Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Refining the treatment of NSCLC according to histological and molecular subtypes

Key Points

  • Our understanding of non-small-cell lung cancer (NSCLC) has evolved from a single disease entity that was treated with a one-size-fits-all approach to a disease comprising clinically, histologically and genetically diverse subtypes

  • Further subtypes of tumours with EGFR mutations and ALK translocations are now recognized based on the type of resistance mechanism to targeted therapy; these subtypes have important therapeutic implications

  • Whereas several NSCLC subtypes that are responsive to targeted therapies have been identified, at present, no single molecular determinant of response to an immunotherapeutic agent has been identified

  • Although the importance of genotype-driven treatment decisions is recognized, challenges relating to tissue acquisition and processing, biomarker platforms, tumour heterogeneity, and evaluation of molecular markers and drugs pose practical barriers to clinical application of this paradigm

  • With further development of targeted therapies and immunotherapies, clinicians will probably face the daunting task of elucidating the ideal timing and sequence of molecularly targeted therapy, immunotherapy, and chemotherapy

  • Despite improvements in outcome for select patient subgroups, progress is needed in the adjuvant setting, squamous-cell lung cancers, KRAS-mutated tumours, and tumours with no detectable genetic alterations

Abstract

In the past decade, the characterization of non-small-cell lung cancer (NSCLC) into subtypes based on genotype and histology has resulted in dramatic improvements in disease outcome in select patient subgroups. In particular, molecularly targeted agents that inhibit EGFR or ALK are approved for the treatment of NSCLC harbouring genetic alterations in the genes encoding these proteins. Although acquired resistance usually limits the duration of response to these therapies, a number of new agents have proven effective at tackling specific resistance mechanisms to first-generation inhibitors. Large initiatives are starting to address the role of biomarker-driven targeted therapy in squamous lung cancers, and in the adjuvant setting. Immunotherapy undeniably holds great promise and our understanding of subsets of NSCLC based on patterns of immune response is continuing to evolve. In addition, efforts are underway to identify rare genomic subsets through genomic screening, functional studies, and molecular characterization of exceptional responders. This Review provides an overview of the key developments in the treatment of NSCLC, and discusses potential strategies to further optimize therapy by targeting disease subtypes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Timeline depicting the historical milestones in the development of therapies for NSCLC.
Figure 2: Schematic representation of the current paradigm for the pharmacological management of advanced-stage NSCLC.
Figure 3: Potential algorithm for incorporating chemotherapies, immunotherapy and targeted therapies into the management of NSCLC in the future.

Similar content being viewed by others

References

  1. Ferlay, J. et al. Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008. Int. J. Cancer 127, 2893–2917 (2010).

    Article  CAS  PubMed  Google Scholar 

  2. Siegel, R. L., Miller, K. D. & Jemal, A. Cancer statistics, 2015. CA Cancer J. Clin. 65, 5–29 (2015).

    Article  PubMed  Google Scholar 

  3. Molina, J. R., Yang, P., Cassivi, S. D., Schild, S. E. & Adjei, A. A. Non-small cell lung cancer: epidemiology, risk factors, treatment, and survivorship. Mayo Clin. Proc. 83, 584–594 (2008).

    Article  PubMed  Google Scholar 

  4. [No authors listed] Chemotherapy in non-small cell lung cancer: a meta-analysis using updated data on individual patients from 52 randomised clinical trials. Non-small Cell Lung Cancer Collaborative Group. BMJ 311, 899–909 (1995).

  5. Green, R. A., Humphrey, E., Close, H. & Patno, M. E. Alkylating agents in bronchogenic carcinoma. Am. J. Med. 46, 516–525 (1969).

    Article  CAS  PubMed  Google Scholar 

  6. Schiller, J. H. et al. Comparison of four chemotherapy regimens for advanced non-small-cell lung cancer. N. Engl. J. Med. 346, 92–98 (2002).

    Article  CAS  PubMed  Google Scholar 

  7. Johnson, D. H. & Einhorn, L. H. Paclitaxel plus carboplatin: an effective combination chemotherapy for advanced non-small-cell lung-cancer or just another Elvis sighting. J. Clin. Oncol. 13, 1840–1842 (1995).

    Article  CAS  PubMed  Google Scholar 

  8. Levine, B. & Weisberger, A. S. Response of various types of bronchogenic carcinoma to nitrogen mustard. Ann. Intern. Med. 42, 1089–1096 (1955).

    Article  CAS  PubMed  Google Scholar 

  9. Lynch, T. J. et al. Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. N. Engl. J. Med. 350, 2129–2139 (2004).

    Article  CAS  PubMed  Google Scholar 

  10. Paez, J. G. et al. EGFR mutations in lung cancer: correlation with clinical response to gefitinib therapy. Science 304, 1497–1500 (2004).

    Article  CAS  PubMed  Google Scholar 

  11. Scagliotti, G. V. et al. Phase III study comparing cisplatin plus gemcitabine with cisplatin plus pemetrexed in chemotherapy-naive patients with advanced-stage non-small-cell lung cancer. J. Clin. Oncol. 26, 3543–3551 (2008).

    Article  CAS  PubMed  Google Scholar 

  12. Sequist, L. V. et al. Phase III study of afatinib or cisplatin plus pemetrexed in patients with metastatic lung adenocarcinoma with EGFR mutations. J. Clin. Oncol. 31, 3327–3334 (2013).

    Article  CAS  PubMed  Google Scholar 

  13. Rosell, R. et al. Erlotinib versus standard chemotherapy as first-line treatment for European patients with advanced EGFR mutation-positive non-small-cell lung cancer (EURTAC): a multicentre, open-label, randomised phase 3 trial. Lancet Oncol. 13, 239–246 (2012).

    Article  CAS  PubMed  Google Scholar 

  14. Zhou, C. et al. Erlotinib versus chemotherapy as first-line treatment for patients with advanced EGFR mutation-positive non-small-cell lung cancer (OPTIMAL, CTONG-0802): a multicentre, open-label, randomised, phase 3 study. Lancet Oncol. 12, 735–742 (2011).

    Article  CAS  PubMed  Google Scholar 

  15. Solomon, B. J. et al. First-line crizotinib versus chemotherapy in ALK-positive lung cancer. N. Engl. J. Med. 371, 2167–2177 (2014).

    Article  CAS  PubMed  Google Scholar 

  16. Camidge, D. R., Pao, W. & Sequist, L. V. Acquired resistance to TKIs in solid tumours: learning from lung cancer. Nat. Rev. Clin. Oncol. 11, 473–481 (2014).

    Article  CAS  PubMed  Google Scholar 

  17. Oxnard, G. R. et al. Acquired resistance to EGFR tyrosine kinase inhibitors in EGFR-mutant lung cancer: distinct natural history of patients with tumors harboring the T790M mutation. Clin. Cancer Res. 17, 1616–1622 (2011).

    Article  CAS  PubMed  Google Scholar 

  18. Katayama, R. et al. Mechanisms of acquired crizotinib resistance in ALK-rearranged lung cancers. Sci. Transl. Med. 4, 120ra17 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Park, K. S. et al. CRIPTO1 expression in EGFR-mutant NSCLC elicits intrinsic EGFR-inhibitor resistance. J. Clin. Invest. 124, 3003–3015 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Chong, C. R. & Janne, P. A. The quest to overcome resistance to EGFR-targeted therapies in cancer. Nat. Med. 19, 1389–1400 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Lovly, C. M. et al. Rationale for co-targeting IGF-1R and ALK in ALK fusion-positive lung cancer. Nat. Med. 20, 1027–1034 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Crystal, A. S. et al. Patient-derived models of acquired resistance can identify effective drug combinations for cancer. Science 346, 1480–1486 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. de Bruin, E. C. et al. Spatial and temporal diversity in genomic instability processes defines lung cancer evolution. Science 346, 251–256 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Kobayashi, S. et al. EGFR mutation and resistance of non-small-cell lung cancer to gefitinib. N. Engl. J. Med. 352, 786–792 (2005).

    Article  CAS  PubMed  Google Scholar 

  25. Pao, W. et al. Acquired resistance of lung adenocarcinomas to gefitinib or erlotinib is associated with a second mutation in the EGFR kinase domain. PLoS Med. 2, 225–235 (2005).

    Article  CAS  Google Scholar 

  26. Engelman, J. A. et al. PF00299804, an irreversible pan-ERBB inhibitor, is effective in lung cancer models with EGFR and ERBB2 mutations that are resistant to gefitinib. Cancer Res. 67, 11924–11932 (2007).

    Article  CAS  PubMed  Google Scholar 

  27. Li, D. et al. BIBW2992, an irreversible EGFR/HER2 inhibitor highly effective in preclinical lung cancer models. Oncogene 27, 4702–4711 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Ramalingam, S. S. et al. Randomized phase II study of dacomitinib (PF-00299804), an irreversible pan-human epidermal growth factor receptor inhibitor, versus erlotinib in patients with advanced non-small-cell lung cancer. J. Clin. Oncol. 30, 3337–3344 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Katakami, N. et al. LUX-Lung 4: a phase II trial of afatinib in patients with advanced non-small-cell lung cancer who progressed during prior treatment with erlotinib, gefitinib, or both. J. Clin. Oncol. 31, 3335–3341 (2013).

    Article  CAS  PubMed  Google Scholar 

  30. Kim, Y. et al. The EGFR T790M mutation in acquired resistance to an irreversible second-generation EGFR inhibitor. Mol. Cancer Ther. 11, 784–791 (2012).

    Article  CAS  PubMed  Google Scholar 

  31. Janne, P. A. et al. Clinical activity of the mutant-selective EGFR inhibitor AZD9291 in patients (pts) with EGFR inhibitor–resistant non-small cell lung cancer (NSCLC) [abstract]. J. Clin. Oncol. 32 (5s Suppl.), a8009 (2014).

    Article  Google Scholar 

  32. US National Library of Medicine. ClinicalTrials.gov [online], (2015).

  33. Sequist, L. V. et al. First-in-human evaluation of CO-1686, an irreversible, highly selective tyrosine kinase inhibitor of mutations of EGFR (activating and T790M) [abstract]. J. Clin. Oncol. 32 (5s Suppl.), a8010 (2014).

    Article  Google Scholar 

  34. US National Library of Medicine. ClinicalTrials.gov [online], (2015).

  35. Janjigian, Y. Y. et al. Dual inhibition of EGFR with afatinib and cetuximab in kinase inhibitor-resistant EGFR-mutant lung cancer with and without T790M mutations. Cancer Discov. 4, 1036–1045 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Janjigian, Y. Y. et al. Phase I/II trial of cetuximab and erlotinib in patients with lung adenocarcinoma and acquired resistance to erlotinib. Clin. Cancer Res. 17, 2521–2527 (2011).

    Article  CAS  PubMed  Google Scholar 

  37. Seto, T. et al. Erlotinib alone or with bevacizumab as first-line therapy in patients with advanced non-squamous non-small-cell lung cancer harbouring EGFR mutations (JO25567): an open-label, randomised, multicentre, phase 2 study. Lancet Oncol. 15, 1236–1244 (2014).

    Article  CAS  PubMed  Google Scholar 

  38. Wu, Y. L. et al. Intercalated combination of chemotherapy and erlotinib for patients with advanced stage non-small-cell lung cancer (FASTACT-2): a randomised, double-blind trial. Lancet Oncol. 14, 777–786 (2013).

    Article  CAS  PubMed  Google Scholar 

  39. Mok, T. S. et al. Gefitinib/chemotherapy vs chemotherapy in epidermal growth factor receptor (EGFR) mutation-positive non-small-cell lung cancer (NSCLC) after progression on first-line gefitinib: the phase III, randomised IMPRESS study [abstract]. Ann. Oncol. 25 (Suppl. 5), LBA2_PR (2014).

    Google Scholar 

  40. Shaw, A. T. et al. Ceritinib in ALK-rearranged non-small-cell lung cancer. N. Engl. J. Med. 370, 1189–1197 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Friboulet, L. et al. The ALK inhibitor ceritinib overcomes crizotinib resistance in non-small cell lung cancer. Cancer Discov. 4, 662–673 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Khozin, S. et al. FDA approval: ceritinib for the treatment of metastatic anaplastic lymphoma kinase-positive non-small cell lung cancer. Clin. Cancer Res. http://dx.doi.org/10.1158/1078-0432.CCR-14-3157 (2015).

  43. Gadgeel, S. M. et al. Safety and activity of alectinib against systemic disease and brain metastases in patients with crizotinib-resistant ALK-rearranged non-small-cell lung cancer (AF-002JG): results from the dose-finding portion of a phase 1/2 study. Lancet Oncol. 15, 1119–1128 (2014).

    Article  CAS  PubMed  Google Scholar 

  44. US National Library of Medicine. ClinicalTrials.gov [online], (2015).

  45. US National Library of Medicine. ClinicalTrials.gov [online], (2015).

  46. US National Library of Medicine. ClinicalTrials.gov [online], (2014).

  47. US National Library of Medicine. ClinicalTrials.gov [online], (2014).

  48. Katayama, R. et al. Two novel ALK mutations mediate acquired resistance to the next-generation ALK inhibitor alectinib. Clin. Cancer Res. 20, 5686–5696 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Sang, J. et al. Targeted inhibition of the molecular chaperone HSP90 overcomes ALK inhibitor resistance in non-small cell lung cancer. Cancer Discov. 3, 430–443 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Socinski, M. A. et al. A multicenter phase II study of ganetespib monotherapy in patients with genotypically defined advanced non-small cell lung cancer. Clin. Cancer Res. 19, 3068–3077 (2013).

    Article  CAS  PubMed  Google Scholar 

  51. US National Library of Medicine. ClinicalTrials.gov [online], (2015).

  52. US National Library of Medicine. ClinicalTrials.gov [online], (2014).

  53. Shaw, A. T. et al. Crizotinib versus chemotherapy in advanced ALK-positive lung cancer. N. Engl. J. Med. 368, 2385–2394 (2013).

    Article  CAS  PubMed  Google Scholar 

  54. US National Library of Medicine. ClinicalTrials.gov [online], (2015).

  55. Ou, S. H. et al. Clinical benefit of continuing ALK inhibition with crizotinib beyond initial disease progression in patients with advanced ALK-positive NSCLC. Ann. Oncol. 25, 415–422 (2014).

    Article  PubMed  Google Scholar 

  56. Marzec, M. et al. Oncogenic kinase NPM/ALK induces through STAT3 expression of immunosuppressive protein CD274 (PD-L1, B7-H1). Proc. Natl Acad. Sci. USA 105, 20852–20857 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Pfizer. Pfizer And Merck To Collaborate On Study Evaluating Novel Anti-Cancer Combination Regimen [online], (2014).

  58. Bearz, A. et al. Activity of pemetrexed on brain metastases from non-small cell lung cancer. Lung Cancer 68, 264–268 (2010).

    Article  PubMed  Google Scholar 

  59. Gerber, N. K. et al. Erlotinib versus radiation therapy for brain metastases in patients with EGFR-mutant lung adenocarcinoma. Int. J. Radiat. Oncol. Biol. Phys. 89, 322–329 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Heon, S. et al. Development of central nervous system metastases in patients with advanced non-small cell lung cancer and somatic EGFR mutations treated with gefitinib or erlotinib. Clin. Cancer Res. 16, 5873–5882 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Ohashi, K., Maruvka, Y. E., Michor, F. & Pao, W. Epidermal growth factor receptor tyrosine kinase inhibitor-resistant disease. J. Clin. Oncol. 31, 1070–1080 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Grommes, C. et al. “Pulsatile” high-dose weekly erlotinib for CNS metastases from EGFR mutant non-small cell lung cancer. Neuro Oncol. 13, 1364–1369 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Sperduto, P. W. et al. A phase 3 trial of whole brain radiation therapy and stereotactic radiosurgery alone versus WBRT and SRS with temozolomide or erlotinib for non-small cell lung cancer and 1 to 3 brain metastases: Radiation Therapy Oncology Group 0320. Int. J. Radiat. Oncol. Biol. Phys. 85, 1312–1318 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Costa, D. B. et al. Clinical experience with crizotinib in patients with advanced ALK-rearranged non-small-cell lung cancer and brain metastases. J. Clin. Oncol. http://dx/doi.org/10.1200/JCO.2014.59.0539 (2015).

  65. Costa, D. B. et al. CSF concentration of the anaplastic lymphoma kinase inhibitor crizotinib. J. Clin. Oncol. 29, e443–e445 (2011).

    Article  PubMed  Google Scholar 

  66. US National Library of Medicine. ClinicalTrials.gov [online], (2015).

  67. Thomas, A. & Hassan, R. Immunotherapies for non-small-cell lung cancer and mesothelioma. Lancet Oncol. 13, e301–e310 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Topalian, S. L. et al. Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N. Engl. J. Med. 366, 2443–2454 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Brahmer, J. R. et al. Safety and activity of anti-PD-L1 antibody in patients with advanced cancer. N. Engl. J. Med. 366, 2455–2465 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Herbst, R. S. et al. Predictive correlates of response to the anti-PD-L1 antibody MPDL3280A in cancer patients. Nature 515, 3563–3567 (2014).

    Article  CAS  Google Scholar 

  71. OPDIVO (nivolumab) injection, for intravenous use package insert [online], (Bristol-Myers Squibb, 2014).

  72. US Food and Drug Administration. FDA expands approved use of Opdivo to treat lung cancer [online], (2015).

  73. Gettinger, S. & Herbst, R. S. B7-H1/PD-1 blockade therapy in non-small cell lung cancer: current status and future direction. Cancer J. 20, 281–289 (2014).

    Article  CAS  PubMed  Google Scholar 

  74. Snyder, A. et al. Genetic basis for clinical response to CTLA-4 blockade in melanoma. N. Engl. J. Med. 371, 2189–2199 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Akbay, E. A. et al. Activation of the PD-1 pathway contributes to immune escape in EGFR-driven lung tumors. Cancer Discov. 3, 1355–1363 (2013).

    Article  CAS  PubMed  Google Scholar 

  76. Azuma, K. et al. Association of PD-L1 overexpression with activating EGFR mutations in surgically resected nonsmall-cell lung cancer. Ann. Oncol. 25, 1935–1940 (2014).

    Article  CAS  PubMed  Google Scholar 

  77. Oxnard, G. R., Binder, A. & Jänne, P. A. New targetable oncogenes in non-small-cell lung cancer. J. Clin. Oncol. 31, 1097–1104 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. Blackhall, F. H. et al. Prevalence and clinical outcomes for patients with ALK-positive resected stage I to III adenocarcinoma: results from the European Thoracic Oncology Platform Lungscape Project. J. Clin. Oncol. 32, 2780–2787 (2014).

    Article  PubMed  Google Scholar 

  79. Kris, M. G. et al. Using multiplexed assays of oncogenic drivers in lung cancers to select targeted drugs. JAMA 311, 1998–2006 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Ju, Y. S. et al. A transforming KIF5B and RET gene fusion in lung adenocarcinoma revealed from whole-genome and transcriptome sequencing. Genome Res. 22, 436–445 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Wang, R. et al. RET fusions define a unique molecular and clinicopathologic subtype of non-small-cell lung cancer. J. Clin. Oncol. 30, 4352–4359 (2012).

    Article  CAS  PubMed  Google Scholar 

  82. Drilon, A. et al. Response to cabozantinib in patients with RET fusion-positive lung adenocarcinomas. Cancer Discov. 3, 630–635 (2013).

    PubMed  PubMed Central  CAS  Google Scholar 

  83. Bergethon, K. et al. ROS1 rearrangements define a unique molecular class of lung cancers. J. Clin. Oncol. 30, 863–870 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Shaw, A. T. et al. Crizotinib in ROS1-rearranged non-small-cell lung cancer. N. Engl. J. Med. 371, 1963–1971 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. Hammerman, P. S. et al. Mutations in the DDR2 kinase gene identify a novel therapeutic target in squamous cell lung cancer. Cancer Discov. 1, 78–89 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. Weiss, J. et al. Frequent and focal FGFR1 amplification associates with therapeutically tractable FGFR1 dependency in squamous cell lung cancer. Sci. Transl. Med. 2, 62ra93 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. Spigel, D. et al. Final efficacy results from OAM4558g, a randomized phase II study evaluating MetMAb or placebo in combination with erlotinib in advanced NSCLC [abstract]. J. Clin. Oncol. 29 (Suppl.), a7505 (2011).

    Article  Google Scholar 

  88. Mazieres, J. et al. Lung cancer that harbors an HER2 mutation: epidemiologic characteristics and therapeutic perspectives. J. Clin. Oncol. 31, 1997–2003 (2013).

    Article  CAS  PubMed  Google Scholar 

  89. Thomas, A. et al. From targets to targeted therapies and molecular profiling in non-small cell lung carcinoma. Ann. Oncol. 24, 577–585 (2013).

    Article  CAS  PubMed  Google Scholar 

  90. Dienstmann, R. et al. Genomic aberrations in the FGFR pathway: opportunities for targeted therapies in solid tumors. Ann. Oncol. 25, 552–563 (2014).

    Article  PubMed  CAS  Google Scholar 

  91. Sleijfer, S., Bogaerts, J. & Siu, L. L. Designing transformative clinical trials in the cancer genome era. J. Clin. Oncol. 31, 1834–1841 (2013).

    Article  PubMed  Google Scholar 

  92. Lopez-Chavez, A. et al. Molecular profiling and targeted therapy for advanced thoracic malignancies: a biomarker derived multi-arm, multi-histology phase II “basket” trial. J. Clin. Oncol. 33, 1000–1007 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  93. Cancer Genome Atlas Research Network. Comprehensive genomic characterization of squamous cell lung cancers. Nature 489, 519–525 (2012).

  94. Iyer, G. et al. Genome sequencing identifies a basis for everolimus sensitivity. Science 338, 221 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  95. Takebe, N. et al. Biomarkers: exceptional responders-discovering predictive biomarkers. Nat. Rev. Clin. Oncol. 12, 132–134 (2015).

    Article  PubMed  Google Scholar 

  96. Devesa, S. S., Bray, F., Vizcaino, A. P. & Parkin, D. M. International lung cancer trends by histologic type: male:female differences diminishing and adenocarcinoma rates rising. Int. J. Cancer 117, 294–299 (2005).

    Article  CAS  PubMed  Google Scholar 

  97. Socinski, M. A. et al. Weekly nab-paclitaxel in combination with carboplatin versus solvent-based paclitaxel plus carboplatin as first-line therapy in patients with advanced non-small-cell lung cancer: final results of a phase III trial. J. Clin. Oncol. 30, 2055–2062 (2012).

    Article  CAS  PubMed  Google Scholar 

  98. Johnson, D. H. et al. Randomized phase II trial comparing bevacizumab plus carboplatin and paclitaxel with carboplatin and paclitaxel alone in previously untreated locally advanced or metastatic non-small-cell lung cancer. J. Clin. Oncol. 22, 2184–2191 (2004).

    Article  CAS  PubMed  Google Scholar 

  99. Garon, E. B. et al. Ramucirumab plus docetaxel versus placebo plus docetaxel for second-line treatment of stage IV non-small-cell lung cancer after disease progression on platinum-based therapy (REVEL): a multicentre, double-blind, randomised phase 3 trial. Lancet 384, 665–673 (2014).

    Article  CAS  PubMed  Google Scholar 

  100. Pujol, J. L. et al. Meta-analysis of individual patient data from randomized trials of chemotherapy plus cetuximab as first-line treatment for advanced non-small cell lung cancer. Lung Cancer 83, 211–218 (2014).

    Article  PubMed  Google Scholar 

  101. Thatcher, N. et al. A randomized, multicenter, open-label, phase III study of gemcitabine-cisplatin (GC) chemotherapy plus necitumumab (IMC-11F8/LY3012211) versus GC alone in the first-line treatment of patients (pts) with stage IV squamous non-small cell lung cancer (sq-NSCLC) [abstract]. J. Clin. Oncol. 32 (5s Suppl.), a8008 (2014).

    Article  Google Scholar 

  102. Lindeman, N. I. et al. Molecular testing guideline for selection of lung cancer patients for EGFR and ALK tyrosine kinase inhibitors: guideline from the College of American Pathologists, International Association for the Study of Lung Cancer, and Association for Molecular Pathology. J. Mol. Diagn. 15, 415–553 (2013).

    Article  CAS  PubMed  Google Scholar 

  103. Malik, S. M. et al. Consensus report of a joint NCI thoracic malignancies steering committee: FDA workshop on strategies for integrating biomarkers into clinical development of new therapies for lung cancer leading to the inception of “master protocols” in lung cancer. J. Thorac. Oncol. 9, 1443–1448 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  104. Pignon, J. P. et al. Lung adjuvant cisplatin evaluation: a pooled analysis by the LACE Collaborative Group. J. Clin. Oncol. 26, 3552–3559 (2008).

    Article  PubMed  Google Scholar 

  105. Friboulet, L. et al. ERCC1 isoform expression and DNA repair in non-small-cell lung cancer. N. Engl. J. Med. 368, 1101–1110 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  106. Gu, F., Wisnivesky, J. P., Mhango, G. & Strauss, G. M. Carboplatin versus cisplatin-based adjuvant chemotherapy in elderly patients with stages IB, II, and IIIA non-small cell lung cancer in the community setting [abstract]. J. Clin. Oncol. 31 (Suppl.), a7533 (2013).

    Google Scholar 

  107. Goss, G. D. et al. Gefitinib versus placebo in completely resected non-small-cell lung cancer: results of the NCIC CTG BR19 study. J. Clin. Oncol. 31, 3320–3326 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  108. Thatcher, N. et al. Gefitinib plus best supportive care in previously treated patients with refractory advanced non-small-cell lung cancer: results from a randomised, placebo-controlled, multicentre study (Iressa Survival Evaluation in Lung Cancer). Lancet 366, 1527–1537 (2005).

    Article  CAS  PubMed  Google Scholar 

  109. Kelly, K. et al. Phase III trial of maintenance gefitinib or placebo after concurrent chemoradiotherapy and docetaxel consolidation in inoperable stage III non-small-cell lung cancer: SWOG S0023. J. Clin. Oncol. 26, 2450–2456 (2008).

    Article  CAS  PubMed  Google Scholar 

  110. Kelly, K. et al. A randomized, double-blind phase 3 trial of adjuvant erlotinib (E) versus placebo (P) following complete tumor resection with or without adjuvant chemotherapy in patients (pts) with stage IB-IIIA EGFR positive (IHC/FISH) non-small cell lung cancer (NSCLC): RADIANT results [abstract]. J. Clin. Oncol. 32 (5s Suppl.), a7501 (2014).

    Article  Google Scholar 

  111. US National Library of Medicine. ClinicalTrials.gov [online], (2014).

  112. US National Library of Medicine. ClinicalTrials.gov [online], (2014).

  113. US National Library of Medicine. ClinicalTrials.gov [online], (2015).

  114. Mok, T. et al. Treating patients with EGFR-sensitizing mutations: first line or second line—is there a difference? J. Clin. Oncol. 31, 1081–1088 (2013).

    Article  CAS  PubMed  Google Scholar 

  115. Jiang, X. et al. The activation of MAPK in melanoma cells resistant to BRAF inhibition promotes PD-L1 expression that is reversible by MEK and PI3K inhibition. Clin. Cancer Res. 19, 598–609 (2013).

    Article  CAS  PubMed  Google Scholar 

  116. Deborah, A. et al. Host immunity contributes to the anti-melanoma activity of BRAF inhibitors. J. Clin. Invest. 123, 1371–1381 (2013).

    Article  CAS  Google Scholar 

  117. Gulley, J. L. et al. Impact of tumour volume on the potential efficacy of therapeutic vaccines. Curr. Oncol. 18, e150–e157 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  118. Begley, J. & Ribas, A. Targeted therapies to improve tumor immunotherapy. Clin. Cancer Res. 14, 4385–4391 (2008).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The work of A.T. is supported by the Intramural Research Program of the NIH, National Cancer Institute, Center for Cancer Research.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed substantially to researching the data for the article, discussions of content, writing the article, and review/editing of the manuscript before submission.

Corresponding author

Correspondence to Giuseppe Giaccone.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thomas, A., Liu, S., Subramaniam, D. et al. Refining the treatment of NSCLC according to histological and molecular subtypes. Nat Rev Clin Oncol 12, 511–526 (2015). https://doi.org/10.1038/nrclinonc.2015.90

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrclinonc.2015.90

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing