosporin A, rifampicin, and sildenafil. Drug Metab. Dispos. 35, 1400–1407 (2007).

    Article  CAS  PubMed  Google Scholar 

  200. Matsushima, S., Maeda, K., Ishiguro, N., Igarashi, T. & Sugiyama, Y. Investigation of the inhibitory effects of various drugs on the hepatic uptake of fexofenadine in humans. Drug Metab. Dispos. 36, 663–669 (2008).

    Article  CAS  PubMed  Google Scholar 

  201. Busti, A. J. et al. Effects of atazanavir/ritonavir or fosamprenavir/ritonavir on the pharmacokinetics of rosuvastatin. J. Cardiovasc. Pharmacol. 51, 605–610 (2008).

    Article  CAS  PubMed  Google Scholar 

  202. Obach, R. S. et al. The utility of in vitro cytochrome P450 inhibition data in the prediction of drug–drug interactions. J. Pharmacol. Exp. Ther. 316, 336–348 (2006).

    Article  CAS  PubMed  Google Scholar 

  203. Wire, M. B., Shelton, M. J. & Studenberg, S. Fosamprenavir: clinical pharmacokinetics and drug interactions of the amprenavir prodrug. Clin. Pharmacokinet. 45, 137–168 (2006).

    Article  CAS  PubMed  Google Scholar 

  204. Hedman, M., Neuvonen, P. J., Neuvonen, M., Holmberg, C. & Antikainen, M. Pharmacokinetics and pharmacodynamics of pravastatin in pediatric and adolescent cardiac transplant recipients on a regimen of triple immunosuppression. Clin. Pharmacol. Ther. 75, 101–109 (2004).

    Article  CAS  PubMed  Google Scholar 

  205. Simonson, S. G. et al. Rosuvastatin pharmacokinetics in heart transplant recipients administered an antirejection regimen including cyclosporine. Clin. Pharmacol. Ther. 76, 167–177 (2004).

    Article  CAS  PubMed  Google Scholar 

  206. US Food and Drug Administration. Highlights of Prescribing Information Livalo (Pitavastatin). US FDA website [online], (2009).

  207. Zheng, H. X., Huang, Y., Frassetto, L. A. & Benet, L. Z. Elucidating rifampin's inducing and inhibiting effects on glyburide pharmacokinetics and blood glucose in healthy volunteers: unmasking the differential effects of enzyme induction and transporter inhibition for a drug and its primary metabolite. Clin. Pharmacol. Ther. 85, 78–85 (2009).

    Article  CAS  PubMed  Google Scholar 

  208. US Food and Drug Administration. Highlights of Prescribing Information: Tracleer (Bosentan). US FDA website [online], (2001).

  209. Kiser, J. J. et al. Drug/Drug interaction between lopinavir/ritonavir and rosuvastatin in healthy volunteers. J. Acquir. Immune Defic. Syndr. 47, 570–578 (2008).

    Article  CAS  PubMed  Google Scholar 

  210. Li, M., Anderson, G. D. & Wang, J. Drug–drug interactions involving membrane transporters in the human kidney. Expert Opin. Drug Metab. Toxicol. 2, 505–532 (2006).

    Article  CAS  PubMed  Google Scholar 

  211. Cundy, K. C. Clinical pharmacokinetics of the antiviral nucleotide analogues cidofovir and adefovir. Clin. Pharmacokinet. 36, 127–143 (1999). This article provides an excellent overview of clinical DDIs in the kidney.

    Article  CAS  PubMed  Google Scholar 

  212. Laskin, O. L. et al. Effects of probenecid on the pharmacokinetics and elimination of acyclovir in humans. Antimicrob. Agents Chemother. 21, 804–807 (1982).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Somogyi, A., Stockley, C., Keal, J., Rolan, P. & Bochner, F. Reduction of metformin renal tubular secretion by cimetidine in man. Br. J. Clin. Pharmacol. 23, 545–551 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Somogyi, A. & Muirhead, M. Pharmacokinetic interactions of cimetidine 1987. Clin. Pharmacokinet. 12, 321–366 (1987).

    Article  CAS  PubMed  Google Scholar 

  215. Somogyi, A. A., Bochner, F. & Sallustio, B. C. Stereoselective inhibition of pindolol renal clearance by cimetidine in humans. Clin. Pharmacol. Ther. 51, 379–387 (1992).

    Article  CAS  PubMed  Google Scholar 

  216. Feng, B. et al. Effect of human renal cationic transporter inhibition on the pharmacokinetics of varenicline, a new therapy for smoking cessation: an in vitroin vivo study. Clin. Pharmacol. Ther. 83, 567–576 (2008).

    Article  CAS  PubMed  Google Scholar 

  217. Shiga, T., Hashiguchi, M., Urae, A., Kasanuki, H. & Rikihisa, T. Effect of cimetidine and probenecid on pilsicainide renal clearance in humans. Clin. Pharmacol. Ther. 67, 222–228 (2000).

    Article  CAS  PubMed  Google Scholar 

  218. Tsuruoka, S. et al. Severe arrhythmia as a result of the interaction of cetirizine and pilsicainide in a patient with renal insufficiency: first case presentation showing competition for excretion via renal multidrug resistance protein 1 and organic cation transporter 2. Clin. Pharmacol. Ther. 79, 389–396 (2006).

    Article  CAS  PubMed  Google Scholar 

  219. Abel, S., Nichols, D. J., Brearley, C. J. & Eve, M. D. Effect of cimetidine and ranitidine on pharmacokinetics and pharmacodynamics of a single dose of dofetilide. Br. J. Clin. Pharmacol. 49, 64–71 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  220. Rameis, H. Quinidine–digoxin interaction: are the pharmacokinetics of both drugs altered? Int. J. Clin. Pharmacol. Ther. Toxicol. 23, 145–153 (1985).

    CAS  PubMed  Google Scholar 

  221. Hager, W. D. et al. Digoxin–quinidine interaction pharmacokinetic evaluation. N. Engl. J. Med. 300, 1238–1241 (1979).

    Article  CAS  PubMed  Google Scholar 

  222. Ding, R. et al. Substantial pharmacokinetic interaction between digoxin and ritonavir in healthy volunteers. Clin. Pharmacol. Ther. 76, 73–84 (2004).

    Article  CAS  PubMed  Google Scholar 

  223. US Food and Drug Administration. NDA 21–913 Dronedarone HCl. US FDA website [online], (2006).

  224. Jerling, M. Clinical pharmacokinetics of ranolazine. Clin. Pharmacokinet. 45, 469–491 (2006).

    Article  CAS  PubMed  Google Scholar 

  225. Kruijtzer, C. M. et al. Increased oral bioavailability of topotecan in combination with the breast cancer resistance protein and P-glycoprotein inhibitor GF120918. J. Clin. Oncol. 20, 2943–2950 (2002).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This report is dedicated to the memory of John M. Strong (1937–2008), Deputy Director of the Laboratory of Clinical Pharmacology, Center for Drug Evaluation and Research, US Food and Drug Administration (FDA). J.M.S's insight and research career focused on understanding the determinants of drug–drug interactions, clinical pharmacology, drug-induced liver injury, and the translation of transporter biology to the drug safety evaluation paradigm. We are grateful for the able assistance of R. Bogenrief and C. Weiss in preparing this manuscript. We would like to acknowledge partial support from an National Institutes of Health grant, GM61390 and funds from the FDA Critical Path for the workshop leading to this report.

Author information

Authors and Affiliations

Consortia

Ethics declarations

Competing interests

Kim L. R. Brouwer is a co-inventor of sandwich cultured hepatocyte technology for quantification of biliary excretion (B-CLEAR), and is a co-founder and Chair of the Scientific Advisory Board for Qualyst, Inc., which has exclusively licensed this technology.

Peter W. Swaan receives funding from Eli Lilly & Co. to support postdoctoral scholars in his laboratory; he has stock in Xenoport, Inc. a company focused on developing chemical entities that utilize nutrient transporter mechanisms to improve the therapeutic benefits of drugs.

Xiaoyan Chu and Raymond Evers have no competing financial interests beyond employment by Merck Sharp and Dohme Corporation.

Volker Fischer has no competing financial interests beyond employment by Abbott Laboratories.

Kathleen M. Hillgren and Maciej J. Zamek-Gliszczynski have no competing financial interests beyond employment by Lilly Research Labs.

Caroline A. Lee has no competing financial interests beyond employment by Pfizer.

Joseph W. Polli has no competing financial interests beyond employment by GlaxoSmithKline.

Kathleen M. Giacomini, Shiew-Mei Huang, Donald J. Tweedie, Leslie Z. Benet, Amber Dahlin, Keith A. Hoffmaster, Toshihisa Ishikawa, Dietrich Keppler, Richard B. Kim, Mikko Niemi, Yuichi Sugiyama, Joseph A. Ware, Stephen H. Wright, Sook Wah Yee, and Lei Zhang declare no competing financial interests.

Related links

Related links

FURTHER INFORMATION

US FDA Guidance, Compliance and Regulatory Information — Clinical Pharmacology

US FDA Drug Development and Approval Processes — Drug Development and Drug Interactions

Glossary

Membrane transporters

Membrane-associated proteins that govern the transport of solutes (for example, drugs and other xenobiotics) into and out of cells. Transporters can play a vital role in determining drug concentrations in the systemic circulation and in cells. The two major superfamilies of membrane transporters are the ATP-binding cassette (ABC) and solute carrier (SLC) superfamilies.

Blood–brain barrier

The blood–brain barrier consists of endothelial cells connected by tight junctions. The endothelial cells, which are surrounded by astrocytes, separate the circulating blood and the brain interstitial space. The role of the blood–brain barrier is to protect the central nervous system by restricting and preventing the entry of toxic substances including drug molecules and bacteria into the brain. Included in this protective barrier are transporters such as P-glycoprotein.

Drug–drug interaction

(DDI). Concomitant administration of multiple drugs can result in altered levels of the drugs compared with administration of the drugs alone. DDI can result in higher (inhibition) or lower (induction) levels of the drug. For example, if drug A ('perpetrator' drug) inhibits a membrane transporter that drug B ('victim' drug) uses to enter into the cell, administration of drug A can lower the level of drug B in the cell and also potentially increase the level of drug B in the systemic circulation.

Drug-metabolizing enzymes

(DMEs). These are enzymes responsible for chemical modification of drugs usually to increase rate of elimination. The activity of these enzymes can be altered through inhibition or induction, thus affecting the rate of metabolism.

Pharmacokinetics

Pharmacokinetics describe what the body does to a drug. Pharmacokinetic parameters result from the absorption, distribution, metabolism and excretion properties of drugs, and provide information about the rates of elimination and systemic concentrations of drugs. The functional activity and level of a drug transporter can determine the amount of drug molecule transported into or out of specific tissues, which will determine the level of drugs in that tissue and also the systemic circulation.

Substrate or inhibitor

A substrate of a drug transporter is translocated across a membrane by the transporter. An inhibitor of a drug transporter can impair the uptake and/or efflux of another drug. Many inhibitors are not substrates, that is, they are not transported by the transporter. Substrates can competitively inhibit other substrates that interact at the same site(s) on the transporter.

Pharmacodynamics

Pharmacodynamics describe the extent and time course of the effects of drugs on physiological and pathophysiological processes. The relationship between drug concentration and drug effect is important in determining pharmacodynamics.

IC50

IC50 value, as used in this paper, is the concentration of an inhibitor needed to inhibit one-half of the transport rate of the substrate measured in the absence of the inhibitor. The IC50 of a drug is determined by a concentration–transport rate curve. To determine the IC50 value of an inhibitor of a drug transporter, the effect of increasing concentrations of the inhibitor on the transport rate of a substrate is determined.

Fraction unbound

(fu). This fraction represents the ratio of unbound drug concentration to total drug concentration in the plasma. The fu is determined by the affinity of drugs to the binding proteins (for example, albumin and α1-acid glycoprotein) in plasma and the total number of binding sites on the proteins.

Unbound inhibitor concentration

[I]. The unbound drug is the pharmacologically active species and is available for inhibition of transporters. Typically, mean unbound steady-state Cmax values following administration of the highest proposed clinical dose is used for [I]1 in the decision tree. Note that the definition of [I]1 used in this report differs from that described by Zhang et al. (Ref. 15) in the original published P-glycoprotein decision tree. Defining [I] as the unbound steady-state maximum concentration was intentionally done to provide consistency across the all the decision trees included in this report.

K i

Ki is the inhibition constant of the drug inhibitor, and for competitive inhibition is determined as, Ki = IC50/[1+([S]/Km)], in which [S] is the concentration of the drug substrate and Km is the affinity of the drug substrate for the drug transporter.

Absorption, distribution, metabolism and excretion

(ADME). The acronym ADME describes the factors that determine the overall exposure to an administered drug. Absorption describes uptake from the site of administration. Although usually referring to oral route, other routes can apply, for example, subcutaneous or buccal. As drug levels are typically measured systemically, oral absorption can be a function of movement across the mucosal surface of the intestinal tract, through the liver and into the systemic circulation via the vena cava. Distribution describes the extent of partitioning into tissues. Metabolism refers to a chemical change usually catalysed by enzymes such as the cytochrome P450s. The drug and its metabolites are excreted or eliminated usually by the kidney (in urine) or from the liver (via bile) or intestines into the faeces.

Drug clearance

The clearance of a drug is defined as the proportionality constant between rate of elimination and plasma concentration. The total clearance (CLTotal) reflects the rate of removal from the systemic circulation (the site of monitoring concentrations). Clearance by an organ can also be defined (for example, renal clearance (CLr) via excretion, and hepatic clearance (CLh) via metabolism and/or biliary excretion). Renal clearance of a drug is determined by glomerular filtration, and tubular secretion and reabsorption, both of which may be mediated by transporters.

Rights and permissions

Reprints and permissions

About this article

Cite this article

The International Transporter Consortium. Membrane transporters in drug development. Nat Rev Drug Discov 9, 215–236 (2010). https://doi.org/10.1038/nrd3028

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrd3028

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing