Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Overcoming disappointing results with antiangiogenic therapy by targeting hypoxia

This article has been updated

Abstract

Cancer cells rely on angiogenesis to fulfil their need for oxygen and nutrients; hence, agents targeting angiogenic pathways and mediators have been investigated as potential cancer drugs. Although this strategy has demonstrated delayed tumour progression—leading to progression-free survival and overall survival benefits compared with standard therapy—in some patients, the results are more modest than predicted. A significant number of patients either do not respond to antiangiogenic agents or fairly rapidly develop resistance to them, which raises questions about how resistance develops and how it can be overcome. Furthermore, whether cancers, once they develop resistance, become more invasive or lead to metastatic disease remains unclear. Several mechanisms of resistance have been recently proposed and emerging evidence indicates that, under certain experimental conditions, antiangiogenic agents increase intratumour hypoxia by promoting vessel pruning and inhibiting neoangiogenesis. Indeed, several studies have highlighted the possibility that inhibitors of VEGF (and its receptors) can promote an invasive metastatic switch, in part by creating an increasingly hypoxic tumour microenvironment. As a potential remedy, a number of therapeutic approaches have been investigated that target the hypoxic tumour compartment to improve the clinical outcome of antiangiogenic therapy.

Key Points

  • Antiangiogenic therapy has been widely used in clinical trials, with delayed tumour progression in some patients leading to improved progression-free survival and overall survival compared with standard therapy

  • Unfortunately, a significant number of patients either do not respond to antiangiogenic therapy or rapidly develop resistance to it

  • Vessel pruning and inhibition of neoangiogenesis leading to intratumour hypoxia is one of several proposed mechanisms explaining resistance to antiangiogenic therapy

  • Hypoxia is a key mediator of tumour progression that regulates cancer cell survival, metabolic switch, genomic instability, angiogenesis and selection of a more aggressive phenotype

  • Combining antiangiogenic therapies with hypoxia-targeted strategies might fully exploit the potential of hypoxia-dependent response inhibition, as well as prevent resistance to inhibitors of the proangiogenic factor VEGF

  • A major requirement for combining antiangiogenic agents with hypoxia-targeted strategies is the development of robust predictive biomarkers for patient selection

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Regulation of HIF-1α and HIF-1α-dependent gene expression.
Figure 2: Signalling pathways targeted by small-molecule inhibitors of HIF.

Similar content being viewed by others

Change history

  • 21 May 2012

    In the version of this article initially published online, the legends of Tables 1 and 2 should have included the attribution: Permission obtained from Nature Publishing Group © Ebos, J. M. L. & Kerbel, R. S. Nat. Rev. Clin. Oncol. 8, 210–221 (2011). The error has been corrected for the print, HTML and PDF versions of the article.

References

  1. Folkman, J. Is angiogenesis an organizing principle in biology and medicine? J. Pediatr. Surg. 42, 1–11 (2007).

    PubMed  Google Scholar 

  2. Kerbel, R. & Folkman, J. Clinical translation of angiogenesis inhibitors. Nat. Rev. Cancer 2, 727–739 (2002).

    CAS  PubMed  Google Scholar 

  3. Bukowski, R. M, Yasothan, U. & Kirkpatrick, P. Pazopanib. Nat. Rev. Drug Discov. 9, 17–18 (2010).

    CAS  PubMed  Google Scholar 

  4. Ellis, L. M. & Hicklin, D. J. VEGF-targeted therapy: mechanisms of anti-tumour activity. Nat. Rev. Cancer 8, 579–591 (2008).

    CAS  PubMed  Google Scholar 

  5. Fischer, C., Mazzone, M., Jonckx, B. & Carmeliet, P. FLT1 and its ligands VEGFB and PlGF: drug targets for anti-angiogenic therapy? Nat. Rev. Cancer 8, 942–956 (2008).

    CAS  PubMed  Google Scholar 

  6. Rapisarda, A. & Melillo, G. Role of the hypoxic tumor microenvironment in the resistance to anti-angiogenic therapies. Drug Resist. Updat. 12, 74–80 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Rapisarda, A., Shoemaker, R. H. & Melillo, G. Antiangiogenic agents and HIF-1 inhibitors meet at the crossroads. Cell Cycle 8, 4040–4043 (2009).

    CAS  PubMed  Google Scholar 

  8. Fischer, C. et al. Anti-PlGF inhibits growth of VEGF(R)-inhibitor-resistant tumors without affecting healthy vessels. Cell 131, 463–475 (2007).

    CAS  PubMed  Google Scholar 

  9. Relf, M. et al. Expression of the angiogenic factors vascular endothelial cell growth factor, acidic and basic fibroblast growth factor, tumor growth factor β-1, platelet-derived endothelial cell growth factor, placenta growth factor, and pleiotrophin in human primary breast cancer and its relation to angiogenesis. Cancer Res. 57, 963–969 (1997).

    CAS  PubMed  Google Scholar 

  10. Batchelor, T. T. et al. AZD2171, a pan-VEGF receptor tyrosine kinase inhibitor, normalizes tumor vasculature and alleviates edema in glioblastoma patients. Cancer Cell 11, 83–95 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Shaked, Y. et al., Therapy-induced acute recruitment of circulating endothelial progenitor cells to tumors. Science 313, 1785–1787 (2006).

    CAS  PubMed  Google Scholar 

  12. Winkler, F. et al., Kinetics of vascular normalization by VEGFR2 blockade governs brain tumor response to radiation: role of oxygenation, angiopoietin-1, and matrix metalloproteinases. Cancer Cell 6, 553–563 (2004).

    CAS  PubMed  Google Scholar 

  13. Ebos, J. M. et al. Accelerated metastasis after short-term treatment with a potent inhibitor of tumor angiogenesis. Cancer Cell 15, 232–239 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Narayana, A. et al. Antiangiogenic therapy using bevacizumab in recurrent high-grade glioma: impact on local control and patient survival. J. Neurosurg. 110, 173–180 (2009).

    PubMed  Google Scholar 

  15. Norden, A. D. et al. Bevacizumab for recurrent malignant gliomas: efficacy, toxicity, and patterns of recurrence. Neurology 70, 779–787 (2008).

    CAS  PubMed  Google Scholar 

  16. Pàez-Ribes, M. et al. Antiangiogenic therapy elicits malignant progression of tumors to increased local invasion and distant metastasis. Cancer Cell 15, 220 (2009).

    PubMed  PubMed Central  Google Scholar 

  17. De Bock, K., Mazzone, M. & Carmeliet, P. Antiangiogenic therapy, hypoxia, and metastasis: risky liaisons, or not? Nat. Rev. Clin. Oncol. 8, 393–404 (2011).

    CAS  PubMed  Google Scholar 

  18. Shojaei, F. et al. Tumor refractoriness to anti-VEGF treatment is mediated by CD11b+Gr1+ myeloid cells. Nat. Biotechnol. 25, 911–920 (2007).

    CAS  PubMed  Google Scholar 

  19. Semenza, G. L. Hypoxia and cancer. Cancer Metastasis Rev. 26, 223–224 (2007).

    CAS  PubMed  Google Scholar 

  20. Padera, T. P. et al. Differential response of primary tumor versus lymphatic metastasis to VEGFR-2 and VEGFR-3 kinase inhibitors cediranib and vandetanib. Mol. Cancer Ther. 7, 2272–2279 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Schomber, T. et al. Differential effects of the vascular endothelial growth factor receptor inhibitor PTK787/ZK222584 on tumor angiogenesis and tumor lymphangiogenesis. Mol. Cancer Ther. 8, 55–63 (2009).

    CAS  PubMed  Google Scholar 

  22. Brown, J. M. & Giaccia, A. J. The unique physiology of solid tumors: opportunities (and problems) for cancer therapy. Cancer Res. 58, 1408–1416 (1998).

    CAS  PubMed  Google Scholar 

  23. Denko, N. C. Hypoxia, HIF-1 and glucose metabolism in the solid tumour. Nat. Rev. Cancer 8, 705–713 (2008).

    CAS  PubMed  Google Scholar 

  24. Pouysségur, J., Dayan, F. & Mazure, N. M. Hypoxia signalling in cancer and approaches to enforce tumour regression. Nature 441, 437–443 (2006).

    PubMed  Google Scholar 

  25. Vaupel, P. Metabolic microenvironment of tumor cells: a key factor in malignant progression. Exp. Oncol. 32, 125–127 (2010).

    CAS  PubMed  Google Scholar 

  26. Harris, A. L. Hypoxia—a key regulatory factor in tumour growth. Nat. Rev. Cancer 2, 38–47 (2002).

    CAS  PubMed  Google Scholar 

  27. Majmundar, A. J., Wong, W. J. & Simon, M. C. Hypoxia-inducible factors and the response to hypoxic stress. Mol. Cell 40, 294–309 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Mazumdar, J., Dondeti, V. & Simon, M. C. Hypoxia-inducible factors in stem cells and cancer. J. Cell Mol. Med. 13, 4319–4328 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Graeber, T. G. et al., Hypoxia-mediated selection of cells with diminished apoptotic potential in solid tumours. Nature 379, 88–91 (1996).

    CAS  PubMed  Google Scholar 

  30. Erler, J. T. et al. Hypoxia-mediated down-regulation of Bid and Bax in tumors occurs via hypoxia-inducible factor 1-dependent and -independent mechanisms and contributes to drug resistance. Mol. Cell Biol. 24, 2875–2889 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Rouschop, K. M. et al. The unfolded protein response protects human tumor cells during hypoxia through regulation of the autophagy genes MAP1LC3B and ATG5. J. Clin. Invest 120, 127–141 (2010).

    CAS  PubMed  Google Scholar 

  32. Semenza, G. L. Regulation of metabolism by hypoxia-inducible factor 1. Cold Spring Harb. Symp. Quant. Biol. http://dx.doi.org/10.1101/sqb.2011.76.010678.

  33. Hirota, K. & Semenza, G. L. Regulation of angiogenesis by hypoxia-inducible factor 1. Crit. Rev. Oncol. Hematol. 59, 15–26 (2006).

    PubMed  Google Scholar 

  34. Li, B. et al. VEGF and PlGF promote adult vasculogenesis by enhancing EPC recruitment and vessel formation at the site of tumor neovascularization. FASEB J. 20, 1495–1497 (2006).

    CAS  PubMed  Google Scholar 

  35. Jiang, J., Tang, Y. L. & Liang, X. H. EMT: a new vision of hypoxia promoting cancer progression. Cancer Biol. Ther. 11, 714–723 (2011).

    CAS  PubMed  Google Scholar 

  36. Yotnda, P., Wu, D. & Swanson, A. M. Hypoxic tumors and their effect on immune cells and cancer therapy. Methods Mol. Biol. 651, 1–29 (2010).

    CAS  PubMed  Google Scholar 

  37. Bristow, R. G. & Hill, R. P. Hypoxia and metabolism. Hypoxia, DNA repair and genetic instability. Nat. Rev. Cancer 8, 180–192 (2008).

    CAS  PubMed  Google Scholar 

  38. Guzy, R. D. et al. Mitochondrial complex III is required for hypoxia-induced ROS production and cellular oxygen sensing. Cell Metab. 1, 401–408 (2005).

    CAS  PubMed  Google Scholar 

  39. Semenza, G. L. Defining the role of hypoxia-inducible factor 1 in cancer biology and therapeutics. Oncogene 29, 625–634 (2010).

    CAS  PubMed  Google Scholar 

  40. Rapisarda, A. & Melillo, G. in Tumor Microenvironment (ed. Siemann, D. W.) pp. 377–400 (John Wiley & Sons, Oxford, 2011).

    Google Scholar 

  41. Onnis, B., Rapisarda, A. & Melillo, G. Development of HIF-1 inhibitors for cancer therapy. J. Cell Mol. Med. 13, 2780–2786 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Wilson, W. R. & Hay, M. P. Targeting hypoxia in cancer therapy. Nat. Rev. Cancer 11, 393–410 (2011).

    CAS  PubMed  Google Scholar 

  43. Jain, R. K. Antiangiogenic therapy for cancer: current and emerging concepts. Oncology (Williston Park) 19 (4 Suppl. 3), 7–16 (2005).

    Google Scholar 

  44. Pennacchietti, S. et al. Hypoxia promotes invasive growth by transcriptional activation of the met protooncogene. Cancer Cell 3, 347–361 (2003).

    PubMed  Google Scholar 

  45. Bergers, G. & Hanahan, D. Modes of resistance to anti-angiogenic therapy. Nat. Rev. Cancer 8, 592–603 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Casanovas, O., Hicklin, D. J., Bergers, G. & Hanahan, D. Drug resistance by evasion of antiangiogenic targeting of VEGF signaling in late-stage pancreatic islet tumors. Cancer Cell 8, 299–309 (2005).

    CAS  PubMed  Google Scholar 

  47. Franco, M. et al. Targeted anti-vascular endothelial growth factor receptor-2 therapy leads to short-term and long-term impairment of vascular function and increase in tumor hypoxia. Cancer Res. 66, 3639–3648 (2006).

    CAS  PubMed  Google Scholar 

  48. Keunen, O. et al. Anti-VEGF treatment reduces blood supply and increases tumor cell invasion in glioblastoma. Proc. Natl Acad. Sci. USA 108, 3749–3754 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Martinez-Poveda, B. et al. Non-invasive monitoring of hypoxia-inducible factor activation by optical imaging during antiangiogenic treatment in a xenograft model of ovarian carcinoma. Int. J. Oncol. 39, 543–552 (2011).

    CAS  PubMed  Google Scholar 

  50. von Baumgarten, L. et al. Bevacizumab has differential and dose-dependent effects on glioma blood vessels and tumor cells. Clin. Cancer Res. 17, 6192–6205 (2011).

    CAS  PubMed  Google Scholar 

  51. Conley, S. J. et al. Antiangiogenic agents increase breast cancer stem cells via the generation of tumor hypoxia Proc. Natl Acad. Sci. USA 109, 2784–2789 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Smit, E. F. et al., Effects of the antiangiogenic drug bevacizumab on tumor perfusion and drug delivery of 11C-labeled docetaxel in patients with non-small cell lung cancer (NSCLC): Implications for scheduling of antiangiogenic agents [abstract]. J. Clin. Oncol. 29 (Suppl.) a3059 (2011).

    Google Scholar 

  53. Yopp, A. C. et al. Antiangiogenic therapy for primary liver cancer: correlation of changes in dynamic contrast-enhanced magnetic resonance imaging with tissue hypoxia markers and clinical response. Ann. Surg. Oncol. 18, 2192–2199 (2011).

    PubMed  PubMed Central  Google Scholar 

  54. Ceradini, D. J. et al. Progenitor cell trafficking is regulated by hypoxic gradients through HIF-1 induction of SDF-1. Nat. Med. 10, 858–864 (2004).

    CAS  PubMed  Google Scholar 

  55. Kerbel, R. S. Tumor angiogenesis. N. Engl. J. Med. 358, 2039–2049 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Erler, J. T. et al. Hypoxia-induced lysyl oxidase is a critical mediator of bone marrow cell recruitment to form the premetastatic niche. Cancer Cell 15, 35–44 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Dang, D. T. et al. Hypoxia-inducible factor-1 target genes as indicators of tumor vessel response to vascular endothelial growth factor inhibition. Cancer Res. 68, 1872–1880 (2008).

    CAS  PubMed  Google Scholar 

  58. Bertolini, F., Shaked, Y., Mancuso, P. & Kerbel, R. S. The multifaceted circulating endothelial cell in cancer: towards marker and target identification. Nat. Rev. Cancer 6, 835–845 (2006).

    CAS  PubMed  Google Scholar 

  59. Melillo, G. Inhibiting hypoxia-inducible factor 1 for cancer therapy. Mol. Cancer Res. 4, 601–605 (2006).

    CAS  PubMed  Google Scholar 

  60. Chiche, J., Brahimi-Horn, M. C. & Pouysségur, J. Tumour hypoxia induces a metabolic shift causing acidosis: a common feature in cancer. J. Cell Mol. Med. 14, 771–794 (2010).

    CAS  PubMed  Google Scholar 

  61. Wouters, B. G. & Koritzinsky, M. Hypoxia signalling through mTOR and the unfolded protein response in cancer. Nat. Rev. Cancer 8, 851–864 (2008).

    CAS  PubMed  Google Scholar 

  62. Rouschop, K. M. & Wouters, B. G. Regulation of autophagy through multiple independent hypoxic signaling pathways. Curr. Mol. Med. 9, 417–424 (2009).

    CAS  PubMed  Google Scholar 

  63. Olcina, M., Lecane, P. S. & Hammond, E. M. Targeting hypoxic cells through the DNA damage response. Clin. Cancer Res. 16, 5624–5629 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Mohindra, J. K. & Rauth, A. M. Increased cell killing by metronidazole and nitrofurazone of hypoxic compared to aerobic mammalian cells. Cancer Res. 36, 930–936 (1976).

    CAS  PubMed  Google Scholar 

  65. Evans, J. W. et al. Homologous recombination is the principal pathway for the repair of DNA damage induced by tirapazamine in mammalian cells. Cancer Res. 68, 257–265 (2008).

    CAS  PubMed  Google Scholar 

  66. Hicks, K. O. et al. Pharmacokinetic/pharmacodynamic modeling identifies SN30000 and SN29751 as tirapazamine analogues with improved tissue penetration and hypoxic cell killing in tumors. Clin. Cancer Res. 16, 4946–4957 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Isaacs, J. S. et al. Hsp90 regulates a von Hippel Lindau-independent hypoxia-inducible factor-1 α-degradative pathway. J. Biol. Chem. 277, 29936–29944 (2002).

    CAS  PubMed  Google Scholar 

  68. Rapisarda, A. et al. Topoisomerase Imediated inhibition of hypoxia-inducible factor 1: mechanism and therapeutic implications. Cancer Res. 64, 1475–1482 (2004).

    CAS  PubMed  Google Scholar 

  69. Sapra, P. et al. Potent and sustained inhibition of HIF-1α and downstream genes by a polyethyleneglycol-SN38 conjugate, EZN-2208, results in anti-angiogenic effects. Angiogenesis 14, 245–253 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. M. Y. Koh. et al. Molecular mechanisms for the activity of PX-478, an antitumor inhibitor of the hypoxia-inducible factor-1α. Mol. Cancer Ther. 7, 90–100 (2008).

    Google Scholar 

  71. Wan, X., Shen, N., Mendoza, A., Khanna, C. & Helman, L. J. CCI-779 inhibits rhabdomyosarcoma xenograft growth by an antiangiogenic mechanism linked to the targeting of mTOR/Hif-1α/VEGF signaling. Neoplasia 8, 394–401 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Del Bufalo, D. et al. Antiangiogenic potential of the mammalian target of rapamycin inhibitor temsirolimus. Cancer Res. 66, 5549–5554 (2006).

    CAS  PubMed  Google Scholar 

  73. Greenberger, L. M. et al., A RNA antagonist of hypoxia-inducible factor-1α, EZN-2968, inhibits tumor cell growth. Mol. Cancer Ther. 7, 3598–3608 (2008).

    CAS  PubMed  Google Scholar 

  74. Terzuoli, E. et al. Aminoflavone, a ligand of the aryl hydrocarbon receptor, inhibits HIF-1α expression in an AhR-independent fashion. Cancer Res. 70, 6837–6848 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Lee, K. et al. Anthracycline chemotherapy inhibits HIF-1 transcriptional activity and tumor-induced mobilization of circulating angiogenic cells. Proc. Natl Acad. Sci. USA 106, 2353–2358 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Woldemichael, G. M. et al. Development of a cell-based reporter assay for screening of inhibitors of hypoxia-inducible factor 2-induced gene expression. J Biomol. Screen. 11, 678–689 (2006).

    CAS  PubMed  Google Scholar 

  77. Kummar, S. et al. Multihistology, target-driven pilot trial of oral topotecan as an inhibitor of hypoxia-inducible factor-1α in advanced solid tumors. Clin. Cancer Res. 17, 5123–5131 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Rapisarda, A. et al. Schedule-dependent inhibition of hypoxia-inducible factor-1α protein accumulation, angiogenesis, and tumor growth by topotecan in U251-HRE glioblastoma xenografts. Cancer Res. 64, 6845–6848 (2004).

    CAS  PubMed  Google Scholar 

  79. Rapisarda, A. et al. Increased antitumor activity of bevacizumab in combination with hypoxia inducible factor-1 inhibition. Mol. Cancer Ther. 8, 1867–1877 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Chen, W. et al. Predicting treatment response of malignant gliomas to bevacizumab and irinotecan by imaging proliferation with [18F] fluorothymidine positron emission tomography: a pilot study. J. Clin. Oncol. 25, 4714–4721 (2007).

    CAS  PubMed  Google Scholar 

  81. Vredenburgh, J. J. et al. Bevacizumab plus irinotecan in recurrent glioblastoma multiforme. J. Clin. Oncol. 25, 4722–4729 (2007).

    CAS  PubMed  Google Scholar 

  82. Pencreach, E. et al. Marked activity of irinotecan and rapamycin combination toward colon cancer cells in vivo and in vitro is mediated through cooperative modulation of the mammalian target of rapamycin/hypoxia-inducible factor-1α axis. Clin. Cancer Res. 15, 1297–1307 (2009).

    CAS  PubMed  Google Scholar 

  83. Semenza, G. L. HIF-1: upstream and downstream of cancer metabolism. Curr. Opin. Genet. Dev. 20, 51–56 (2010).

    CAS  PubMed  Google Scholar 

  84. Kim, J. W., Tchernyshyov, I., Semenza, G. L. & Dang, C. V. HIF-1-mediated expression of pyruvate dehydrogenase kinase: a metabolic switch required for cellular adaptation to hypoxia. Cell Metab. 3, 177–185 (2006).

    PubMed  Google Scholar 

  85. Dang, C. V., Kim, J. W., Gao, P. & Yustein, J. The interplay between MYC and HIF in cancer. Nat. Rev. Cancer 8, 51–56 (2008).

    CAS  PubMed  Google Scholar 

  86. Simons, A. L., Mattson, D. M., Dornfeld, K. & Spitz, D. R. Glucose deprivation-induced metabolic oxidative stress and cancer therapy. J. Cancer Res. Ther. 5 (Suppl. 1), S2–S6 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Scatena, R., Bottoni, P., Pontoglio, A., Mastrototaro, L. & Giardina, B. Glycolytic enzyme inhibitors in cancer treatment. Expert. Opin. Investig. Drugs 17, 1533–1545 (2008).

    CAS  PubMed  Google Scholar 

  88. Chan, D. A. et al. Targeting GLUT1 and the Warburg effect in renal cell carcinoma by chemical synthetic lethality. Sci. Transl. Med. 3, 94ra70 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Papandreou, I., Goliasova, T. & Denko, N. C. Anticancer drugs that target metabolism: Is dichloroacetate the new paradigm? Int. J. Cancer 128, 1001–1008 (2011).

    CAS  PubMed  Google Scholar 

  90. Gallagher, S. M., Castorino, J. J., Wang, D. & Philp, N. J. Monocarboxylate transporter 4 regulates maturation and trafficking of CD147 to the plasma membrane in the metastatic breast cancer cell line MD-AMB-231. Cancer Res. 67, 4182–4189 (2007).

    CAS  PubMed  Google Scholar 

  91. Lou, Y. et al. Targeting tumor hypoxia: suppression of breast tumor growth and metastasis by novel carbonic anhydrase IX inhibitors. Cancer Res. 71, 3364–3376 (2011).

    CAS  PubMed  Google Scholar 

  92. Gherardi, E., Birchmeier, W., Birchmeier, C. & Vande Woude, G. Targeting MET in cancer: rationale and progress. Nat. Rev. Cancer 12, 89–103 (2012).

    CAS  PubMed  Google Scholar 

  93. You, W. K. et al. VEGF and c-Met blockade amplify angiogenesis inhibition in pancreatic islet cancer. Cancer Res. 71, 4758–4768 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Teicher, B. A. & Fricker, S. P. CXCL12 (SDF1)/CXCR4 pathway in cancer. Clin. Cancer Res. 16, 2927–2931 (2010).

    CAS  PubMed  Google Scholar 

  95. Duda, D. G. et al. CXCL12 (SDF1α)-CXCR4/CXCR7 pathway inhibition: an emerging sensitizer for anticancer therapies? Clin. Cancer Res. 17, 2074–2080 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Sun, X. et al. CXCL12/CXCR4/CXCR7 chemokine axis and cancer progression. Cancer Metastasis Rev. 29, 709–722 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Kioi, M. et al. Inhibition of vasculogenesis, but not angiogenesis, prevents the recurrence of glioblastoma after irradiation in mice. J. Clin. Invest. 120, 694–705 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Tseng, D., Vasquez-Medrano, D. A. & Brown, J. M. Targeting SDF-1/CXCR4 to inhibit tumour vasculature for treatment of glioblastomas. Br. J. Cancer 104, 1805–1809 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Koumenis, C. et al. Regulation of protein synthesis by hypoxia via activation of the endoplasmic reticulum kinase PERK and phosphorylation of the translation initiation factor eIF2α. Mol. Cell Biol. 22, 7405–7416 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Romero-Ramirez, L. et al. XBP1 is essential for survival under hypoxic conditions and is required for tumor growth. Cancer Res. 64, 5943–5947 (2004).

    CAS  PubMed  Google Scholar 

  101. Köditz, J. et al. Oxygen-dependent ATF-4 stability is mediated by the PHD3 oxygen sensor. Blood 110, 3610–3617 (2007).

    PubMed  Google Scholar 

  102. Papandreou, I. et al. Identification of an Ire1α endonuclease specific inhibitor with cytotoxic activity against human multiple myeloma. Blood 117, 1311–1314 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Spiotto, M. T. et al. Imaging the unfolded protein response in primary tumors reveals microenvironments with metabolic variations that predict tumor growth. Cancer Res. 70, 78–88 (2010).

    CAS  PubMed  Google Scholar 

  104. Fels, D. R. et al. Preferential cytotoxicity of bortezomib toward hypoxic tumor cells via overactivation of endoplasmic reticulum stress pathways. Cancer Res. 68, 9323–9330 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Rzymski, T. et al. Regulation of autophagy by ATF4 in response to severe hypoxia. Oncogene 29, 4424–4435 (2010).

    CAS  PubMed  Google Scholar 

  106. Hammond, E. M., Kaufmann, M. R. & Giaccia, A. J. Oxygen sensing and the DNA-damage response. Curr. Opin. Cell Biol. 19, 680–684 (2007).

    CAS  PubMed  Google Scholar 

  107. Helleday, T., Petermann, E., Lundin, C., Hodgson, B. & Sharma, R. A. DNA repair pathways as targets for cancer therapy. Nat. Rev. Cancer 8, 193–204 (2008).

    CAS  PubMed  Google Scholar 

  108. Hammond, E. M., Dorie, M. J. & Giaccia, A. J. Inhibition of ATR leads to increased sensitivity to hypoxia/reoxygenation. Cancer Res. 64, 6556–6562 (2004).

    CAS  PubMed  Google Scholar 

  109. Murukesh, N., Dive, C. & Jayson, G. C. Biomarkers of angiogenesis and their role in the development of VEGF inhibitors. Br. J. Cancer 102, 8–18 (2010).

    CAS  PubMed  Google Scholar 

  110. Chitneni, S. K., Palmer, G. M., Zalutsky, M. R. & Dewhirst, M. W. Molecular imaging of hypoxia. J. Nucl. Med. 52, 165–168 (2011).

    CAS  PubMed  Google Scholar 

  111. Mees, G., Dierckx, R., Vangestel, C. & Van de Wiele, C. Molecular imaging of hypoxia with radiolabelled agents. Eur. J. Nucl. Med. Mol. Imaging 36, 1674–1686 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. O'Connor, J. P., Jackson, A., Parker, G. J., Roberts, C. & Jayson, G. C. Dynamic contrast-enhanced MRI in clinical trials of antivascular therapies. Nat. Rev. Clin. Onc. 9, 1676–177 (2012).

    Google Scholar 

  113. Hecht, J. R. et al. A randomized phase IIIB trial of chemotherapy, bevacizumab, and panitumumab compared with chemotherapy and bevacizumab alone for metastatic colorectal cancer. J. Clin. Oncol. 27, 672–680 (2009).

    CAS  PubMed  Google Scholar 

  114. Tol, J. et al. Chemotherapy, bevacizumab, and cetuximab in metastatic colorectal cancer. N. Engl. J. Med. 360, 563–572 (2009).

    CAS  PubMed  Google Scholar 

  115. Allegra, C. J. et al. Phase III trial assessing bevacizumab in stages II and III carcinoma of the colon: results of NSABP protocol C08 J. Clin. Oncol. 29, 11–16 (2011).

    CAS  PubMed  Google Scholar 

  116. Miller, K. et al. Paclitaxel plus bevacizumab versus paclitaxel alone for metastatic breast cancer. N. Engl. J. Med. 357, 2666–2676 (2007).

    CAS  PubMed  Google Scholar 

  117. Jones, D. Avastin-Tarceva combination fails in lung cancer. Nat. Biotechnol. 27, 108–109 (2009).

    CAS  PubMed  Google Scholar 

  118. Ohtsu, A. et al. Bevacizumab in combination with chemotherapy as first-line therapy in advanced gastric cancer: a randomized, double-blind, placebo-controlled phase III study. J. Clin. Oncol. 29, 3968–3976 (2011).

    CAS  PubMed  Google Scholar 

  119. Kindler, H. L. et al. Gemcitabine plus bevacizumab compared with gemcitabine plus placebo in patients with advanced pancreatic cancer: phase III trial of the Cancer and Leukemia Group B (CALGB 80303). J. Clin. Oncol. 28, 3617–3622 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Van Cutsem, E. et al. Phase III trial of bevacizumab in combination with gemcitabine and erlotinib in patients with metastatic pancreatic cancer. J. Clin. Oncol. 27, 2231–2237 (2009).

    CAS  PubMed  Google Scholar 

  121. Kelly, W. K. et al. A randomized, double-blind, placebo-controlled phase III trial comparing docetaxel, prednisone, and placebo with docetaxel, prednisone, and bevacizumab in men with metastatic castration-resistant prostate cancer (MCRPC): survival results of CALGB 90401 [abstract]. J. Clin. Oncol. 28 (Suppl.) 18s LBA511 (2010).

    Google Scholar 

  122. di Tomaso, E. et al. Glioblastoma recurrence after cediranib therapy in patients: lack of “rebound” revascularization as mode of escape. Cancer Res. 71, 19–28 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Barrios, C. H. et al. Phase III randomized trial of sunitinib versus capecitabine in patients with previously treated HER2-negative advanced breast cancer. Breast Cancer Res. Treat. 121, 121–131 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Scagliotti, G. et al. Phase III study of carboplatin and paclitaxel alone or with sorafenib in advanced non-small-cell lung cancer. J. Clin. Oncol. 28, 1835–1842 (2010).

    CAS  PubMed  Google Scholar 

  125. Natale, R. B. et al. Phase III trial of vandetanib compared with erlotinib in patients with previously treated advanced non-small-cell lung cancer. J. Clin. Oncol. 29, 1059–1066 (2011).

    CAS  PubMed  Google Scholar 

  126. de Boer, R. H. et al. Vandetanib plus pemetrexed for the second-line treatment of advanced non-small-cell lung cancer: a randomized, double-blind phase III trial. J. Clin. Oncol. 29, 1067–1074 (2011).

    CAS  PubMed  Google Scholar 

  127. Cohen, M. H., Shen, Y. L., Keegan, P. & Pazdur, R. FDA drug approval summary: bevacizumab (Avastin) as treatment of recurrent glioblastoma multiforme. Oncologist 14, 1131–1138 (2009).

    CAS  PubMed  Google Scholar 

  128. Hurwitz, H. et al. Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer. N. Engl. J. Med. 350, 2335–2342 (2004).

    CAS  PubMed  Google Scholar 

  129. Saltz, L. B. et al. Bevacizumab in combination with oxaliplatin-based chemotherapy as first-line therapy in metastatic colorectal cancer: a randomized phase III study. J. Clin. Oncol. 26, 2013–2019 (2008).

    CAS  PubMed  Google Scholar 

  130. Giantonio, B. J. et al. Bevacizumab in combination with oxaliplatin, fluorouracil, and leucovorin (FOLFOX4) for previously treated metastatic colorectal cancer: results from the Eastern Cooperative Oncology Group Study E3200. J. Clin. Oncol. 25, 1539–1544 (2007).

    CAS  PubMed  Google Scholar 

  131. Miles, D. W. et al. Phase III study of bevacizumab plus docetaxel compared with placebo plus docetaxel for the first-line treatment of human epidermal growth factor receptor 2-negative metastatic breast cancer. J. Clin. Oncol. 28, 3239–3247 (2010).

    CAS  PubMed  Google Scholar 

  132. Robert, N. J. et al. RIBBON-1: randomized, double-blind, placebo-controlled, phase III trial of chemotherapy with or without bevacizumab for first-line treatment of human epidermal growth factor receptor 2-negative, locally recurrent or metastatic breast cancer. J. Clin. Oncol. 29, 1252–1260 (2011).

    CAS  PubMed  Google Scholar 

  133. Brufsky, A. M. et al., RIBBON-2: A randomized, double-blind, placebo-controlled, phase III trial evaluating the efficacy and safety of bevacizumab in combination with chemotherapy for second-line treatment of human epidermal growth factor receptor 2-negative metastatic breast cancer. J. Clin. Oncol. 29, 4286–4293 (2011).

    CAS  PubMed  Google Scholar 

  134. Sandler, A. et al. Paclitaxel-carboplatin alone or with bevacizumab for non-small-cell lung cancer. N. Engl. J. Med. 355, 2542–2550 (2006).

    CAS  PubMed  Google Scholar 

  135. Reck, M. et al. Overall survival with cisplatin-gemcitabine and bevacizumab or placebo as first-line therapy for nonsquamous non-small-cell lung cancer: results from a randomised phase III trial (AVAiL). Ann. Oncol. 21, 1804–1809 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Escudier, B. et al. Phase III trial of bevacizumab plus interferon α-2α in patients with metastatic renal cell carcinoma (AVOREN): final analysis of overall survival. J. Clin. Oncol. 28, 2144–2150 (2010).

    CAS  PubMed  Google Scholar 

  137. Rini, B. I. et al. Phase III trial of bevacizumab plus interferon alfa versus interferon alfa monotherapy in patients with metastatic renal cell carcinoma: final results of CALGB 90206. J. Clin. Oncol. 28, 2137–2143 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Burger, J. A., Stewart, D. J., Wald, O. & Peled, A. Potential of CXCR4 antagonists for the treatment of metastatic lung cancer. Expert. Rev. Anticancer Ther. 11, 621–630 (2011).

    CAS  PubMed  Google Scholar 

  139. Motzer, R. J. et al. Overall survival and updated results for sunitinib compared with interferon α in patients with metastatic renal cell carcinoma. J. Clin. Oncol. 27, 3584–3590 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Goodman, V. L. et al. Approval summary: sunitinib for the treatment of imatinib refractory or intolerant gastrointestinal stromal tumors and advanced renal cell carcinoma. Clin. Cancer Res. 13, 1367–1373 (2007).

    CAS  PubMed  Google Scholar 

  141. Raymond, E. et al. Sunitinib malate for the treatment of pancreatic neuroendocrine tumors. N. Engl. J. Med. 364, 501–513 (2011).

    CAS  PubMed  Google Scholar 

  142. Escudier, B. et al. Sorafenib for treatment of renal cell carcinoma: final efficacy and safety results of the phase III treatment approaches in renal cancer global evaluation trial. J. Clin. Oncol. 27, 3312–3318 (2009).

    CAS  PubMed  Google Scholar 

  143. Llovet, J. M. et al. Sorafenib in advanced hepatocellular carcinoma. N. Engl. J. Med. 359, 378–390 (2008).

    CAS  PubMed  Google Scholar 

  144. Sternberg, C. N. et al. Pazopanib in locally advanced or metastatic renal cell carcinoma: results of a randomized phase III trial. J. Clin. Oncol. 28, 1061–1068 (2010).

    CAS  PubMed  Google Scholar 

  145. Herbst, R. S. et al. Vandetanib plus docetaxel versus docetaxel as second-line treatment for patients with advanced non-small-cell lung cancer (ZODIAC): a double-blind, randomised, phase 3 trial. Lancet Oncol. 11, 619–626 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  146. Ren, Y. et al. Antiangiogenic and radiation therapy: early effects on in vivo computed tomography perfusion parameters in human colon cancer xenografts in mice. Invest. Radiol. 47, 25–32 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  147. Choi, H., Chun, Y. S., Kim, T. Y. & Park, J. W. HIF-2α enhances β-catenin/TCF-driven transcription by interacting with β-catenin. Cancer Res. 70, 10101–10111 (2010).

    CAS  PubMed  Google Scholar 

  148. Franovic, A., Holterman, C. E., Payette, J. & Lee, S. Human cancers converge at the HIF-2α oncogenic axis. Proc. Natl Acad. Sci. USA 106, 21306–21311 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  149. Carmeliet, P. & Jain, R. K. Principles and mechanisms of vessel normalization for cancer and other angiogenic diseases. Nat. Rev. Drug Discov. 10, 417–427 (2011).

    CAS  PubMed  Google Scholar 

  150. Goel, S. et al. Normalization of the vasculature for treatment of cancer and other diseases. Physiol. Rev. 91, 1071–1121 (2011).

    CAS  PubMed  Google Scholar 

  151. Ribatti, D. Vascular normalization: a real benefit? Cancer Chemother. Pharmacol. 68, 275–278 (2011).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Nicole Fer and Monica Mancini for their helpful discussions. This study was supported in part with federal funds from the National Cancer Institute, NIH, under Contract No. N01-CO12400. The content of this publication does not necessarily reflect the views or policies of the US Department of Health and Human Services. Any mention of trade names, commercial products or specific organizations does not imply endorsement by the US Government. This research was supported (in part) by the Developmental Therapeutics Program, DCTD, of the National Cancer Institute, NIH.

Author information

Authors and Affiliations

Authors

Contributions

Both authors were involved in the research of data and the writing of the article, and provided substantial contributions to the discussion of content as well as editing the manuscript before submission.

Corresponding author

Correspondence to Giovanni Melillo.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rapisarda, A., Melillo, G. Overcoming disappointing results with antiangiogenic therapy by targeting hypoxia. Nat Rev Clin Oncol 9, 378–390 (2012). https://doi.org/10.1038/nrclinonc.2012.64

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrclinonc.2012.64

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer