Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Innovation
  • Published:

Microbubbles in medical imaging: current applications and future directions

Abstract

Not all bubbles in the bloodstream are detrimental. During the past decade, contrast-enhanced ultrasound has evolved from a purely investigational tool to a routine diagnostic technique. This transformation has been facilitated by advances in the microbubble contrast agents and contrast-specific ultrasound imaging techniques. The ability to non-invasively image molecular events with targeted microbubbles is likely to be important for characterizing pathophysiology and for developing new therapeutic strategies in the treatment of cardiovascular and neoplastic diseases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic illustration of the acoustic properties of microbubbles.
Figure 2: Imaging myocardial microvascular blood flow.
Figure 3: Strategies for microbubble targeting.
Figure 4: Targeted imaging of myocardial inflammation.
Figure 5: Targeted contrast ultrasound imaging of angiogenesis in a glioblastoma tumour.

Similar content being viewed by others

References

  1. Rayleigh, L. On the pressure developed in a liquid during the collapse of a spherical cavity. Phil. Mag. 34, 94–98 (1917).

    Article  Google Scholar 

  2. Dayton, P. A., Morgan, K. E., Klibanov, A. L., Brandenburger, G. H. & Ferrara, K. W. Optical and acoustical observations of the effects of ultrasound on contrast agents. IEEE Trans. Ultrason. Ferroelect. Freq. Contr. 46, 220–232 (1999).

    Article  CAS  Google Scholar 

  3. Medwin, H. Counting bubbles acoustically: a review. Ultrasonics 15, 7–13 (1977).

    Article  Google Scholar 

  4. DeJong, N., Hoff, L., Skotland, T. & Bom, N. Absorption and scatter of encapsulated gas filled microspheres: theoretical considerations and some measurements. Ultrasonics 30, 95–103 (1992).

    Article  CAS  Google Scholar 

  5. Leong-Poi, H. et al. Influence of microbubble shell on ultrasound signal during real-time myocardial contrast echocardiography. J. Am. Soc. Echocardiogr. 15, 1269–1276 (2002).

    Article  Google Scholar 

  6. Chomas, J. E., Dayton, P., Allen, J., Morgan, K. & Ferrara, K. W. Mechanisms of contrast agent destruction. IEEE Trans. Ultrason. Ferr. Freq. Control 48, 232–248 (2001).

    Article  CAS  Google Scholar 

  7. Gramiak, R. & Shah, P. M. Echocardiography of the aortic root. Invest. Radiol. 3, 356–366 (1968).

    Article  CAS  Google Scholar 

  8. Feinstein, S. B. et al. Two-dimensional contrast echocardiography, I: in vitro development and quantitative analysis of echo contrast agents. J. Am. Coll. Cardiol. 3, 14–20 (1984).

    Article  CAS  Google Scholar 

  9. Christiansen, C., Kryvi, H., Sontum, P. C. & Skotland, T. Physical and biochemical characterization of Albunex, a new ultrasound contrast agent consisting of air-filled albumin microspheres suspended in a solution of human serum albumin. Biotechnol. Appl. Biochem. 19, 307–320 (1994).

    CAS  PubMed  Google Scholar 

  10. Epstein, P. S. & Plesset, M. S. On the stability of gas bubbles in liquid-gas solutions. J. Chem. Phys. 18, 1505–1509 (1950).

    Article  CAS  Google Scholar 

  11. Hundley, W. G. et al. Administration of an intravenous perfluorocarbon contrast agent improves echocardiographic determination of left ventricular volumes and ejection fraction: comparison with cine magnetic resonance imaging. J. Am. Coll. Cardiol. 32, 1426–1432 (1998).

    Article  CAS  Google Scholar 

  12. Rainbird, A. J. et al. Contrast dobutamine stress echocardiography: clinical practice assessment in 300 consecutive patients. J. Am. Soc. Echocardiogr. 14, 378–385 (2001).

    Article  CAS  Google Scholar 

  13. Kono, Y. et al. Carotid arteries: contrast-enhanced US angiography. Radiology 230, 561–568 (2004).

    Article  Google Scholar 

  14. Fischer, G., Rak, R. & Sackmann, M. Improved investigation of portal-hepatic veins by echo-enhanced Doppler sonography. Ultrasound Med. Bio. 24, 1345–1349 (1999).

    Article  Google Scholar 

  15. Prefumo, F. et al. The sonographic evaluation of tubal patency with stimulated acoustic emission imaging. Ultrasound Obstet. Gyn. 20, 386–389 (2002).

    Article  CAS  Google Scholar 

  16. Darge, K. et al. Contrast-enhanced harmonic imaging for the diagnosis of vesicoureteral reflux in pediatric patients. Am. J. Roentgenol. 177, 1411–1415 (2001).

    Article  CAS  Google Scholar 

  17. Lindner, J. R., Song, J., Jayaweera, A. R., Sklenar, J. & Kaul, S. Microvascular rheology of Definity microbubbles following intra-arterial and intravenous administration. J. Am. Soc. Echocardiogr. 15, 396–403 (2002).

    Article  Google Scholar 

  18. Wei, K. et al. Quantification of myocardial blood flow with ultrasound induced destruction of microbubbles administered as a constant venous infusion. Circulation 97, 473–483 (1998).

    Article  CAS  Google Scholar 

  19. Wei, K. & Lindner, J. R. Myocardial contrast echocardiography. Curr. Probl. Cardiol. 27, 449–520 (2002).

    Google Scholar 

  20. Wei, K. et al. Quantification of total and regional renal blood flow using contrast-enhanced ultrasonography. J. Am. Coll. Cardiol. 37, 1135–1140 (2001).

    Article  CAS  Google Scholar 

  21. Rim, S. J. et al. Quantification of cerebral perfusion with real-time contrast-enhanced ultrasound. Circulation 104, 2582–2587 (2001)

    Article  CAS  Google Scholar 

  22. Christiansen, J. P., Leong-Poi, H., Amiss, L. R., Drake, D. B. & Lindner, J. R. Assessment of skin flap viability by dermal perfusion imaging with contrast-enhanced ultrasound. Ultrasound Med. Bio. 28, 315–320 (2002).

    Article  Google Scholar 

  23. Dawson, D. et al. Assessment of capillary recruitment in skeletal muscle using contrast-enhanced ultrasound. Am. J. Physiol. 282, E714–E720 (2002).

    CAS  Google Scholar 

  24. Kassab, G. S., Lin, D. H. & Fung, Y. B. Topology and dimensions of pig coronary capillary network. Am. J. Physiol. 267, H319–H325 (1994).

    CAS  PubMed  Google Scholar 

  25. Rim, S. J. et al. Decrease in coronary blood flow reserve during hyperlipidemia is secondary to an increase in blood viscosity. Circulation 104, 2704–2709 (2001).

    Article  CAS  Google Scholar 

  26. Ferrara, K. W. et al. Evaluation of tumor angiogenesis with US: imaging, Doppler, and contrast agents. Acad. Radiol. 7, 824–839 (2000).

    Article  CAS  Google Scholar 

  27. Wilson, S. R., Burns, P. N., Muradali, D., Wilson., J. A. & Lai, X. Harmonic hepatic US with microbubble contrast agent: initial experience showing improved characterization of hemangioma, hepatocellular carcinoma, and metastasis. Radiology 215, 153–161 (2000).

    Article  CAS  Google Scholar 

  28. Lindner, J. R. et al. Microbubble persistence in the microcirculation during ischemia-reperfusion and inflammation: integrin- and complement-mediated adherence to activated leukocytes. Circulation 101, 668–675 (2000).

    Article  CAS  Google Scholar 

  29. Lindner, J. R. et al. Noninvasive ultrasound imaging of inflammation using microbubbles targeted to activated leukocytes. Circulation 102, 2745–2750 (2000).

    Article  CAS  Google Scholar 

  30. Christiansen, J. P. et al. Non-invasive imaging of myocardial reperfusion injury using leukocyte-targeted contrast echocardiography. Circulation 105, 1764–1767 (2002).

    Article  Google Scholar 

  31. Weller, G. E. R. et al. Ultrasound imaging of acute cardiac transplant rejection with microbubbles targeted to intercellular adhesion molecule-1. Circulation 108, 218–224 (2003).

    Article  Google Scholar 

  32. Demos, S. M. et al. In vivo targeting of acoustically reflective liposomes for intravascular and transvalvular ultrasonic enhancement. J. Am. Coll. Cardiol. 33, 867–875 (1999).

    Article  CAS  Google Scholar 

  33. Lindner, J. R. et al. Ultrasound assessment of inflammation and renal tissue injury with microbubbles targeted to P-selectin. Circulation 104, 2107–2112 (2001).

    Article  CAS  Google Scholar 

  34. Unger, E. C., McCreery, T. P., Sweitzer, R. H., Shen, D. & Wu, G. In vitro studies of a new thrombus-specific ultrasound contrast agent. Am. J. Cardiol. 81, 58G–61G (1998).

    Article  CAS  Google Scholar 

  35. Lanza, G. M. et al. A novel site-targeted ultrasonic contrast agent with broad biomedical application. Circulation 95, 3334–3340 (1997).

    Google Scholar 

  36. Tachibana, K. & Tachibana, S. Albumin microbubble echo-contrast material as an enhancer for ultrasound accelerated thrombolysis. Circulation 92, 1148–1150 (1995).

    Article  CAS  Google Scholar 

  37. Porter, T. R., Kricsfeld, D., Lof, J., Everbach, E. C. & Xie, F. Effectiveness of transcranial and transthoracic ultrasound and microbubbles in dissolving intravascular thrombi. J. Ultrasound Med. 20, 1313–1325 (2001).

    Article  CAS  Google Scholar 

  38. Leong-Poi, H., Christiansen, J., Klibanov, A. L., Kaul, S. & Lindner, J. R. Non-invasive assessment of angiogenesis by ultrasound and microbubbles targeted to αv-integrins. Circulation 107, 455–460 (2003).

    Article  CAS  Google Scholar 

  39. Ellegala, D. B. et al. Imaging tumor angiogenesis with contrast ultrasound and microbubbles targeted to αvβ3 . Circulation 108, 336–341 (2003).

    Article  Google Scholar 

  40. Hynynen, K., McDannold, N., Vykhodtseva, N. & Jolesz, F. A. Non-invasive opening of BBB by focused ultrasound. Acta Neurochir Suppl. 86, 555–558 (2003).

    CAS  PubMed  Google Scholar 

  41. Shohet, R. V. et al. Echocardiographic destruction of albumin microbubbles directs gene delivery to the myocardium. Circulation 101, 2554–2556 (2000).

    Article  CAS  Google Scholar 

  42. Tamiyama, Y. et al. Local delivery of plasmid DNA into a rat carotid artery using ultrasound. Circulation 105, 1233–1239 (2002).

    Article  Google Scholar 

  43. Christiansen, J. P., French, B. A., Klibanov, A. L., Kaul, S. & Lindner, J. R. Targeted tissue transfection with ultrasound destruction of plasmid-bearing cationic microbubbles. Ultrasound Med. Bio. 29, 1759–1767 (2003).

    Article  Google Scholar 

  44. Porter, T. et al. Inhibition of carotid artery neointimal formation microbubbles. Ultrasound Med. Bio. 27, 259–265 (2001).

    Article  CAS  Google Scholar 

  45. Bao, S., Thrall, B. D. & Miller, D. L. Transfection of a reporter plasmid into cultured cells by sonoporation in vitro. Ultrasound Med. Biol. 23, 953–959 (1997).

    Article  CAS  Google Scholar 

  46. Greenleaf, W. J., Bolander, M. E., Sarkar, G., Goldring, M. B. & Greenleaf, J. F. Artificial cavitation nuclei significantly enhance acoustically induced cell transfection. Ultrasound Med. Biol. 24, 587–595 (1990).

    Article  Google Scholar 

  47. Unger, E. C., Hersh, E., Vannan, M., Matsunaga, T. O. & McCreery, T. Local drug and gene delivery through microbubbles. Prog. Cardiovasc. Dis. 44, 45–54 (2001).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

J.R.L. is a scientific advisory board member for Bristol-Myers Squibb Medical Imaging, and is a minority owner of Targeson, LLC.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lindner, J. Microbubbles in medical imaging: current applications and future directions. Nat Rev Drug Discov 3, 527–533 (2004). https://doi.org/10.1038/nrd1417

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrd1417

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing