Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Impact of lipoproteins on the biological activity and disposition of hydrophobic drugs: implications for drug discovery

Key Points

  • This review discusses the impact of hydrophobic drug-lipoprotein interactions on pharmacokinetics, drug metabolism, tissue distribution and biological activity of various hydrophobic compounds, and the importance of using this information in drug discovery and development programmes.

  • The nature of drug interaction with lipoproteins might differ from that of binding to other proteins, which is to a large degree attributable to the unique nature of lipoproteins. As the composition of circulating lipoproteins can be modified in various physiological or pathophysiological states, it is possible that a change in the extent of drug binding in plasma might ensue.

  • Drugs that bind to lipoproteins are most likely to be highly lipophilic and are often prime candidates for drug metabolism as a major pathway of elimination from the body. Examples of drugs with high log P values that are known to bind to lipoproteins include cyclosporine A, amiodarone, halofantrine, amphotericin B, nystatin and eritoran.

  • In evaluating the effects of increased plasma lipid content on the pharmacokinetics of drugs, it is important to consider the nature of the cause of the increased lipid levels. The inconsistencies between studies in the observed outcomes of hyperlipidaemia and pharmacokinetics can be attributed to a number of factors, including the experimental species, the model of hyperlipidaemia, postprandial state or other experimental issues relating to research design and implementation.

  • From the perspective of drug discovery, it is possible that within a series of new drug entities, the ones that are more lipophilic might have a greater relative degree of potency, due to their greater ability to gain access to the target proteins for pharmacological activity. In turn, drugs with high log P are better candidates for association with plasma lipoproteins.

  • In the Western world, where obesity and diabetes are now present in epidemic proportions, there are likely to be more individuals in the population with high levels of circulating lipoproteins, which might modify the pharmacokinetic behaviours, and ultimately, the pharmacological activities of the drugs candidates.

  • By understanding the uptake mechanisms of specific drugs into lipoproteins, and the influence that novel delivery systems can impart into the lipoprotein distribution of drug, there are potential opportunities to improve the therapeutic profiles of such drugs, thereby optimizing the drug development process, and ultimately, patient outcomes.

Abstract

In contrast to many traditional pharmaceutical agents that exhibit a high degree of aqueous solubility, new drug candidates are frequently highly lipophilic compounds. The aqueous environment of the blood provides a thermodynamically unfavourable environment for the disposition of such hydrophobic drugs. However, this limitation can be overcome by association with circulating lipoproteins. Elucidation of the mechanisms that dictate drug–lipoprotein association and blood-to-tissue partitioning of lipoprotein encapsulated drugs might yield valuable insight into the factors governing the pharmacological activity and potential toxicity of these compounds. This Review discusses the impact of hydrophobic drug–lipoprotein interactions on pharmacokinetics, drug metabolism, tissue distribution and biological activity of various hydrophobic compounds, and outlines how best to use this information in drug discovery and development programmes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: General structure of a lipoprotein.
Figure 2: Lipoprotein metabolism.
Figure 3: Drug interactions with biological components.
Figure 4: LDL receptor family.
Figure 5: Diagram of the LDL receptor-mediated endocytosis pathway.

Similar content being viewed by others

References

  1. Porter, C. J., Trevaskis, N. L. & Charman, W. N. Lipids and lipid-based formulations: optimizing the oral delivery of lipophilic drugs. Nature Rev. Drug Discov. 6, 231–248 (2007).

    CAS  Google Scholar 

  2. Third Report of the National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III). Circulation 106, 3143–3421 (2002).

  3. Saari, K. M. et al. A 4-fold risk of metabolic syndrome in patients with schizophrenia: the Northern Finland 1966 Birth Cohort study. J. Clin. Psychiatry 66, 559–563 (2005).

    PubMed  Google Scholar 

  4. Newcomer, J. W. Medical risk in patients with bipolar disorder and schizophrenia. J. Clin. Psychiatry 67, e16 (2006).

    PubMed  Google Scholar 

  5. Furberg, A. S., Veierod, M. B., Wilsgaard, T., Bernstein, L. & Thune, I. Serum high-density lipoprotein cholesterol, metabolic profile, and breast cancer risk. J. Natl. Cancer Inst. 96, 1152–1160 (2004).

    CAS  PubMed  Google Scholar 

  6. Wuermli, L. et al. Hypertriglyceridemia as a possible risk factor for prostate cancer. Prostate Cancer. Prostatic Dis. 8, 316–320 (2005).

    CAS  PubMed  Google Scholar 

  7. Herbey, I. I., Ivankova, N. V., Katkoori, V. R. & Mamaeva, O. A. Colorectal cancer and hypercholesterolemia: review of current research. Exp. Oncol. 27, 166–178 (2005).

    CAS  PubMed  Google Scholar 

  8. Fiorenza, A. M., Branchi, A. & Sommariva, D. Serum lipoprotein profile in patients with cancer. A comparison with non-cancer subjects. Int. J. Clin. Lab. Res. 30, 141–145 (2000).

    CAS  PubMed  Google Scholar 

  9. Vitols, S., Gahrton, G., Bjorkholm, M. & Peterson, C. Hypocholesterolaemia in malignancy due to elevated low-density-lipoprotein-receptor activity in tumour cells: evidence from studies in patients with leukaemia. Lancet 2, 1150–1154 (1985).

    CAS  PubMed  Google Scholar 

  10. Vitols, S. et al. Uptake of low density lipoproteins by human leukemic cells in vivo: relation to plasma lipoprotein levels and possible relevance for selective chemotherapy. Proc. Natl Acad. Sci. USA 87, 2598–2602 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Pajukanta, P. et al. Genomewide scan for familial combined hyperlipidemia genes in finnish families, suggesting multiple susceptibility loci influencing triglyceride, cholesterol, and apolipoprotein B levels. Am. J. Hum. Genet. 64, 1453–1463 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Garg, A. & Simha, V. Update on dyslipidemia. J. Clin. Endocrinol. Metab. 92, 1581–1589 (2007).

    CAS  PubMed  Google Scholar 

  13. El-Sadr, W. M. et al. Effects of HIV disease on lipid, glucose and insulin levels: results from a large antiretroviral-naive cohort. HIV. Med. 6, 114–121 (2005).

    CAS  PubMed  Google Scholar 

  14. Feingold, K. R. et al. The hypertriglyceridemia of acquired immunodeficiency syndrome is associated with an increased prevalence of low density lipoprotein subclass pattern B. J. Clin. Endocrinol. Metab. 76, 1423–1427 (1993).

    CAS  PubMed  Google Scholar 

  15. Grunfeld, C. et al. Lipids, lipoproteins, triglyceride clearance, and cytokines in human immunodeficiency virus infection and the acquired immunodeficiency syndrome. J. Clin. Endocrinol. Metab. 74, 1045–1052 (1992).

    CAS  PubMed  Google Scholar 

  16. Vernes, A. et al. Changes of serum lipoproteins during the course of human malaria (author's transl). Pathol. Biol. (Paris) 28, 457–460 (1980).

    CAS  Google Scholar 

  17. Nilsson-Ehle, I. & Nilsson-Ehle, P. Changes in plasma lipoproteins in acute malaria. J. Intern. Med. 227, 151–155 (1990).

    CAS  PubMed  Google Scholar 

  18. Mohanty, S. et al. Altered plasma lipid pattern in falciparum malaria. Ann. Trop. Med. Parasitol. 86, 601–606 (1992).

    CAS  PubMed  Google Scholar 

  19. Maurois, P., Pessah, M., Briche, I. & Alcindor, L. G. Alterations of lecithin-cholesterol acyltransferase activity during Plasmodium chabaudi rodent malaria. Biochimie 67, 227–239 (1985).

    CAS  PubMed  Google Scholar 

  20. Parola, P. et al. Hypertriglyceridemia as an indicator of the severity of falciparum malaria in returned travelers: a clinical retrospective study. Parasitol. Res. 92, 464–466 (2004).

    PubMed  Google Scholar 

  21. Brocks, D. R. & Wasan, K. M. The influence of lipids on stereoselective pharmacokinetics of halofantrine: Important implications in food-effect studies involving drugs that bind to lipoproteins. J. Pharm. Sci. 91, 1817–1826 (2002).

    CAS  PubMed  Google Scholar 

  22. Humberstone, A. J., Porter, C. J. & Charman, W. N. A physicochemical basis for the effect of food on the absolute oral bioavailability of halofantrine. J. Pharm. Sci. 85, 525–529 (1996).

    CAS  PubMed  Google Scholar 

  23. Humberstone, A. J., Porter, C. J., Edwards, G. A. & Charman, W. N. Association of halofantrine with postprandially derived plasma lipoproteins decreases its clearance relative to administration in the fasted state. J. Pharm. Sci. 87, 936–942 (1998). With co-administration of a high-fat meal, halofantrine absorption increases due to enhanced solubility of the drug in the intestinal tract. However, the authors noted that the clearance of the drug also decreases in such a state, thus contributing to increased plasma concentrations after oral dosing in the presence of a high-fat meal. This has important implications in interpreting food-effect studies of drugs that bind to lipoproteins.

    CAS  PubMed  Google Scholar 

  24. Mathis, A. S., Dave, N., Knipp, G. T. & Friedman, G. S. Drug-related dyslipidemia after renal transplantation. Am. J. Health. Syst. Pharm. 61, 565–585; quiz 586–587 (2004).

    PubMed  Google Scholar 

  25. Lopez, M. M. et al. Long-term problems related to immunosuppression. Transpl. Immunol. 17, 31–35 (2006).

    CAS  PubMed  Google Scholar 

  26. Hughes, F. N. Compendium of Pharmaceuticals and Specialties. CPS 35 (2000).

  27. Wirshing, D. A. Schizophrenia and obesity: impact of antipsychotic medications. J. Clin. Psychiatry 65, Suppl 18, 13–26 (2004).

    PubMed  Google Scholar 

  28. Wirshing, D. A. et al. Novel antipsychotics: comparison of weight gain liabilities. J. Clin. Psychiatry 60, 358–363 (1999).

    CAS  PubMed  Google Scholar 

  29. American Diabetes Association, American Psychiatric Association, American Association of Clinical Endocrinologists & North American Association for the Study of Obesity. Consensus development conference on antipsychotic drugs and obesity and diabetes. Diabetes Care 27, 596–601 (2004).

  30. Montessori, V., Press, N., Harris, M., Akagi, L. & Montaner, J. S. Adverse effects of antiretroviral therapy for HIV infection. CMAJ 170, 229–238 (2004).

    PubMed  PubMed Central  Google Scholar 

  31. Mallon, P. W. Pathogenesis of lipodystrophy and lipid abnormalities in patients taking antiretroviral therapy. AIDS Rev. 9, 3–15 (2007).

    PubMed  Google Scholar 

  32. Shayeganpour, A., Jun, A. S. & Brocks, D. R. Pharmacokinetics of Amiodarone in hyperlipidemic and simulated high fat-meal rat models. Biopharm. Drug Dispos. 26, 249–257 (2005).

    CAS  PubMed  Google Scholar 

  33. Aliabadi, H. M., Spencer, T. J., Mahdipoor, P., Lavasanifar, A. & Brocks, D. R. Insights into the effects of hyperlipoproteinemia on cyclosporine A biodistribution and relationship to renal function. AAPS J. 8, E672–81 (2006).

    PubMed  PubMed Central  Google Scholar 

  34. Vadiei, K., Lopez-Berestein, G. & Luke, D. R. Disposition and toxicity of amphotericin-B in the hyperlipidemic Zucker rat model. Int. J. Obes. 14, 465–472 (1990).

    CAS  PubMed  Google Scholar 

  35. Nakamura, T. et al. Effect of serum triglyceride concentration on the fluctuation of whole blood concentration of cyclosporin A in patients. Biol. Pharm. Bull. 24, 683–687 (2001).

    CAS  PubMed  Google Scholar 

  36. Gupta, S. K. & Benet, L. Z. High-fat meals increase the clearance of cyclosporine. Pharm. Res. 7, 46–48 (1990). This paper showed that increased lipoprotein concentrations increased drug clearance and volume of distribution.

    CAS  PubMed  Google Scholar 

  37. Kim, M. S. et al. Differences in the pharmacokinetics of peroxisome proliferator-activated receptor agonists in genetically obese Zucker and sprague-dawley rats: implications of decreased glucuronidation in obese Zucker rats. Drug Metab. Dispos. 32, 909–914 (2004).

    CAS  PubMed  Google Scholar 

  38. Gupta, S. K. et al. Effect of food on the pharmacokinetics of cyclosporine in healthy subjects following oral and intravenous administration. J. Clin. Pharmacol. 30, 643–653 (1990).

    CAS  PubMed  Google Scholar 

  39. Tan, K. K. et al. Effect of dietary fat on the pharmacokinetics and pharmacodynamics of cyclosporine in kidney transplant recipients. Clin. Pharmacol. Ther. 57, 425–433 (1995).

    CAS  PubMed  Google Scholar 

  40. Brocks, D. R., Ala, S. & Aliabadi, H. M. The effect of increased lipoprotein levels on the pharmacokinetics of cyclosporine A in the laboratory rat. Biopharm. Drug Dispos. 27, 7–16 (2006).

    CAS  PubMed  Google Scholar 

  41. Chao, Y. S., Windler, E. E., Chen, G. C. & Havel, R. J. Hepatic catabolism of rat and human lipoproteins in rats treated with 17 alpha-ethinyl estradiol. J. Biol. Chem. 254, 11360–11366 (1979).

    CAS  PubMed  Google Scholar 

  42. Brunner, L. J., Vadiei, K. & Luke, D. R. Cyclosporine disposition in the hyperlipidemic rat model. Res. Commun. Chem. Pathol. Pharmacol. 59, 339–348 (1988).

    CAS  PubMed  Google Scholar 

  43. Shah, A. K. & Sawchuk, R. J. Effect of co-administration of intralipid on the pharmacokinetics of cyclosporine in the rabbit. Biopharm. Drug Dispos. 12, 457–466 (1991).

    CAS  PubMed  Google Scholar 

  44. Wasan, K. M., Grossie, V. B. Jr & Lopez-Berestein, G. Concentrations in serum and distribution in tissue of free and liposomal amphotericin B in rats during continuous intralipid infusion. Antimicrob. Agents Chemother. 38, 2224–2226 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Eliot, L. A., Foster, R. T. & Jamali, F. Effects of hyperlipidemia on the pharmacokinetics of nifedipine in the rat. Pharm. Res. 16, 309–313 (1999).

    CAS  PubMed  Google Scholar 

  46. Milton, K. A., Edwards, G., Ward, S. A., Orme, M. L. & Breckenridge, A. M. Pharmacokinetics of halofantrine in man: effects of food and dose size. Br. J. Clin. Pharmacol. 28, 71–77 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Santos, P. et al. Parenteral nutrition and cyclosporine: do lipids make a difference? A prospective randomized crossover trial. Clin. Nutr. 20, 31–36 (2001).

    CAS  PubMed  Google Scholar 

  48. Vincon, G., Ploux, D., Pehourcq, F. & Albin, H. Pharmacokinetics of propranolol, phenytoin and lidocaine in hypercholesterolemic rabbits. J. Pharmacol. 14, 47–55 (1983).

    CAS  PubMed  Google Scholar 

  49. Wojcicki, J. et al. Comparative pharmacokinetics and pharmacodynamics of propranolol and atenolol in normolipaemic and hyperlipidaemic obese subjects. Biopharm. Drug Dispos. 24, 211–218 (2003).

    CAS  PubMed  Google Scholar 

  50. Wojcicki, J. et al. Studies on the pharmacokinetics and pharmacodynamics of propranolol in hyperlipidemia. J. Clin. Pharmacol. 39, 826–833 (1999).

    CAS  PubMed  Google Scholar 

  51. Eliot, L. A. & Jamali, F. Pharmacokinetics and pharmacodynamics of nifedipine in untreated and atorvastatin-treated hyperlipidemic rats. J. Pharmacol. Exp. Ther. 291, 188–193 (1999).

    CAS  PubMed  Google Scholar 

  52. Lehmann, R., Bhargava, A. S. & Gunzel, P. Serum lipoprotein pattern in rats, dogs and monkeys, including method comparison and influence of menstrual cycle in monkeys. Eur. J. Clin. Chem. Clin. Biochem. 31, 633–637 (1993).

    CAS  PubMed  Google Scholar 

  53. Nistor, A., Bulla, A., Filip, D. A. & Radu, A. The hyperlipidemic hamster as a model of experimental atherosclerosis. Atherosclerosis 68, 159–173 (1987).

    CAS  PubMed  Google Scholar 

  54. Mahley, R. W. & Weisgraber, K. H. Canine lipoproteins and atherosclerosis. I. Isolation and characterization of plasma lipoproteins from control dogs. Circ. Res. 35, 713–721 (1974).

    CAS  PubMed  Google Scholar 

  55. Tsutsumi, K., Hagi, A. & Inoue, Y. The relationship between plasma high density lipoprotein cholesterol levels and cholesteryl ester transfer protein activity in six species of healthy experimental animals. Biol. Pharm. Bull. 24, 579–581 (2001).

    CAS  PubMed  Google Scholar 

  56. Macoviak, J. A. et al. Four-year experience with cyclosporine for heart and heart-lung transplantation. Transplant Proc. 17, 97–101 (1985).

    Google Scholar 

  57. Keown, P. A. Emerging indications for the use of cyclosporin in organ transplantation and autoimmunity. Drugs 40, 315–325 (1990).

    CAS  PubMed  Google Scholar 

  58. Awni, W. M. & Sawchuk, R. J. The pharmacokinetics of cyclosporine. II. Blood plasma distribution and binding studies. Drug Metab. Dispos. 13, 133–138 (1985).

    CAS  PubMed  Google Scholar 

  59. Sgoutas, D., MacMahon, W., Love, A. & Jerkunica, I. Interaction of cyclosporin A with human lipoproteins. J. Pharm. Pharmacol. 38, 583–588 (1986).

    CAS  PubMed  Google Scholar 

  60. Mraz, W. et al. Distribution and transfer of cyclosporine among the various human lipoprotein classes. Transplant Proc. 15, 2426–2429 (1983).

    CAS  Google Scholar 

  61. Wasan, K. M. et al. Differences in lipoprotein lipid concentration and composition modify the plasma distribution of cyclosporine. Pharm. Res. 14, 1613–1620 (1997).

    CAS  PubMed  Google Scholar 

  62. Nemunaitis, J., Deeg, H. J. & Yee, G. C. High cyclosporin levels after bone marrow transplantation associated with hypertriglyceridaemia. Lancet 2, 744–745 (1986).

    CAS  PubMed  Google Scholar 

  63. De Klippel, N., Sennesael, J., Lamote, J., Ebinger, G. & de Keyser, J. Cyclosporin leukoencephalopathy induced by intravenous lipid solution. Lancet 339, 1114 (1992).

    CAS  PubMed  Google Scholar 

  64. de Groen, P. C., Aksamit, A. J., Rakela, J., Forbes, G. S. & Krom, R. A. Central nervous system toxicity after liver transplantation. The role of cyclosporine and cholesterol. N. Engl. J. Med. 317, 861–866 (1987).

    CAS  PubMed  Google Scholar 

  65. Lithell, H. et al. Is the plasma lipoprotein level of importance for treatment with cyclosporine? Transplant Proc. 18, 50–55 (1986).

    Google Scholar 

  66. Prueksaritanont, T., Koike, M., Hoener, B. A. & Benet, L. Z. Transport and metabolism of cyclosporine in isolated rat hepatocytes. The effects of lipids. Biochem. Pharmacol. 43, 1997–2006 (1992).

    CAS  PubMed  Google Scholar 

  67. Prueksaritanont, T., Hoener, B. A. & Benet, L. Z. Effects of low-density lipoprotein and ethinyl estradiol on cyclosporine metabolism in isolated rat liver perfusions. Drug Metab. Dispos. 20, 547–552 (1992).

    CAS  PubMed  Google Scholar 

  68. Wojcicki, J., Kalinowski, W. & Gawronska-Szklarz, B. Comparative pharmacokinetics of doxycycline and oxytetracycline in patients with hyperlipidemia. Arzneimittelforschung 35, 991–993 (1985).

    CAS  PubMed  Google Scholar 

  69. Bohdanecka, M. et al. Nephrotoxicity of cyclosporin A in hereditary hypertriglyceridemic rats. Physiol. Res. 48, 437–443 (1999).

    CAS  PubMed  Google Scholar 

  70. van de Waterbeemd, H., Smith, D. A. & Jones, B. C. Lipophilicity in PK design: methyl, ethyl, futile. J. Comput. Aided Mol. Des. 15, 273–286 (2001).

    CAS  PubMed  Google Scholar 

  71. Surewicz, W. K., Epand, R. M., Pownall, H. J. & Hui, S. W. Human apolipoprotein A-I forms thermally stable complexes with anionic but not with zwitterionic phospholipids. J. Biol. Chem. 261, 16191–16197 (1986).

    CAS  PubMed  Google Scholar 

  72. Scherphof, G., Van Leeuwen, B., Wilschut, J. & Damen, J. Exchange of phosphatidylcholine between small unilamellar liposomes and human plasma high-density lipoprotein involves exclusively the phospholipid in the outer monolayer of the liposomal membrane. Biochim. Biophys. Acta 732, 595–599 (1983).

    CAS  PubMed  Google Scholar 

  73. Wasan, K. M. & Cassidy, S. M. Role of plasma lipoproteins in modifying the biological activity of hydrophobic drugs. J. Pharm. Sci. 87, 411–424 (1998).

    CAS  PubMed  Google Scholar 

  74. Wasan, K. M. & Morton, R. E. Differences in lipoprotein concentration and composition modify the plasma distribution of free and liposomal annamycin. Pharm. Res. 13, 462–468 (1996).

    CAS  PubMed  Google Scholar 

  75. Cassidy, S. M., Strobel, F. W. & Wasan, K. M. Plasma lipoprotein distribution of liposomal nystatin is influenced by protein content of high-density lipoproteins. Antimicrob. Agents Chemother. 42, 1878–1888 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Oda, M. N. et al. Reconstituted high density lipoprotein enriched with the polyene antibiotic amphotericin B. J. Lipid Res. 47, 260–267 (2006). Oda and colleagues have exploited the understanding of partitioning amphotericin B into HDL by developing a reconstituted HDL enriched with amphotericin B (AmB-rHDL) formulation. This work provides one of the first examples of a successful lipoprotein–drug formulation.

    PubMed  Google Scholar 

  77. Chung, N. S. & Wasan, K. M. Potential role of the low-density lipoprotein receptor family as mediators of cellular drug uptake. Adv. Drug Deliv. Rev. 56, 1315–1334 (2004).

    CAS  PubMed  Google Scholar 

  78. Jeon, H. & Blacklow, S. C. Structure and physiologic function of the low-density lipoprotein receptor. Annu. Rev. Biochem. 74, 535–562 (2005).

    CAS  PubMed  Google Scholar 

  79. May, P., Woldt, E., Matz, R. L. & Boucher, P. The LDL receptor-related protein (LRP) family: an old family of proteins with new physiological functions. Ann. Med. 39, 219–228 (2007).

    CAS  PubMed  Google Scholar 

  80. Amin, K., Wasan, K. M., Albrecht, R. M. & Heath, T. D. Cell association of liposomes with high fluid anionic phospholipid content is mediated specifically by LDL and its receptor, LDLr. J. Pharm. Sci. 91, 1233–1244 (2002).

    CAS  PubMed  Google Scholar 

  81. Amin, K., Ng, K. Y., Brown, C. S., Bruno, M. S. & Heath, T. D. LDL induced association of anionic liposomes with cells and delivery of contents as shown by the increase in potency of liposome dependent drugs. Pharm. Res. 18, 914–921 (2001).

    CAS  PubMed  Google Scholar 

  82. Amin, K. & Heath, T. D. LDL-induced association of anionic liposomes with cells and delivery of contents. II. Interaction of liposomes with cells in serum-containing medium. J. Control. Release 73, 49–57 (2001).

    CAS  PubMed  Google Scholar 

  83. Lakkaraju, A., Rahman, Y. E. & Dubinsky, J. M. Low-density lipoprotein receptor-related protein mediates the endocytosis of anionic liposomes in neurons. J. Biol. Chem. 277, 15085–15092 (2002).

    CAS  PubMed  Google Scholar 

  84. Rensen, P. C. et al. Human recombinant apolipoprotein E-enriched liposomes can mimic low-density lipoproteins as carriers for the site-specific delivery of antitumor agents. Mol. Pharmacol. 52, 445–455 (1997).

    CAS  PubMed  Google Scholar 

  85. Versluis, A. J., Rump, E. T., Rensen, P. C., Van Berkel, T. J. & Bijsterbosch, M. K. Synthesis of a lipophilic daunorubicin derivative and its incorporation into lipidic carriers developed for LDL receptor-mediated tumor therapy. Pharm. Res. 15, 531–537 (1998).

    CAS  PubMed  Google Scholar 

  86. Versluis, A. J., Rensen, P. C., Rump, E. T., Van Berkel, T. J. & Bijsterbosch, M. K. Low-density lipoprotein receptor-mediated delivery of a lipophilic daunorubicin derivative to B16 tumours in mice using apolipoprotein E-enriched liposomes. Br. J. Cancer 78, 1607–1614 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Versluis, A. J., Rump, E. T., Rensen, P. C., van Berkel, T. J. & Bijsterbosch, M. K. Stable incorporation of a lipophilic daunorubicin prodrug into apolipoprotein E-exposing liposomes induces uptake of prodrug via low-density lipoprotein receptor in vivo. J. Pharmacol. Exp. Ther. 289, 1–7 (1999).

    CAS  PubMed  Google Scholar 

  88. Koller-Lucae, S. K., Schott, H. & Schwendener, R. A. Interactions with human blood in vitro and pharmacokinetic properties in mice of liposomal N4-octadecyl-1-beta-D-arabinofuranosylcytosine, a new anticancer drug. J. Pharmacol. Exp. Ther. 282, 1572–1580 (1997).

    CAS  PubMed  Google Scholar 

  89. Koller-Lucae, S. K., Schott, H. & Schwendener, R. A. Low density lipoprotein and liposome mediated uptake and cytotoxic effect of N4-octadecyl-1-beta-D-arabinofuranosylcytosine in Daudi lymphoma cells. Br. J. Cancer 80, 1542–1549 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Rodrigues, D. G., Covolan, C. C., Coradi, S. T., Barboza, R. & Maranhao, R. C. Use of a cholesterol-rich emulsion that binds to low-density lipoprotein receptors as a vehicle for paclitaxel. J. Pharm. Pharmacol. 54, 765–772 (2002).

    CAS  PubMed  Google Scholar 

  91. Hughes, T. A., Gaber, A. O. & Montgomery, C. E. Plasma distribution of cyclosporine within lipoproteins and “in vitro” transfer between very-low-density lipoproteins, low-density lipoproteins, and high-density lipoproteins. Ther. Drug Monit. 13, 289–295 (1991).

    CAS  PubMed  Google Scholar 

  92. de Groen, P. C. Cyclosporine, low-density lipoprotein, and cholesterol. Mayo Clin. Proc. 63, 1012–1021 (1988). One of the first key papers which suggest that low-density lipoprotein not only functions as an important carrier of cyclosporine in plasma but also facilitates transport of cyclosporine across the cell membrane by means of the low density lipoprotein receptor.

    CAS  PubMed  Google Scholar 

  93. Lemaire, M., Pardridge, W. M. & Chaudhuri, G. Influence of blood components on the tissue uptake indices of cyclosporin in rats. J. Pharmacol. Exp. Ther. 244, 740–743 (1988).

    CAS  PubMed  Google Scholar 

  94. Rifai, N., Chao, F. F., Pham, Q., Thiessen, J. & Soldin, S. J. The role of lipoproteins in the transport and uptake of cyclosporine and dihydro-tacrolimus into HepG2 and JURKAT cell lines. Clin. Biochem. 29, 149–155 (1996).

    CAS  PubMed  Google Scholar 

  95. Hirano, T. et al. Serum cholesterol levels and kidney transplantation outcome: attenuation of cyclosporine efficacy? Transplantation 71, 659–660 (2001).

    CAS  PubMed  Google Scholar 

  96. Strong, M. L. & Ueda, C. T. Effects of low and high density lipoproteins on renal cyclosporine A and cyclosporine G disposition in the isolated perfused rat kidney. Pharm. Res. 14, 1466–1471 (1997).

    CAS  PubMed  Google Scholar 

  97. Peteherych, K. D. & Wasan, K. M. Effects of lipoproteins on cyclosporine A toxicity and uptake in LLC-PK1 pig kidney cells. J. Pharm. Sci. 90, 1395–1406 (2001).

    CAS  PubMed  Google Scholar 

  98. Wasan, K. M., Donnachie, E. M., Seccombe, D. W. & Pritchard, P. H. Effect of cyclosporine A on the binding affinity and internalization of low-density lipoproteins in human skin fibroblasts. J. Pharm. Sci. 91, 2520–2524 (2002).

    CAS  PubMed  Google Scholar 

  99. Saito, A., Pietromonaco, S., Loo, A. K. & Farquhar, M. G. Complete cloning and sequencing of rat gp330/“megalin,” a distinctive member of the low density lipoprotein receptor gene family. Proc. Natl Acad. Sci. USA 91, 9725–9729 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Moestrup, S. K. et al. Evidence that epithelial glycoprotein 330/megalin mediates uptake of polybasic drugs. J. Clin. Invest. 96, 1404–1413 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Farquhar, M. G. The unfolding story of megalin (gp330): now recognized as a drug receptor. J. Clin. Invest. 96, 1184 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Schmitz, C. et al. Megalin deficiency offers protection from renal aminoglycoside accumulation. J. Biol. Chem. 277, 618–622 (2002).

    CAS  PubMed  Google Scholar 

  103. Nagai, J., Tanaka, H., Nakanishi, N., Murakami, T. & Takano, M. Role of megalin in renal handling of aminoglycosides. Am. J. Physiol. Renal Physiol. 281, F337–44 (2001).

    CAS  PubMed  Google Scholar 

  104. Cavallaro, U., Nykjaer, A., Nielsen, M. & Soria, M. R. Alpha 2-macroglobulin receptor mediates binding and cytotoxicity of plant ribosome-inactivating proteins. Eur. J. Biochem. 232, 165–171 (1995).

    CAS  PubMed  Google Scholar 

  105. Chan, W. L. et al. Trichosanthin interacts with and enters cells via LDL receptor family members. Biochem. Biophys. Res. Commun. 270, 453–457 (2000).

    CAS  PubMed  Google Scholar 

  106. Chang, M. C., Saksena, S. K., Lau, I. F. & Wang, Y. H. Induction of mid-term abortion by trichosanthin in laboratory animals. Contraception 19, 175–184 (1979).

    CAS  PubMed  Google Scholar 

  107. Acton, S. L., Scherer, P. E., Lodish, H. F. & Krieger, M. Expression cloning of SR-BI, a CD36-related class B scavenger receptor. J. Biol. Chem. 269, 21003–21009 (1994).

    CAS  PubMed  Google Scholar 

  108. Acton, S. et al. Identification of scavenger receptor SR-BI as a high density lipoprotein receptor. Science 271, 518–520 (1996).

    CAS  PubMed  Google Scholar 

  109. Pussinen, P. J. et al. The human breast carcinoma cell line HBL-100 acquires exogenous cholesterol from high-density lipoprotein via CLA-1 (CD-36 and LIMPII analogous 1)-mediated selective cholesteryl ester uptake. Biochem. J. 349, 559–566 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Cao, W. M. et al. A mutant high-density lipoprotein receptor inhibits proliferation of human breast cancer cells. Cancer Res. 64, 1515–1521 (2004).

    CAS  PubMed  Google Scholar 

  111. Wasan, K. M., Morton, R. E., Rosenblum, M. G. & Lopez-Berestein, G. Decreased toxicity of liposomal amphotericin B due to association of amphotericin B with high-density lipoproteins: role of lipid transfer protein. J. Pharm. Sci. 83, 1006–1010 (1994).

    CAS  PubMed  Google Scholar 

  112. Wasan, K. M., Ramaswamy, M., McIntosh, M. P., Porter, C. J. & Charman, W. N. Differences in the lipoprotein distribution of halofantrine are regulated by lipoprotein apolar lipid and protein concentration and lipid transfer protein I activity: in vitro studies in normolipidemic and dyslipidemic human plasmas. J. Pharm. Sci. 88, 185–190 (1999).

    CAS  PubMed  Google Scholar 

  113. Wasan, K. M., Ramaswamy, M., Wong, W. & Pritchard, P. H. Lipid transfer protein I facilitated transfer of cyclosporine from low- to high-density lipoproteins is only partially dependent on its cholesteryl ester transfer activity. J. Pharmacol. Exp. Ther. 284, 599–605 (1998). First paper to suggest that lipid transfer protein 1 (also commonly known as CETP) is involved in the movement of cyclosporine between lipoprotein fractions.

    CAS  PubMed  Google Scholar 

  114. Wasan, K. M., Subramanian, R., Chou, J. W., Ramaswamy, M. & Pritchard, P. H. Cyclosporine transfer from low- and high-density lipoproteins is partially influenced by lipid transfer protein I triglyceride transfer activity. Pharm. Res. 16, 1067–1073 (1999).

    CAS  PubMed  Google Scholar 

  115. Kwong, M., Sivak, O., Kwong, E. H. & Wasan, K. M. Cyclosporine A transfer between high- and low-density lipoproteins: independent from lipid transfer protein I-facilitated transfer of lipoprotein-coated phospholipids because of high affinity of cyclosporine a for the protein component of lipoproteins. J. Pharm. Sci. 90, 1308–1317 (2001).

    CAS  PubMed  Google Scholar 

  116. Meunier, F. Alternative modalities of administering amphotericin B: current issues. J. Infect. 1, Suppl 28, 51–56 (1994).

    Google Scholar 

  117. Meyer, R. D. Current role of therapy with amphotericin B. Clin. Infect. Dis. 14, S154–160 (1992).

    PubMed  Google Scholar 

  118. Wasan, K. M., Brazeau, G. A., Keyhani, A., Hayman, A. C. & Lopez-Berestein, G. Roles of liposome composition and temperature in distribution of amphotericin B in serum lipoproteins. Antimicrob. Agents Chemother. 37, 246–250 (1993). Key, ground-breaking paper that suggests that changes in the liposome phospholipid composition alter the distribution of amphotericin B with serum lipoproteins.

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Wasan, K. M., Rosenblum, M. G., Cheung, L. & Lopez-Berestein, G. Influence of lipoproteins on renal cytotoxicity and antifungal activity of amphotericin B. Antimicrob. Agents Chemother. 38, 223–227 (1994). One of the first papers to report that amphotericin B distribution into specific lipoproteins alters the drug's renal cytotoxicity and antifungal activity.

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Pato, C. et al. Potential application of plant lipid transfer proteins for drug delivery. Biochem. Pharmacol. 62, 555–560 (2001).

    CAS  PubMed  Google Scholar 

  121. Gardier, A. M. et al. Effects of plasma lipid levels on blood distribution and pharmacokinetics of cyclosporin A. Ther. Drug Monit. 15, 274–280 (1993).

    CAS  PubMed  Google Scholar 

  122. Moulin, P. Cholesteryl ester transfer protein: an enigmatic protein. Horm. Res. 45, 238–244 (1996).

    CAS  PubMed  Google Scholar 

  123. Jonas, A. in Biochemistry of Lipids, Lipoproteins and Membranes (eds Vance, D. E. & Vance, J. E.) 483–504 (Elsevier, Amsterdam; Boston, 2002).

    Google Scholar 

  124. Vance, J. E. in Biochemistry of Lipids, Lipoproteins and Membranes (eds Vance, D. E. & Vance, J. E.) 505–526 (Elsevier, Amsterdam; Boston, 2002).

    Google Scholar 

  125. Fielding, P. E. & Fielding, C. J. in Biochemistry of Lipids, Lipoproteins and Membranes (eds Vance, D. E. & Vance, J. E.) 527–552 (Elsevier, Amsterdam; Boston, 2002).

    Google Scholar 

  126. Havel, R. J. & Kane, J. P. in The Metabolic and molecular bases of inherited disease (eds Scriver, C. R., Beaudet, A. L., Sly, W. S. & Valle, D.) 2705–2716 (McGraw-Hill Health Professions Division, New York, 2007).

    Google Scholar 

  127. Powell, L. M. et al. A novel form of tissue-specific RNA processing produces apolipoprotein-B48 in intestine. Cell 50, 831–840 (1987).

    CAS  PubMed  Google Scholar 

  128. Morton, R. E. & Greene, D. J. Partial suppression of CETP activity beneficially modifies the lipid transfer profile of plasma. Atherosclerosis 192, 100–107 (2007).

    CAS  PubMed  Google Scholar 

  129. Qiu, X. et al. Crystal structure of cholesteryl ester transfer protein reveals a long tunnel and four bound lipid molecules. Nature Struct. Mol. Biol. 14, 106–113 (2007). First paper to identify the crystal structure of cholesteryl ester transfer protein (CETP). Describes the structure of CETP at 2.2 Å resolution, revealing a 60-Å-long tunnel, filled with two hydrophobic cholesteryl esters, and plugged by an amphiphilic phosphatidylcholine at each end.

    Google Scholar 

  130. St-Pierre, A. C. et al. Low-density lipoprotein subfractions and the long-term risk of ischemic heart disease in men: 13-year follow-up data from the Quebec Cardiovascular Study. Arterioscler. Thromb. Vasc. Biol. 25, 553–559 (2005).

    CAS  PubMed  Google Scholar 

  131. Brown, M. S. & Goldstein, J. L. A receptor-mediated pathway for cholesterol homeostasis. Science 232, 34–47 (1986). Landmark paper on the discovery of the low density lipoprotein receptor pathway.

    CAS  PubMed  Google Scholar 

  132. Rader, D. J. Molecular regulation of HDL metabolism and function: implications for novel therapies. J. Clin. Invest. 116, 3090–3100 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Chau, P., Nakamura, Y., Fielding, C. J. & Fielding, P. E. Mechanism of prebeta-HDL formation and activation. Biochemistry 45, 3981–3987 (2006).

    CAS  PubMed  Google Scholar 

  134. Rossignol, D. P. et al. Safety, pharmacokinetics, pharmacodynamics, and plasma lipoprotein distribution of eritoran (E5564) during continuous intravenous infusion into healthy volunteers. Antimicrob. Agents Chemother. 48, 3233–3240 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Liptak, P. & Ivanyi, B. Primer: Histopathology of calcineurin-inhibitor toxicity in renal allografts. Nature Clin. Pract. Nephrol. 2, 398–404; quiz following 404 (2006).

    CAS  Google Scholar 

  136. Pardridge, W. M. Carrier-mediated transport of thyroid hormones through the rat blood-brain barrier: primary role of albumin-bound hormone. Endocrinology 105, 605–612 (1979).

    CAS  PubMed  Google Scholar 

  137. Boudreau, E. F. et al. Malaria: treatment efficacy of halofantrine (WR 171, 669) in initial field trials in Thailand. Bull. World Health Organ. 66, 227–235 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Watkins, W. M. et al. Efficacy of multiple-dose halofantrine in treatment of chloroquine-resistant falciparum malaria in children in Kenya. Lancet 2, 247–250 (1988).

    CAS  PubMed  Google Scholar 

  139. McIntosh, M. P., Porter, C. J., Wasan, K. M., Ramaswamy, M. & Charman, W. N. Differences in the lipoprotein binding profile of halofantrine in fed and fasted human or beagle plasma are dictated by the respective masses of core apolar lipoprotein lipid. J. Pharm. Sci. 88, 378–384 (1999).

    CAS  PubMed  Google Scholar 

  140. Brocks, D. R., Ramaswamy, M., MacInnes, A. I. & Wasan, K. M. The stereoselective distribution of halofantrine enantiomers within human, dog and rat plasma lipoproteins. Pharm. Res. 17, 427–431 (2000).

    CAS  PubMed  Google Scholar 

  141. Medoff, G., Brajtburg, J., Kobayashi, G. S. & Bolard, J. Antifungal agents useful in therapy of systemic fungal infections. Annu. Rev. Pharmacol. Toxicol. 23, 303–330 (1983).

    CAS  PubMed  Google Scholar 

  142. Eggimann, P., Garbino, J. & Pittet, D. Epidemiology of Candida species infections in critically ill non-immunosuppressed patients. Lancet Infect. Dis. 3, 685–702 (2003).

    PubMed  Google Scholar 

  143. Wasan, K. M. et al. Physical characteristics and lipoprotein distribution of liposomal nystatin in human plasma. Antimicrob. Agents Chemother. 41, 1871–1875 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  144. Ramaswamy, M., Peteherych, K. D., Kennedy, A. L. & Wasan, K. M. Amphotericin B lipid complex or amphotericin B multiple-dose administration to rabbits with elevated plasma cholesterol levels: pharmacokinetics in plasma and blood, plasma lipoprotein levels, distribution in tissues, and renal toxicities. Antimicrob. Agents Chemother. 45, 1184–1191 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Barwicz, J., Gruda, I. & Tancr, P. A kinetic study of the oxidation effects of amphotericin B on human low-density lipoproteins. FEBS Lett. 465, 83–86 (2000).

    CAS  PubMed  Google Scholar 

  146. Kennedy, A. L. & Wasan, K. M. Preferential distribution of amphotericin B lipid complex into human HDL3 is a consequence of high density lipoprotein coat lipid content. J. Pharm. Sci. 88, 1149–1155 (1999).

    CAS  PubMed  Google Scholar 

  147. Hartsel, S. C. et al. Heat-induced superaggregation of amphotericin B modifies its interaction with serum proteins and lipoproteins and stimulation of TNF-alpha. J. Pharm. Sci. 90, 124–133 (2001).

    CAS  PubMed  Google Scholar 

  148. Brunner, L. J. & Bai, S. Effect of dietary oil intake on hepatic cytochrome P450 activity in the rat. J. Pharm. Sci. 89, 1022–1027 (2000).

    CAS  PubMed  Google Scholar 

  149. Palmer, W. K., Emeson, E. E. & Johnston, T. P. The poloxamer 407-induced hyperlipidemic atherogenic animal model. Med. Sci. Sports Exerc. 29, 1416–1421 (1997).

    CAS  PubMed  Google Scholar 

  150. Wasan, K. M. et al. Poloxamer 407-mediated alterations in the activities of enzymes regulating lipid metabolism in rats. J. Pharm. Pharm. Sci. 6, 189–197 (2003).

    CAS  PubMed  Google Scholar 

  151. Leon, C., Wasan, K. M., Sachs-Barrable, K. & Johnston, T. P. Acute P-407 administration to mice causes hypercholesterolemia by inducing cholesterolgenesis and down-regulating low-density lipoprotein receptor expression. Pharm. Res. 23, 1597–1607 (2006).

    CAS  PubMed  Google Scholar 

  152. Wout, Z. G. et al. Poloxamer 407-mediated changes in plasma cholesterol and triglycerides following intraperitoneal injection to rats. J. Parenter. Sci. Technol. 46, 192–200 (1992).

    CAS  PubMed  Google Scholar 

  153. Porter, J. A., Carter, B. L., Johnson, T. P. & Palmer, W. K. Effects of pravastatin on plasma lipid concentrations in poloxamer 407-induced hyperlipidemic rats. Pharmacotherapy 15, 92–98 (1995).

    CAS  PubMed  Google Scholar 

  154. Johnston, T. P. et al. Potential downregulation of HMG-CoA reductase after prolonged administration of P-407 in C57BL/6 mice. J. Cardiovasc. Pharmacol. 34, 831–842 (1999).

    CAS  PubMed  Google Scholar 

  155. Zucker, L. M. Hereditary obesity in the rat associated with hyperlipemia. Ann. NY Acad. Sci. 131, 447–458 (1965).

    CAS  PubMed  Google Scholar 

  156. Bray, G. A. The Zucker-fatty rat: a review. Fed. Proc. 36, 148–153 (1977).

    CAS  PubMed  Google Scholar 

  157. Kasiske, B. L., O'Donnell, M. P. & Keane, W. F. The Zucker rat model of obesity, insulin resistance, hyperlipidemia, and renal injury. Hypertension 19, 110–115 (1992).

    Google Scholar 

  158. Spydevold, S. O., Greenbaum, A. L., Baquer, N. Z. & McLean, P. Adaptive responses of enzymes of carbohydrate and lipid metabolism to dietary alteration in genetically obese Zucker rats (fa/fa). Eur. J. Biochem. 89, 329–339 (1978).

    CAS  PubMed  Google Scholar 

  159. Zadelaar, S. et al. Mouse models for atherosclerosis and pharmaceutical modifiers. Arterioscler. Thromb. Vasc. Biol. 27, 1706–1721 (2007).

    CAS  PubMed  Google Scholar 

  160. Piedrahita, J. A., Zhang, S. H., Hagaman, J. R., Oliver, P. M. & Maeda, N. Generation of mice carrying a mutant apolipoprotein E gene inactivated by gene targeting in embryonic stem cells. Proc. Natl Acad. Sci. USA. 89, 4471–4475 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  161. Ishibashi, S. et al. Hypercholesterolemia in low density lipoprotein receptor knockout mice and its reversal by adenovirus-mediated gene delivery. J. Clin. Invest. 92, 883–893 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  162. Ishibashi, S., Herz, J., Maeda, N., Goldstein, J. L. & Brown, M. S. The two-receptor model of lipoprotein clearance: tests of the hypothesis in “knockout” mice lacking the low density lipoprotein receptor, apolipoprotein E, or both proteins. Proc. Natl Acad. Sci. USA 91, 4431–4435 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  163. Tall, A. R., Abreu, E. & Shuman, J. Separation of a plasma phospholipid transfer protein from cholesterol ester/phospholipid exchange protein. J. Biol. Chem. 258, 2174–2180 (1983).

    CAS  PubMed  Google Scholar 

  164. Pattnaik, N. M., Montes, A., Hughes, L. B. & Zilversmit, D. B. Cholesteryl ester exchange protein in human plasma isolation and characterization. Biochim. Biophys. Acta 530, 428–438 (1978).

    CAS  PubMed  Google Scholar 

  165. Chajek, T. & Fielding, C. J. Isolation and characterization of a human serum cholesteryl ester transfer protein. Proc. Natl. Acad. Sci. USA. 75, 3445–3449 (1978).

    CAS  PubMed  PubMed Central  Google Scholar 

  166. Jiang, X. C. et al. Mammalian adipose tissue and muscle are major sources of lipid transfer protein mRNA. J. Biol. Chem. 266, 4631–4639 (1991).

    CAS  PubMed  Google Scholar 

  167. Tall, A. R. Plasma cholesteryl ester transfer protein. J. Lipid Res. 34, 1255–1274 (1993).

    CAS  PubMed  Google Scholar 

  168. Nishida, H. I., Arai, H. & Nishida, T. Cholesterol ester transfer mediated by lipid transfer protein as influenced by changes in the charge characteristics of plasma lipoproteins. J. Biol. Chem. 268, 16352–16360 (1993).

    CAS  PubMed  Google Scholar 

  169. Dumont, L. et al. Molecular mechanism of the blockade of plasma cholesteryl ester transfer protein by its physiological inhibitor apolipoprotein CI. J. Biol. Chem. 280, 38108–38116 (2005).

    CAS  PubMed  Google Scholar 

  170. Masson, D., Athias, A. & Lagrost, L. Evidence for electronegativity of plasma high density lipoprotein-3 as one major determinant of human cholesteryl ester transfer protein activity. J. Lipid Res. 37, 1579–1590 (1996).

    CAS  PubMed  Google Scholar 

  171. Linsel-Nitschke, P. & Tall, A. R. HDL as a target in the treatment of atherosclerotic cardiovascular disease. Nature Rev. Drug Discov. 4, 193–205 (2005).

    CAS  Google Scholar 

  172. Duffy, D. & Rader, D. J. Emerging therapies targeting high-density lipoprotein metabolism and reverse cholesterol transport. Circulation 113, 1140–1150 (2006).

    PubMed  Google Scholar 

  173. Grundy, S. M. in Cholesterol and atherosclerosis: diagnosis and treatment (Lippincott; Gower Medical Pub; Distributed in USA and Canada by J. B. Lippincott, Philadelphia; New York; Philadelphia, PA, USA, 1990).

    Google Scholar 

  174. Nissen, S. E. et al. Effect of torcetrapib on the progression of coronary atherosclerosis. N. Engl. J. Med. 356, 1304–1316 (2007).

    CAS  PubMed  Google Scholar 

  175. Nykjaer, A. & Willnow, T. E. The low-density lipoprotein receptor gene family: a cellular Swiss army knife? Trends Cell Biol. 12, 273–280 (2002). Excellent review paper which describes the molecular interactions and multifunctionality of the low density lipoprotein receptor gene family.

    CAS  PubMed  Google Scholar 

  176. Niemeier, A. et al. Expression of LRP1 by human osteoblasts: a mechanism for the delivery of lipoproteins and vitamin K1 to bone. J. Bone Miner. Res. 20, 283–293 (2005).

    CAS  PubMed  Google Scholar 

  177. Herz, J. & Beffert, U. Apolipoprotein E receptors: linking brain development and Alzheimer's disease. Nature Rev. Neurosci. 1, 51–58 (2000).

    CAS  Google Scholar 

  178. Willnow, T. E., Nykjaer, A. & Herz, J. Lipoprotein receptors: new roles for ancient proteins. Nature Cell Biol. 1, E157–62 (1999).

    CAS  PubMed  Google Scholar 

  179. Herz, J. & Strickland, D. K. LRP: a multifunctional scavenger and signaling receptor. J. Clin. Invest. 108, 779–784 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  180. Brown, M. S. & Goldstein, J. L. Lipoprotein receptors and genetic control of cholesterol metabolism in cultured human cells. Naturwissenschaften 62, 385–389 (1975).

    CAS  PubMed  Google Scholar 

  181. Brown, M. S. & Goldstein, J. L. Regulation of the activity of the low density lipoprotein receptor in human fibroblasts. Cell 6, 307–316 (1975).

    CAS  PubMed  Google Scholar 

  182. Brown, M. S., Faust, J. R. & Goldstein, J. L. Role of the low density lipoprotein receptor in regulating the content of free and esterified cholesterol in human fibroblasts. J. Clin. Invest. 55, 783–793 (1975).

    CAS  PubMed  PubMed Central  Google Scholar 

  183. Tungsiripat, M. & Aberg, J. A. Dyslipidemia in HIV patients. Cleve. Clin. J. Med. 72, 1113–1120 (2005).

    PubMed  Google Scholar 

  184. Chueh, S. C. & Kahan, B. D. Dyslipidemia in renal transplant recipients treated with a sirolimus and cyclosporine-based immunosuppressive regimen: incidence, risk factors, progression, and prognosis. Transplantation 76, 375–382 (2003).

    CAS  PubMed  Google Scholar 

  185. Vinik, A. I. The metabolic basis of atherogenic dyslipidemia. Clin. Cornerstone 7, 27–35 (2005).

    PubMed  Google Scholar 

  186. Taylor, V. & MacQueen, G. Associations between bipolar disorder and metabolic syndrome: A review. J. Clin. Psychiatry 67, 1034–1041 (2006).

    PubMed  Google Scholar 

  187. Mackin, P. & Young, A. H. Rapid cycling bipolar disorder: historical overview and focus on emerging treatments. Bipolar Disord. 6, 523–529 (2004).

    PubMed  Google Scholar 

  188. Yau, J. C., Brunner, L. J., Lopez-Berestein, G., LeMaistre, C. F. & Luke, D. R. Therapeutic drug monitoring of cyclosporine-lipoprotein levels. Pharmacotherapy 11, 291–295 (1991).

    CAS  PubMed  Google Scholar 

  189. Procyshyn, R. M., Kennedy, N. B., Marriage, S. & Wasan, K. M. Plasma protein and lipoprotein distribution of clozapine. Am. J. Psychiatry 158, 949–951 (2001).

    CAS  PubMed  Google Scholar 

  190. Procyshyn, R. M., Ho, T. & Wasan, K. M. Competitive displacement of clozapine from plasma proteins in normolipidemic and hyperlipidemic plasma samples: clinical implications. Drug Dev. Ind. Pharm. 31, 331–337 (2005).

    CAS  PubMed  Google Scholar 

  191. Lacko, A. G., Nair, M., Paranjape, S., Johnso, S. & McConathy, W. J. High density lipoprotein complexes as delivery vehicles for anticancer drugs. Anticancer Res. 22, 2045–2049 (2002).

    CAS  PubMed  Google Scholar 

  192. Shayeganpour, A., Lee, S. D., Wasan K. M. and Brocks, D. R. The influence of hyperlipoproteinemia on in vitro distribution of amiodarone and desethylamiodarone in human and rat plasma. Pharm. Res. 24, 672–678 (2007).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank the many colleagues, mentors and collaborators that have supported this research area over the years. In particular, we would like to thank G. Lopez-Berestein, A. C. Hayman, R. E. Morton and P. H. Pritchard. We would also like to thank the Canadian Institutes of Health Research for the many years of funding to K.M.W. and D.R.B.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kishor M. Wasan.

Supplementary information

Supplementary information S1 (table)

Effects of hyperlipidemia on drug concentrations in blood fluids and in tissues. (PDF 120 kb)

Related links

Related links

DATABASES

OMIM

Autosomal dominant familial hypertriglyceridaemia

Familial combined hyperlipidaemia

Hypercholesterolaemia

Schizophrenia

FURTHER INFORMATION

Kishor Wasan's homepage

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wasan, K., Brocks, D., Lee, S. et al. Impact of lipoproteins on the biological activity and disposition of hydrophobic drugs: implications for drug discovery. Nat Rev Drug Discov 7, 84–99 (2008). https://doi.org/10.1038/nrd2353

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrd2353

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing