Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Mouse hospital and co-clinical trial project—from bench to bedside

This article has been updated

Abstract

Owing to the molecular complexity of cancer and the cost of therapy, researchers have begun looking to in vivo functional genomics to inform patient care. Unfortunately, xenographs of established tumour cell lines in immunodeficient mice fail to recapitulate many critical features of human primary tumours. By contrast, mouse models of cancer often faithfully recapitulate basic biology, tumour–microenvironment interactions, drug responses and therapy resistance similar to human disease. Thus, we established the co-clinical trial project, and in doing so developed the concept of the mouse hospital, whereby in vivo preclinical and early clinical studies are closely aligned, enabling in vivo testing of drugs in a multitude of cancer subtypes using mouse models, while minimizing the cost and time required to study responses in thousands of human patients. This approach can inform enrolment of patients in clinical trials, and can enable repositioning and/or repurposing of previously approved drugs.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The co-clinical trial project for the development of precision medicine and personalized care.
Figure 2: Objectives of the mouse hospital and co-clinical trial project.
Figure 3: Integrating mouse trials and human trials.

Similar content being viewed by others

Change history

  • 30 April 2015

    In the version of this article initially published online, the author line contained a spelling error (Paulo instead of Paolo). The error has been corrected for the print, HTML and PDF versions of the article.

References

  1. Yates, L. R. & Campbell, P. J. Evolution of the cancer genome. Nat. Rev. Genet. 13, 795–806 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Garraway, L. A. & Lander, E. S. Lessons from the cancer genome. Cell 153, 17–37 (2013).

    Article  CAS  PubMed  Google Scholar 

  3. Mendelsohn, J., Tursz, T., Schilsky, R. L. & Lazar, V. WIN Consortium--challenges and advances. Nat. Rev. Clin. Oncol. 8, 133–134 (2011).

    Article  PubMed  Google Scholar 

  4. Tursz, T., Andre, F., Lazar, V., Lacroix, L. & Soria, J.-C. Implications of personalized medicine--perspective from a cancer center. Nat. Rev. Clin. Oncol. 8, 177–183 (2011).

    Article  PubMed  Google Scholar 

  5. Lunardi, A. et al. A co-clinical approach identifies mechanisms and potential therapies for androgen deprivation resistance in prostate cancer. Nat. Genet. 45, 747–755 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Chen, Z. et al. A murine lung cancer co-clinical trial identifies genetic modifiers of therapeutic response. Nature 483, 613–617 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Nardella, C., Lunardi, A., Patnaik, A., Cantley, L. C. & Pandolfi, P. P. The APL paradigm and the 'co-clinical trial' project. Cancer Discov. 1, 108–116 (2011).

    Article  PubMed  Google Scholar 

  8. Shoemaker, R. H. The NCI60 human tumour cell line anticancer drug screen. Nat. Rev. Cancer 6, 813–823 (2006).

    Article  CAS  PubMed  Google Scholar 

  9. Sharma, S. V., Haber, D. A. & Settleman, J. Cell line-based platforms to evaluate the therapeutic efficacy of candidate anticancer agents. Nat. Rev. Cancer 10, 241–253 (2010).

    Article  CAS  PubMed  Google Scholar 

  10. Kelland, L. R. Of mice and men: values and liabilities of the athymic nude mouse model in anticancer drug development. Eur. J. Cancer 40, 827–836 (2004).

    Article  CAS  PubMed  Google Scholar 

  11. Sausville, E. A. & Burger, A. M. Contributions of human tumor xenografts to anticancer drug development. Cancer Res. 66, 3351–3354 (2006).

    Article  CAS  PubMed  Google Scholar 

  12. Finn, O. J. Immuno-oncology: understanding the function and dysfunction of the immune system in cancer. Ann. Oncol. 23, S6–S9 (2012).

    Google Scholar 

  13. Quail, D. F. & Joyce, J. A. Microenvironmental regulation of tumor progression and metastasis. Nat. Med. 19, 1423–1437 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Barretina, J. et al. The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity. Nature 483, 603–607 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Siolas, D. & Hannon, G. J. Patient-derived tumor xenografts: transforming clinical samples into mouse models. Cancer Res 73, 5315–5319 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Tentler, J. J. et al. Patient-derived tumour xenografts as models for oncology drug development. Nat. Rev. Clin. Oncol. 9, 338–350 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Malaney, P., Nicosia, S. V. & Davé, V. One mouse, one patient paradigm: New avatars of personalized cancer therapy. Cancer Lett. 344, 1–12 (2014).

    Article  CAS  PubMed  Google Scholar 

  18. Ishikawa, F. et al. Development of functional human blood and immune systems in NOD/SCID/IL2 receptor {gamma} chain(null) mice. Blood 106, 1565–1573 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Shultz, L. D. et al. Human lymphoid and myeloid cell development in NOD/LtSz-scid IL2R gamma null mice engrafted with mobilized human hemopoietic stem cells. J. Immunol. 174, 6477–6489 (2005).

    Article  CAS  PubMed  Google Scholar 

  20. Traggiai, E. et al. Development of a human adaptive immune system in cord blood cell-transplanted mice. Science 304, 104–107 (2004).

    Article  CAS  PubMed  Google Scholar 

  21. Kola, I. & Landis, J. Can the pharmaceutical industry reduce attrition rates? Nat. Rev. Drug Discov. 3, 711–715 (2004).

    Article  CAS  PubMed  Google Scholar 

  22. Lunardi, A., Nardella, C., Clohessy, J. G. & Pandolfi, P. P. Of model pets and cancer models: an introduction to mouse models of cancer. Cold Spring Harb. Protoc. 2014, 17–31 (2014).

    Article  PubMed  Google Scholar 

  23. He, L. Z. et al. Distinct interactions of PML-RARalpha and PLZF-RARalpha with co-repressors determine differential responses to RA in APL. Nat. Genet. 18, 126–135 (1998).

    Article  CAS  PubMed  Google Scholar 

  24. Rego, E. M., He, L. Z., Warrell, R. P., Wang, Z. G. & Pandolfi, P. P. Retinoic acid (RA) and As2O3 treatment in transgenic models of acute promyelocytic leukemia (APL) unravel the distinct nature of the leukemogenic process induced by the PML-RARalpha and PLZF-RARalpha oncoproteins. Proc. Natl Acad. Sci. USA 97, 10173–10178 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ito, K. et al. A PML–PPAR-δ pathway for fatty acid oxidation regulates hematopoietic stem cell maintenance. Nat. Med. 18, 1350–1358 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Ventura, A. et al. Targeted deletion reveals essential and overlapping functions of the miR-17 through 92 family of miRNA clusters. Cell 132, 875–886 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Mu, P. et al. Genetic dissection of the miR-1792 cluster of microRNAs in Myc-induced B-cell lymphomas. Genes Dev. 23, 2806–2811 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Trotman, L. C. et al. Pten dose dictates cancer progression in the prostate. PLoS Biol. 1, E59 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Chen, Z. et al. Crucial role of p53-dependent cellular senescence in suppression of Pten-deficient tumorigenesis. Nature 436, 725–730 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Ma, L. et al. Genetic analysis of Pten and Tsc2 functional interactions in the mouse reveals asymmetrical haploinsufficiency in tumor suppression. Genes Dev. 19, 1779–1786 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Nardella, C. et al. Aberrant Rheb-mediated mTORC1 activation and Pten haploinsufficiency are cooperative oncogenic events. Genes Dev. 22, 2172–2177 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Nardella, C. et al. Differential requirement of mTOR in postmitotic tissues and tumorigenesis. Sci Signal 2, ra2 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Wang, G. et al. Zbtb7a suppresses prostate cancer through repression of a Sox9-dependent pathway for cellular senescence bypass and tumor invasion. Nat. Genet. 45, 739–746 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Boilève, A. et al. Immunosurveillance against tetraploidization-induced colon tumorigenesis. Cell Cycle 12, 473–479 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Druker, B. J. et al. Activity of a specific inhibitor of the BCR-ABL tyrosine kinase in the blast crisis of chronic myeloid leukemia and acute lymphoblastic leukemia with the Philadelphia chromosome. N. Engl. J. Med. 344, 1038–1042 (2001).

    Article  CAS  PubMed  Google Scholar 

  36. Lynch, T. J. et al. Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. N. Engl. J. Med. 350, 2129–2139 (2004).

    Article  CAS  PubMed  Google Scholar 

  37. Gorre, M. E. et al. Clinical resistance to STI-571 cancer therapy caused by BCR-ABL gene mutation or amplification. Science 293, 876–880 (2001).

    Article  CAS  PubMed  Google Scholar 

  38. Kobayashi, S. et al. EGFR mutation and resistance of non-small-cell lung cancer to gefitinib. N. Engl. J. Med. 352, 786–792 (2005).

    Article  CAS  PubMed  Google Scholar 

  39. Tuveson, D. & Hanahan, D. Translational medicine: Cancer lessons from mice to humans. Nature 471, 316–317 (2011).

    Article  CAS  PubMed  Google Scholar 

  40. Politi, K. et al. Lung adenocarcinomas induced in mice by mutant EGF receptors found in human lung cancers respond to a tyrosine kinase inhibitor or to down-regulation of the receptors. Genes Dev. 20, 1496–1510 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Regales, L. et al. Dual targeting of EGFR can overcome a major drug resistance mutation in mouse models of EGFR mutant lung cancer. J. Clin. Invest. 119, 3000–3010 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Clohessy, J. G. & de Stanchina, E. Infrastructure needs for translational integration of mouse and human trials. Cold Spring Harb. Protoc. 2013, 1109–1114 (2013).

    Article  PubMed  Google Scholar 

  43. MacConaill, L. E. et al. Profiling critical cancer gene mutations in clinical tumor samples. PLoS ONE 4, e7887 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Gray, S. W., Hicks-Courant, K., Cronin, A., Rollins, B. J. & Weeks, J. C. Physicians' attitudes about multiplex tumor genomic testing. J. Clin. Oncol. 32, 1317–1323 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work is supported by the NCI grants 5U01CA141457-05 and 5U01CA141496-05 to P.P.P.

Author information

Authors and Affiliations

Authors

Contributions

Both authors contributed equally to researching data, discussing content and writing the article, and to review and editing of the manuscript before submission.

Corresponding author

Correspondence to Pier Paolo Pandolfi.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Clohessy, J., Pandolfi, P. Mouse hospital and co-clinical trial project—from bench to bedside. Nat Rev Clin Oncol 12, 491–498 (2015). https://doi.org/10.1038/nrclinonc.2015.62

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrclinonc.2015.62

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer