Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Clinical radioimmunotherapy—the role of radiobiology

Abstract

Conventional external-beam radiation therapy is dedicated to the treatment of localized disease, whereas radioimmunotherapy represents an innovative tool for the treatment of local or diffuse tumors. Radioimmunotherapy involves the administration of radiolabeled monoclonal antibodies that are directed specifically against tumor-associated antigens or against the tumor microenvironment. Although many tumor-associated antigens have been identified as possible targets for radioimmunotherapy of patients with hematological or solid tumors, clinical success has so far been achieved mostly with radiolabeled antibodies against CD20 (131I-tositumomab and 90Y-ibritumomab tiuxetan) for the treatment of lymphoma. In this Review, we provide an update on the current challenges aimed to improve the efficacy of radioimmunotherapy and discuss the main radiobiological issues associated with clinical radioimmunotherapy.

Key Points

  • Radioimmunotherapy is a multi-disciplinary approach that requires the cooperation of radiobiologists, radiolabeling chemists, physicists, immunologists, nuclear medicine physicians, and oncologists

  • Although two radioimmunotherapy agents for patients with non-Hodgkin lymphoma have been approved by the FDA, few clinical radioimmunotherapy trials in patients with solid tumors have progressed beyond phase II trials

  • As for external-beam radiation therapy (EBRT), radioimmunotherapy schedules need to be rationalized on the basis of accurate and personalized dosimetry, dose fractionation and dose intensification

  • Strategies that increase the absorbed dose by tumor tissue while minimizing the exposure of healthy organs (for example pretargeting strategies) must be developed for improving the efficacy of radioimmunotherapy

  • The radiobiology of radioimmunotherapy is not identical to that of EBRT and must thus be investigated in preclinical models

  • The success of radioimmunotherapy will depend on finding the best combinations with other therapeutic agents

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Radiobiology of radioimmunotherapy.
Figure 2: Patterns of cellular damage caused by radiation sorted by LET.
Figure 3: Track length of alpha-particles, beta-particles, and Auger electrons relative to the cell diameter.
Figure 4: Survival curves of irradiated cells.
Figure 5: Personalized dosimetry before tailored radioimmunotherapy could improve radioimmunotherapy efficacy in solid tumors.

Similar content being viewed by others

References

  1. Boswell, C. A. & Brechbiel, M. W. Development of radioimmunotherapeutic and diagnostic antibodies: an inside-out view. Nucl. Med. Biol. 34, 757–778 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Schaefer, N. G., Huang, P., Buchanan, J. W. & Wahl, R. L. Radioimmunotherapy in non-Hodgkin lymphoma: opinions of nuclear medicine physicians and radiation oncologists. J. Nucl. Med. 52, 830–838 (2011).

    PubMed  PubMed Central  Google Scholar 

  3. Prise, K. M., Schettino, G., Folkard, M. & Held, K. D. New insights on cell death from radiation exposure. Lancet Oncol. 6, 520–528 (2005).

    CAS  PubMed  Google Scholar 

  4. Valerie, K. et al. Radiation-induced cell signaling: inside-out and outside-in. Mol. Cancer Ther. 6, 789–801 (2007).

    CAS  PubMed  Google Scholar 

  5. Eriksson, D. & Stigbrand, T. Radiation-induced cell death mechanisms. Tumour Biol. 31, 363–372 (2010).

    PubMed  Google Scholar 

  6. Hernandez, M. C. & Knox, S. J. Radiobiology of radioimmunotherapy: targeting CD20 B-cell antigen in non-Hodgkin's lymphoma. Int. J. Radiat. Oncol. Biol. Phys. 59, 1274–1287 (2004).

    CAS  PubMed  Google Scholar 

  7. Eckerman, K. F. & Endo, A. MIRD Radionuclide Data and Decay Schemes. 2nd edn (Society of Nuclear Medicine, Reston, 2008).

    Google Scholar 

  8. Belka, C. et al. Apoptosis-modulating agents in combination with radiotherapy-current status and outlook. Int. J. Radiat. Oncol. Biol. Phys. 58, 542–554 (2004).

    CAS  PubMed  Google Scholar 

  9. Milenic, D. E., Brady, E. D. & Brechbiel, M. W. Antibody-targeted radiation cancer therapy. Nat. Rev. Drug Discov. 3, 488–499 (2004).

    CAS  PubMed  Google Scholar 

  10. Pouget, J. P. & Mather, S. J. General aspects of the cellular response to low- and high-LET radiation. Eur. J. Nucl. Med. 28, 541–561 (2001).

    CAS  PubMed  Google Scholar 

  11. Sgouros, G. et al. MIRD Pamphlet No. 22 (abridged): radiobiology and dosimetry of alpha-particle emitters for targeted radionuclide therapy. J. Nucl. Med. 51, 311–328 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Kassis, A. I. Molecular and cellular radiobiological effects of Auger emitting radionuclides. Radiat. Prot. Dosimetry 143, 241–247 (2011).

    CAS  PubMed  Google Scholar 

  13. Cornelissen, B. & Vallis, K. A. Targeting the nucleus: an overview of Auger-electron radionuclide therapy. Curr. Drug Discov. Technol. 7, 263–279 (2010).

    CAS  PubMed  Google Scholar 

  14. DeNardo, G. L. et al. Rationales, evidence, and design considerations for fractionated radioimmunotherapy. Cancer 94 (Suppl. 4), 1332–1348 (2002).

    CAS  PubMed  Google Scholar 

  15. Strigari, L. et al. Dosimetry in nuclear medicine therapy: radiobiology application and results. Q. J. Nucl. Med. Mol. Imaging 55, 205–221 (2011).

    CAS  PubMed  Google Scholar 

  16. Fowler, J. F. Radiobiological aspects of low dose rates in radioimmunotherapy. Int. J. Radiat. Oncol. Biol. Phys. 18, 1261–1269 (1990).

    CAS  PubMed  Google Scholar 

  17. Ling, C. C., Gerweck, L. E., Zaider, M. & Yorke, E. Dose-rate effects in external beam radiotherapy redux. Radiother. Oncol. 95, 261–268 (2010).

    PubMed  Google Scholar 

  18. Wessels, B. W. et al. Radiobiological comparison of external beam irradiation and radioimmunotherapy in renal cell carcinoma xenografts. Int. J. Radiat. Oncol. Biol. Phys. 17, 1257–1263 (1989).

    CAS  PubMed  Google Scholar 

  19. Williams, J. A., Edwards, J. A. & Dillehay, L. E. Quantitative comparison of radiolabeled antibody therapy and external beam radiotherapy in the treatment of human glioma xenografts. Int. J. Radiat. Oncol. Biol. Phys. 24, 111–117 (1992).

    CAS  PubMed  Google Scholar 

  20. Knox, S. J. Overview of studies on experimental radioimmunotherapy. Cancer Res. 55 (Suppl.), 5832s–5836s (1995).

    CAS  PubMed  Google Scholar 

  21. Knox, S. J., Goris, M. L. & Wessels, B. W. Overview of animal studies comparing radioimmunotherapy with dose equivalent external beam irradiation. Radiother. Oncol. 23, 111–117 (1992).

    CAS  PubMed  Google Scholar 

  22. Sgouros, G., Knox, S. J., Joiner, M. C., Morgan, W. F. & Kassis, A. I. MIRD continuing education: Bystander and low dose-rate effects: are these relevant to radionuclide therapy? J. Nucl. Med. 48, 1683–1691 (2007).

    CAS  PubMed  Google Scholar 

  23. Boyd, M. et al. Radiation-induced biologic bystander effect elicited in vitro by targeted radiopharmaceuticals labeled with alpha-, beta-, and auger electron-emitting radionuclides. J. Nucl. Med. 47, 1007–1015 (2006).

    CAS  PubMed  Google Scholar 

  24. Mairs, R. J., Fullerton, N. E., Zalutsky, M. R. & Boyd, M. Targeted radiotherapy: microgray doses and the bystander effect. Dose Response 5, 204–213 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Prise, K. M. & O'Sullivan, J. M. Radiation-induced bystander signalling in cancer therapy. Nat. Rev. Cancer 9, 351–360 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Pressman, D. & Korngold, L. The in vivo localization of anti-Wagner-osteogenic-sarcoma antibodies. Cancer 6, 619–623 (1953).

    CAS  PubMed  Google Scholar 

  27. DeNardo, S. J. et al. Treatment of B cell malignancies with 131I Lym-1 monoclonal antibodies. Int. J. Cancer Suppl. 3, 96–101 (1988).

    CAS  PubMed  Google Scholar 

  28. Press, O. W. et al. Radiolabeled-antibody therapy of B-cell lymphoma with autologous bone marrow support. N. Engl. J. Med. 329, 1219–1224 (1993).

    CAS  PubMed  Google Scholar 

  29. DeNardo, G. & DeNardo, S. Dose intensified molecular targeted radiotherapy for cancer-lymphoma as a paradigm. Semin. Nucl. Med. 40, 136–144 (2010).

    PubMed  Google Scholar 

  30. Buchegger, F., Press, O. W., Delaloye, A. B. & Ketterer, N. Radiolabeled and native antibodies and the prospect of cure of follicular lymphoma. Oncologist 13, 657–667 (2008).

    PubMed  Google Scholar 

  31. Illidge, T. & Morschhauser, F. Radioimmunotherapy in follicular lymphoma. Best Pract. Res. Clin. Haematol. 24, 279–293 (2011).

    PubMed  Google Scholar 

  32. Leahy, M. F. & Turner, J. H. Radioimmunotherapy of relapsed indolent non-Hodgkin lymphoma with 131I-rituximab in routine clinical practice: 10-year single-institution experience of 142 consecutive patients. Blood 117, 45–52 (2011).

    CAS  PubMed  Google Scholar 

  33. Palanca-Wessels, M. C. & Press, O. W. Improving the efficacy of radioimmunotherapy for non-Hodgkin lymphomas. Cancer 116 (Suppl.), 1126–1133 (2010).

    PubMed  PubMed Central  Google Scholar 

  34. Goldsmith, S. J. Radioimmunotherapy of lymphoma: Bexxar and Zevalin. Semin. Nucl. Med. 40, 122–135 (2010).

    PubMed  Google Scholar 

  35. Witzig, T. E. et al. Randomized controlled trial of yttrium-90-labeled ibritumomab tiuxetan radioimmunotherapy versus rituximab immunotherapy for patients with relapsed or refractory low-grade, follicular, or transformed B-cell non-Hodgkin's lymphoma. J. Clin. Oncol. 20, 2453–2463 (2002).

    CAS  PubMed  Google Scholar 

  36. Kaminski, M. S. et al. 131I-tositumomab therapy as initial treatment for follicular lymphoma. N. Engl. J. Med. 352, 441–449 (2005).

    CAS  PubMed  Google Scholar 

  37. Fisher, R. I. et al. Tositumomab and iodine-131 tositumomab produces durable complete remissions in a subset of heavily pretreated patients with low-grade and transformed non-Hodgkin's lymphomas. J. Clin. Oncol. 23, 7565–7573 (2005).

    CAS  PubMed  Google Scholar 

  38. Link, B. K. et al. Cyclophosphamide, vincristine, and prednisone followed by tositumomab and iodine-131-tositumomab in patients with untreated low-grade follicular lymphoma: eight-year follow-up of a multicenter phase II study. J. Clin. Oncol. 28, 3035–3041 (2010).

    CAS  PubMed  Google Scholar 

  39. Morschhauser, F. et al. Phase III trial of consolidation therapy with yttrium-90-ibritumomab tiuxetan compared with no additional therapy after first remission in advanced follicular lymphoma. J. Clin. Oncol. 26, 5156–5164 (2008).

    CAS  PubMed  Google Scholar 

  40. Press, O. W. et al. Phase II trial of CHOP chemotherapy followed by tositumomab/iodine I-131 tositumomab for previously untreated follicular non-Hodgkin's lymphoma: five-year follow-up of Southwest Oncology Group Protocol S9911. J. Clin. Oncol. 24, 4143–4149 (2006).

    CAS  PubMed  Google Scholar 

  41. Kaminski, M. S. et al. Re-treatment with I-131 tositumomab in patients with non-Hodgkin's lymphoma who had previously responded to I-131 tositumomab. J. Clin. Oncol. 23, 7985–7993 (2005).

    CAS  PubMed  Google Scholar 

  42. Deshpande, S. V. et al. Copper-67-labeled monoclonal antibody Lym-1, a potential radiopharmaceutical for cancer therapy: labeling and biodistribution in RAJI tumored mice. J. Nucl. Med. 29, 217–225 (1988).

    CAS  PubMed  Google Scholar 

  43. Morschhauser, F. et al. High rates of durable responses with anti-CD22 fractionated radioimmunotherapy: results of a multicenter, phase I/II study in non-Hodgkin's lymphoma. J. Clin. Oncol. 28, 3709–3716 (2010).

    CAS  PubMed  Google Scholar 

  44. O'Donoghue, J. A. Implications of nonuniform tumor doses for radioimmunotherapy. J. Nucl. Med. 40, 1337–1341 (1999).

    CAS  PubMed  Google Scholar 

  45. O'Donnell, R. T. et al. A clinical trial of radioimmunotherapy with 67Cu-2IT-BAT-Lym-1 for non-Hodgkin's lymphoma. J. Nucl. Med. 40, 2014–2020 (1999).

    CAS  PubMed  Google Scholar 

  46. Burke, J. M. et al. Cytoreduction with iodine-131-anti-CD33 antibodies before bone marrow transplantation for advanced myeloid leukemias. Bone Marrow Transplant. 32, 549–556 (2003).

    CAS  PubMed  Google Scholar 

  47. Lauter, A. et al. 188Re anti-CD66 radioimmunotherapy combined with reduced-intensity conditioning and in-vivo T cell depletion in elderly patients undergoing allogeneic haematopoietic cell transplantation. Br. J. Haematol. 148, 910–917 (2010).

    PubMed  Google Scholar 

  48. Matthews, D. C. et al. Development of a marrow transplant regimen for acute leukemia using targeted hematopoietic irradiation delivered by 131I-labeled anti-CD45 antibody, combined with cyclophosphamide and total body irradiation. Blood 85, 1122–1131 (1995).

    CAS  PubMed  Google Scholar 

  49. Pagel, J. M. et al. Allogeneic hematopoietic cell transplantation after conditioning with 131I-anti-CD45 antibody plus fludarabine and low-dose total body irradiation for elderly patients with advanced acute myeloid leukemia or high-risk myelodysplastic syndrome. Blood 114, 5444–5453 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Ringhoffer, M. et al. 188Re or 90Y-labelled anti-CD66 antibody as part of a dose-reduced conditioning regimen for patients with acute leukaemia or myelodysplastic syndrome over the age of 55: results of a phase I-II study. Br. J. Haematol. 130, 604–613 (2005).

    CAS  PubMed  Google Scholar 

  51. Kotzerke, J., Bunjes, D. & Scheinberg, D. A. Radioimmunoconjugates in acute leukemia treatment: the future is radiant. Bone Marrow Transplant. 36, 1021–1026 (2005).

    CAS  PubMed  Google Scholar 

  52. Schulz, A. S. et al. Radioimmunotherapy-based conditioning for hematopoietic cell transplantation in children with malignant and nonmalignant diseases. Blood 117, 4642–4650 (2011).

    CAS  PubMed  Google Scholar 

  53. Rosenblat, T. L. et al. Sequential cytarabine and alpha-particle immunotherapy with bismuth-213-lintuzumab (HuM195) for acute myeloid leukemia. Clin. Cancer Res. 16, 5303–5311 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Jurcic, J. G. et al. Targeted alpha particle immunotherapy for myeloid leukemia. Blood 100, 1233–1239 (2002).

    CAS  PubMed  Google Scholar 

  55. Meredith, R. F. et al. Phase II study of interferon-enhanced 131I-labeled high affinity CC49 monoclonal antibody therapy in patients with metastatic prostate cancer. Clin. Cancer Res. 5 (Suppl.), 3254s–3258s (1999).

    CAS  PubMed  Google Scholar 

  56. Meredith, R. F. et al. Phase II study of dual 131I-labeled monoclonal antibody therapy with interferon in patients with metastatic colorectal cancer. Clin. Cancer Res. 2, 1811–1818 (1996).

    CAS  PubMed  Google Scholar 

  57. Robert, F., Busby, E. M. & LoBuglio, A. F. Chemotherapy tolerance after radioimmunotherapy with 90Y-CC49 monoclonal antibody in patients with advanced non-small cell lung cancer: clinical effects and hematologic toxicity. Cancer Biother. Radiopharm. 18, 317–325 (2003).

    CAS  PubMed  Google Scholar 

  58. Tempero, M. et al. High-dose therapy with iodine-131-labeled monoclonal antibody CC49 in patients with gastrointestinal cancers: a phase I trial. J. Clin. Oncol. 15, 1518–1528 (1997).

    CAS  PubMed  Google Scholar 

  59. Wong, J. Y. et al. A Phase I trial of 90Y-anti-carcinoembryonic antigen chimeric T84.66 radioimmunotherapy with 5-fluorouracil in patients with metastatic colorectal cancer. Clin. Cancer Res. 9, 5842–5852 (2003).

    CAS  PubMed  Google Scholar 

  60. Ychou, M. et al. Adjuvant radioimmunotherapy trial with iodine-131-labeled anti-carcinoembryonic antigen monoclonal antibody F6 F(ab')2 after resection of liver metastases from colorectal cancer. Clin. Cancer Res. 14, 3487–3493 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Behr, T. M. et al. Phase I/II clinical radioimmunotherapy with an iodine-131-labeled anti-carcinoembryonic antigen murine monoclonal antibody IgG. J. Nucl. Med. 38, 858–870 (1997).

    CAS  PubMed  Google Scholar 

  62. Yu, B. et al. Phase I trial of iodine 131-labeled COL-1 in patients with gastrointestinal malignancies: influence of serum carcinoembryonic antigen and tumor bulk on pharmacokinetics. J. Clin. Oncol. 14, 1798–1809 (1996).

    CAS  PubMed  Google Scholar 

  63. Juweid, M. et al. Regression of advanced refractory ovarian cancer treated with iodine-131-labeled anti-CEA monoclonal antibody. J. Nucl. Med. 38, 257–260 (1997).

    CAS  PubMed  Google Scholar 

  64. Juweid, M. E. et al. Phase I/II trial of (131)I-MN-14F(ab)2 anti-carcinoembryonic antigen monoclonal antibody in the treatment of patients with metastatic medullary thyroid carcinoma. Cancer 85, 1828–1842 (1999).

    CAS  PubMed  Google Scholar 

  65. Wong, J. Y. et al. Initial clinical experience evaluating Yttrium-90-chimeric T84.66 anticarcinoembryonic antigen antibody and autologous hematopoietic stem cell support in patients with carcinoembryonic antigen-producing metastatic breast cancer. Clin. Cancer Res. 5 (Suppl.), 3224s–3231s (1999).

    CAS  PubMed  Google Scholar 

  66. Liersch, T. et al. Phase II trial of carcinoembryonic antigen radioimmunotherapy with 131I-labetuzumab after salvage resection of colorectal metastases in the liver: five-year safety and efficacy results. J. Clin. Oncol. 23, 6763–6770 (2005).

    CAS  PubMed  Google Scholar 

  67. Tempero, M. et al. High-dose therapy with 90Yttrium-labeled monoclonal antibody CC49: a phase I trial. Clin. Cancer Res. 6, 3095–3102 (2000).

    CAS  PubMed  Google Scholar 

  68. Sharkey, R. M. et al. Clinical evaluation of tumor targeting with a high-affinity, anticarcinoembryonic-antigen-specific, murine monoclonal antibody, MN-14. Cancer 71, 2082–2096 (1993).

    CAS  PubMed  Google Scholar 

  69. Verheijen, R. H. et al. Phase III trial of intraperitoneal therapy with yttrium-90-labeled HMFG1 murine monoclonal antibody in patients with epithelial ovarian cancer after a surgically defined complete remission. J. Clin. Oncol. 24, 571–578 (2006).

    CAS  PubMed  Google Scholar 

  70. Stewart, J. S. et al. Intraperitoneal radioimmunotherapy for ovarian cancer: pharmacokinetics, toxicity, and efficacy of I-131 labeled monoclonal antibodies. Int. J. Radiat. Oncol. Biol. Phys. 16, 405–413 (1989).

    CAS  PubMed  Google Scholar 

  71. Stewart, J. S. et al. Intraperitoneal 131I- and 90Y-labelled monoclonal antibodies for ovarian cancer: pharmacokinetics and normal tissue dosimetry. Int. J. Cancer Suppl. 3, 71–76 (1988).

    CAS  PubMed  Google Scholar 

  72. Murtha, A. D. Review of low-dose-rate radiobiology for clinicians. Semin. Radiat. Oncol. 10, 133–138 (2000).

    CAS  PubMed  Google Scholar 

  73. DeNardo, G. L. et al. Fractionated radioimmunotherapy of B-cell malignancies with 131I-Lym-1. Cancer Res. 50 (Suppl.), 1014s–1016s (1990).

    CAS  PubMed  Google Scholar 

  74. Knox, S. J. et al. Phase II trial of yttrium-90-DOTA-biotin pretargeted by NR-LU-10 antibody/streptavidin in patients with metastatic colon cancer. Clin. Cancer Res. 6, 406–414 (2000).

    CAS  PubMed  Google Scholar 

  75. Wilder, R. B. et al. Application of the linear-quadratic model to myelotoxicity associated with radioimmunotherapy. Eur. J. Nucl. Med. 23, 953–957 (1996).

    CAS  PubMed  Google Scholar 

  76. Ning, S., Trisler, K., Wessels, B. W. & Knox, S. J. Radiobiologic studies of radioimmunotherapy and external beam radiotherapy in vitro and in vivo in human renal cell carcinoma xenografts. Cancer 80 (Suppl.), 2519–2528 (1997).

    CAS  PubMed  Google Scholar 

  77. Roberson, P. L. & Buchsbaum, D. J. Reconciliation of tumor dose response to external beam radiotherapy versus radioimmunotherapy with 131iodine-labeled antibody for a colon cancer model. Cancer Res. 55 (Suppl.), 5811s–5816s (1995).

    CAS  PubMed  Google Scholar 

  78. Pacilio, M. et al. A theoretical dose-escalation study based on biological effective dose in radioimmunotherapy with (90)Y-ibritumomab tiuxetan (Zevalin). Eur. J. Nucl. Med. Mol. Imaging 37, 862–873 (2010).

    CAS  PubMed  Google Scholar 

  79. Flynn, A. A. et al. Effectiveness of radiolabelled antibodies for radio-immunotherapy in a colorectal xenograft model: a comparative study using the linear–quadratic formulation. Int. J. Radiat. Biol. 77, 507–517 (2001).

    CAS  PubMed  Google Scholar 

  80. Dewaraja, Y. K. et al. 131I-tositumomab radioimmunotherapy: initial tumor dose-response results using 3-dimensional dosimetry including radiobiologic modeling. J. Nucl. Med. 51, 1155–1162 (2010).

    PubMed  PubMed Central  Google Scholar 

  81. Bardiès, M. & Buvat, I. Dosimetry in nuclear medicine therapy: what are the specifics in image quantification for dosimetry? Q. J. Nucl. Med. Mol. Imaging 55, 5–20 (2011).

    PubMed  Google Scholar 

  82. Konijnenberg, M. From imaging to dosimetry and biological effects. Q. J. Nucl. Med. Mol. Imaging 55, 44–56 (2011).

    CAS  PubMed  Google Scholar 

  83. Wahl, R. L. Tositumab and 131I therapy in non Hodgkin's lymphoma. J. Nucl. Med. 46 (Suppl. 1) 128S (2005).

    CAS  PubMed  Google Scholar 

  84. Wiseman, G. A. et al. Radiation dosimetry results for Zevalin radioimmunotherapy of rituximab-refractory non-Hodgkin lymphoma. Cancer 94 (Suppl.), 1349–1357 (2002).

    CAS  PubMed  Google Scholar 

  85. Ferrer, L. et al. Three methods assessing red marrow dosimetry in lymphoma patients treated with radioimmunotherapy. Cancer 116 (Suppl.), 1093–1100 (2010).

    CAS  PubMed  Google Scholar 

  86. Malek, E. et al. Dosimetry for fractionated ZevalinTM treatment as an initial therapy of follicular lymphoma. Eur. J. Nucl. Med. Mol. Imaging 37 (Suppl. 2), S237 (2010).

    Google Scholar 

  87. Lindén, O. et al. Dose-fractionated radioimmunotherapy in non-Hodgkin's lymphoma using DOTA-conjugated, 90Y-radiolabeled, humanized anti-CD22 monoclonal antibody, epratuzumab. Clin. Cancer Res. 11, 5215–5222 (2005).

    PubMed  Google Scholar 

  88. Gruber, R. et al. The human antimouse immunoglobulin response and the anti-idiotypic network have no influence on clinical outcome in patients with minimal residual colorectal cancer treated with monoclonal antibody CO17-1A. Cancer Res. 60, 1921–1926 (2000).

    CAS  PubMed  Google Scholar 

  89. DeNardo, G. L. et al. Maximum-tolerated dose, toxicity, and efficacy of (131)I-Lym-1 antibody for fractionated radioimmunotherapy of non-Hodgkin's lymphoma. J. Clin. Oncol. 16, 3246–3256 (1998).

    CAS  PubMed  Google Scholar 

  90. Goldsmith, S. et al. Fractionated radioimmunotherapy with 90Y-clivatuzumab tetraxetan (90Y-hPAM4) plus gemcitabine (Gem) in advanced pancreatic cancer (APC) [abstract]. J. Nucl. Med. 52 (Suppl. 1), 357 (2011).

    Google Scholar 

  91. Ocean, A. J. et al. Activity of fractionated radioimmunotherapy with clivatuzumab tetraxetan combined with low-dose gemcitabine (Gem) in advanced pancreatic cancer (APC) [abstract]. J. Clin. Oncol. 29 (Suppl. 4), a240 (2011).

    Google Scholar 

  92. Behr, T. M. et al. Radioimmunotherapy of small-volume disease of metastatic colorectal cancer. Cancer 94 (Suppl.), 1373–1381 (2002).

    CAS  PubMed  Google Scholar 

  93. Sharkey, R. M. & Goldenberg, D. M. Cancer radioimmunotherapy. Immunotherapy 3, 349–370 (2011).

    PubMed  PubMed Central  Google Scholar 

  94. Andersson, H. et al. Intraperitoneal alpha-particle radioimmunotherapy of ovarian cancer patients: pharmacokinetics and dosimetry of (211)At-MX35 F(ab')2–a phase I study. J. Nucl. Med. 50, 1153–1160 (2009).

    CAS  PubMed  Google Scholar 

  95. Li, L. et al. A Phase II study of anti-epidermal growth factor receptor radioimmunotherapy in the treatment of glioblastoma multiforme. J. Neurosurg. 113, 192–198 (2010).

    PubMed  Google Scholar 

  96. Quang, T. S. & Brady, L. W. Radioimmunotherapy as a novel treatment regimen: 125I-labeled monoclonal antibody 425 in the treatment of high-grade brain gliomas. Int. J. Radiat. Oncol. Biol. Phys. 58, 972–975 (2004).

    CAS  PubMed  Google Scholar 

  97. Welt, S. et al. Phase I/II study of iodine 125-labeled monoclonal antibody A33 in patients with advanced colon cancer. J. Clin. Oncol. 14, 1787–1797 (1996).

    CAS  PubMed  Google Scholar 

  98. Chérel, M., Davodeau, F., Kraeber-Bodéré, F. & Chatal, J. F. Current status and perspectives in alpha radioimmunotherapy. Q. J. Nucl. Med. Mol. Imaging 50, 322–329 (2006).

    PubMed  Google Scholar 

  99. Zalutsky, M. R. Targeted radiotherapy of brain tumours. Br. J. Cancer 90, 1469–1473 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Borchardt, P. E., Yuan, R. R., Miederer, M., McDevitt, M. R. & Scheinberg, D. A. Targeted actinium-225 in vivo generators for therapy of ovarian cancer. Cancer Res. 63, 5084–5090 (2003).

    CAS  PubMed  Google Scholar 

  101. Yong, K. & Brechbiel, M. W. Towards translation of 212Pb as a clinical therapeutic; getting the lead in! Dalton Trans. 40, 6068–6076 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Sabbatini, P. & Spriggs, D. R. Consolidation for ovarian cancer in remission. J. Clin. Oncol. 24, 537–539 (2006).

    PubMed  Google Scholar 

  103. Oei, A. L. et al. Decreased intraperitoneal disease recurrence in epithelial ovarian cancer patients receiving intraperitoneal consolidation treatment with yttrium-90-labeled murine HMFG1 without improvement in overall survival. Int. J. Cancer 120, 2710–2714 (2007).

    CAS  PubMed  Google Scholar 

  104. Alvarez, R. D. et al. A Phase I study of combined modality (90)Yttrium-CC49 intraperitoneal radioimmunotherapy for ovarian cancer. Clin. Cancer Res. 8, 2806–2811 (2002).

    CAS  PubMed  Google Scholar 

  105. Shen, S. et al. Patient-specific dosimetry of pretargeted radioimmunotherapy using CC49 fusion protein in patients with gastrointestinal malignancies. J. Nucl. Med. 46, 642–651 (2005).

    CAS  PubMed  Google Scholar 

  106. Shen, S., Forero, A., Meredith, R. F. & LoBuglio, A. F. Biodistribution and dosimetry of In-111/Y-90-HuCC49DeltaCh2 (IDEC-159) in patients with metastatic colorectal adenocarcinoma. Cancer Biother. Radiopharm. 26, 127–133 (2011).

    CAS  PubMed  Google Scholar 

  107. Reardon, D. A. et al. Salvage radioimmunotherapy with murine iodine-131-labeled antitenascin monoclonal antibody 81C6 for patients with recurrent primary and metastatic malignant brain tumors: phase II study results. J. Clin. Oncol. 24, 115–122 (2006).

    CAS  PubMed  Google Scholar 

  108. Zalutsky, M. R. et al. Clinical experience with alpha-particle emitting 211At: treatment of recurrent brain tumor patients with 211At-labeled chimeric antitenascin monoclonal antibody 81C6. J. Nucl. Med. 49, 30–38 (2008).

    CAS  PubMed  Google Scholar 

  109. Akabani, G. et al. Dosimetry and radiographic analysis of 131I-labeled anti-tenascin 81C6 murine monoclonal antibody in newly diagnosed patients with malignant gliomas: a phase II study. J. Nucl. Med. 46, 1042–1051 (2005).

    CAS  PubMed  Google Scholar 

  110. Forero, A. et al. Phase 1 trial of a novel anti-CD20 fusion protein in pretargeted radioimmunotherapy for B-cell non-Hodgkin lymphoma. Blood 104, 227–236 (2004).

    CAS  PubMed  Google Scholar 

  111. Kraeber-Bodéré, F. et al. Targeting, toxicity, and efficacy of 2-step, pretargeted radioimmunotherapy using a chimeric bispecific antibody and 131I-labeled bivalent hapten in a phase I optimization clinical trial. J. Nucl. Med. 47, 247–255 (2006).

    PubMed  Google Scholar 

  112. DeNardo, S. J. et al. Enhancement of the therapeutic index: from nonmyeloablative and myeloablative toward pretargeted radioimmunotherapy for metastatic prostate cancer. Clin. Cancer Res. 11, 7187s–7194s (2005).

    CAS  PubMed  Google Scholar 

  113. Goldenberg, D. M., Sharkey, R. M., Paganelli, G., Barbet, J. & Chatal, J. F. Antibody pretargeting advances cancer radioimmunodetection and radioimmunotherapy. J. Clin. Oncol. 24, 823–834 (2006).

    CAS  PubMed  Google Scholar 

  114. Devizzi, L. et al. High-dose yttrium-90-ibritumomab tiuxetan with tandem stem-cell reinfusion: an outpatient preparative regimen for autologous hematopoietic cell transplantation. J. Clin. Oncol. 26, 5175–5182 (2008).

    CAS  PubMed  Google Scholar 

  115. Press, O. W. et al. Treatment of refractory non-Hodgkin's lymphoma with radiolabeled MB-1 (anti-CD37) antibody. J. Clin. Oncol. 7, 1027–1038 (1989).

    CAS  PubMed  Google Scholar 

  116. Richman, C. M. et al. High-dose radioimmunotherapy combined with fixed, low-dose paclitaxel in metastatic prostate and breast cancer by using a MUC-1 monoclonal antibody, m170, linked to indium-111/yttrium-90 via a cathepsin cleavable linker with cyclosporine to prevent human anti-mouse antibody. Clin. Cancer Res. 11, 5920–5927 (2005).

    CAS  PubMed  Google Scholar 

  117. Sharkey, R. M. et al. A phase I trial combining high-dose 90Y-labeled humanized anti-CEA monoclonal antibody with doxorubicin and peripheral blood stem cell rescue in advanced medullary thyroid cancer. J. Nucl. Med. 46, 620–633 (2005).

    CAS  PubMed  Google Scholar 

  118. Schliemann, C. & Neri, D. Antibody-based vascular tumor targeting. Recent Results Cancer Res. 180, 201–216 (2010).

    CAS  PubMed  Google Scholar 

  119. Grana, C. et al. Pretargeted adjuvant radioimmunotherapy with yttrium-90-biotin in malignant glioma patients: a pilot study. Br. J. Cancer 86, 207–212 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Riva, P. et al. Loco-regional radioimmunotherapy of high-grade malignant gliomas using specific monoclonal antibodies labeled with 90Y: a phase I study. Clin. Cancer Res. 5 (Suppl.), 3275s–3280s (1999).

    CAS  PubMed  Google Scholar 

  121. Nagengast, W. B. et al. In vivo VEGF imaging with radiolabeled bevacizumab in a human ovarian tumor xenograft. J. Nucl. Med. 48, 1313–1319 (2007).

    CAS  PubMed  Google Scholar 

  122. Abbas Rizvi, S. M. et al. Preparation and testing of bevacizumab radioimmunoconjugates with Bismuth-213 and Bismuth-205/Bismuth-206. Cancer Biol. Ther. 7, 1547–1554 (2008).

    PubMed  Google Scholar 

  123. Mattes, M. J. & Goldenberg, D. M. Therapy of human carcinoma xenografts with antibodies to EGFR and HER-2 conjugated to radionuclides emitting low-energy electrons. Eur. J. Nucl. Med. Mol. Imaging 35, 1249–1258 (2008).

    CAS  PubMed  Google Scholar 

  124. Sharkey, R. M., Press, O. W. & Goldenberg, D. M. A re-examination of radioimmunotherapy in the treatment of non-Hodgkin lymphoma: prospects for dual-targeted antibody/radioantibody therapy. Blood 113, 3891–3895 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Milenic, D. E. et al. Improved efficacy of alpha-particle-targeted radiation therapy: dual targeting of human epidermal growth factor receptor-2 and tumor-associated glycoprotein 72. Cancer 116 (Suppl.), 1059–1066 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Wong, J. Y. Systemic targeted radionuclide therapy: potential new areas. Int. J. Radiat. Oncol. Biol. Phys. 66 (Suppl.), S74–S82 (2006).

    CAS  PubMed  Google Scholar 

  127. Demaria, S., Bhardwaj, N., McBride, W. H. & Formenti, S. C. Combining radiotherapy and immunotherapy: a revived partnership. Int. J. Radiat. Oncol. Biol. Phys. 63, 655–666 (2005).

    PubMed  PubMed Central  Google Scholar 

  128. Ruan, S. et al. Optimizing the sequence of combination therapy with radiolabeled antibodies and fractionated external beam. J. Nucl. Med. 41, 1905–1912 (2000).

    CAS  PubMed  Google Scholar 

  129. Kinuya, S., Yokoyama, K., Michigishi, T. & Tonami, N. Optimization of radioimmunotherapy interactions with hyperthermia. Int. J. Hyperthermia 20, 190–200 (2004).

    CAS  PubMed  Google Scholar 

  130. Koral, K. F. et al. Tumor-absorbed-dose estimates versus response in tositumomab therapy of previously untreated patients with follicular non-Hodgkin's lymphoma: preliminary report. Cancer Biother. Radiopharm. 15, 347–355 (2000).

    CAS  PubMed  Google Scholar 

  131. Leonard, J. P. & Goldenberg, D. M. Preclinical and clinical evaluation of epratuzumab (anti-CD22 IgG) in B-cell malignancies. Oncogene 26, 3704–3713 (2007).

    CAS  PubMed  Google Scholar 

  132. Zhang, M. M. & Gopal, A. K. Radioimmunotherapy-based conditioning regimens for stem cell transplantation. Semin. Hematol. 45, 118–125 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Nademanee, A. et al. A phase 1/2 trial of high-dose yttrium-90-ibritumomab tiuxetan in combination with high-dose etoposide and cyclophosphamide followed by autologous stem cell transplantation in patients with poor-risk or relapsed non-Hodgkin lymphoma. Blood 106, 2896–2902 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Illidge, T. M. et al. Phase 1/2 study of fractionated (131)I-rituximab in low-grade B-cell lymphoma: the effect of prior rituximab dosing and tumor burden on subsequent radioimmunotherapy. Blood 113, 1412–1421 (2009).

    CAS  PubMed  Google Scholar 

  135. Kaminski, M. S. et al. Radioimmunotherapy of B-cell lymphoma with [131I]anti-B1 (anti-CD20) antibody. N. Engl. J. Med. 329, 459–465 (1993).

    CAS  PubMed  Google Scholar 

  136. Press, O. W. et al. Phase II trial of 131I-B1 (anti-CD20) antibody therapy with autologous stem cell transplantation for relapsed B cell lymphomas. Lancet 346, 336–340 (1995).

    CAS  PubMed  Google Scholar 

  137. Davies, A. J. et al. Tositumomab and iodine I 131 tositumomab for recurrent indolent and transformed B-cell non-Hodgkin's lymphoma. J. Clin. Oncol. 22, 1469–1479 (2004).

    CAS  PubMed  Google Scholar 

  138. Kaminski, M. S. et al. Imaging, dosimetry, and radioimmunotherapy with iodine 131-labeled anti-CD37 antibody in B-cell lymphoma. J. Clin. Oncol. 10, 1696–1711 (1992).

    CAS  PubMed  Google Scholar 

  139. Pagel, J. M. et al. 131I-anti-CD45 antibody plus busulfan and cyclophosphamide before allogeneic hematopoietic cell transplantation for treatment of acute myeloid leukemia in first remission. Blood 107, 2184–2191 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Chong, G. et al. Phase I trial of 131I-huA33 in patients with advanced colorectal carcinoma. Clin. Cancer Res. 11, 4818–4826 (2005).

    CAS  PubMed  Google Scholar 

  141. Scott, A. M. et al. A phase I trial of humanized monoclonal antibody A33 in patients with colorectal carcinoma: biodistribution, pharmacokinetics, and quantitative tumor uptake. Clin. Cancer Res. 11, 4810–4817 (2005).

    CAS  PubMed  Google Scholar 

  142. Welt, S. et al. Quantitative analysis of antibody localization in human metastatic colon cancer: a phase I study of monoclonal antibody A33. J. Clin. Oncol. 8, 1894–1906 (1990).

    CAS  PubMed  Google Scholar 

  143. Meyer, T. et al. A phase I trial of radioimmunotherapy with 131I-A5B7 anti-CEA antibody in combination with combretastatin-A4-phosphate in advanced gastrointestinal carcinomas. Clin. Cancer Res. 15, 4484–4492 (2009).

    CAS  PubMed  Google Scholar 

  144. Wong, J. Y. et al. Clinical evaluation of indium-111-labeled chimeric anti-CEA monoclonal antibody. J. Nucl. Med. 38, 1951–1959 (1997).

    CAS  PubMed  Google Scholar 

  145. Shibata, S. et al. A phase I study of a combination of yttrium-90-labeled anti-carcinoembryonic antigen (CEA) antibody and gemcitabine in patients with CEA-producing advanced malignancies. Clin. Cancer Res. 15, 2935–2941 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  146. Juweid, M. E. et al. Initial experience with high-dose radioimmunotherapy of metastatic medullary thyroid cancer using 131I-MN-14 F(ab)2 anti-carcinoembryonic antigen MAb and AHSCR. J. Nucl. Med. 41, 193–103 (2000).

    Google Scholar 

  147. Ychou, M. et al. Potential contribution of 131I-labelled monoclonal anti-CEA antibodies in the treatment of liver metastases from colorectal carcinomas: pretherapeutic study with dose recovery in resected tissues. Eur. J. Cancer 29A, 1105–1111 (1993).

    CAS  PubMed  Google Scholar 

  148. Sultana, A. et al. Randomised phase I/II trial assessing the safety and efficacy of radiolabelled anti-carcinoembryonic antigen I(131) KAb201 antibodies given intra-arterially or intravenously in patients with unresectable pancreatic adenocarcinoma. BMC Cancer 9, 66 (2009).

    PubMed  PubMed Central  Google Scholar 

  149. Casey, J. L. et al. Tumour targeting of humanised cross-linked divalent-Fab' antibody fragments: a clinical phase I/II study. Br. J. Cancer 86, 1401–1410 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  150. Chatal, J. F. et al. Survival improvement in patients with medullary thyroid carcinoma who undergo pretargeted anti-carcinoembryonic-antigen radioimmunotherapy: a collaborative study with the French Endocrine Tumor Group. J. Clin. Oncol. 24, 1705–1711 (2006).

    CAS  PubMed  Google Scholar 

  151. Sauer, S. et al. Expression of the oncofetal ED-B-containing fibronectin isoform in hematologic tumors enables ED-B-targeted 131I-L19SIP radioimmunotherapy in Hodgkin lymphoma patients. Blood 113, 2265–2274 (2009).

    CAS  PubMed  Google Scholar 

  152. Kramer, K. et al. Phase I study of targeted radioimmunotherapy for leptomeningeal cancers using intra-Ommaya 131-I-3F8. J. Clin. Oncol. 25, 5465–5470 (2007).

    PubMed  Google Scholar 

  153. Divgi, C. R. et al. Phase I clinical trial with fractionated radioimmunotherapy using 131I-labeled chimeric G250 in metastatic renal cancer. J. Nucl. Med. 45, 1412–1421 (2004).

    CAS  PubMed  Google Scholar 

  154. Oosterwijk, E. et al. Antibody localization in human renal cell carcinoma: a phase I study of monoclonal antibody G250. J. Clin. Oncol. 11, 738–750 (1993).

    CAS  PubMed  Google Scholar 

  155. Divgi, C. R. et al. Phase I/II radioimmunotherapy trial with iodine-131-labeled monoclonal antibody G250 in metastatic renal cell carcinoma. Clin. Cancer Res. 4, 2729–2739 (1998).

    CAS  PubMed  Google Scholar 

  156. Brouwers, A. H. et al. Lack of efficacy of two consecutive treatments of radioimmunotherapy with 131I-cG250 in patients with metastasized clear cell renal cell carcinoma. J. Clin. Oncol. 23, 6540–6548 (2005).

    CAS  PubMed  Google Scholar 

  157. Chen, Z. N. et al. Targeting radioimmunotherapy of hepatocellular carcinoma with iodine (131I) metuximab injection: clinical phase I/II trials. Int. J. Radiat. Oncol. Biol. Phys. 65, 435–444 (2006).

    CAS  PubMed  Google Scholar 

  158. Hird, V. et al. Adjuvant therapy of ovarian cancer with radioactive monoclonal antibody. Br. J. Cancer 68, 403–406 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  159. Meredith, R. F. et al. Initial clinical evaluation of iodine-125-labeled chimeric 17–1A for metastatic colon cancer. J. Nucl. Med. 36, 2229–2233 (1995).

    CAS  PubMed  Google Scholar 

  160. Morris, M. J. et al. Pilot trial of unlabeled and indium-111-labeled anti-prostate-specific membrane antigen antibody J591 for castrate metastatic prostate cancer. Clin. Cancer Res. 11, 7454–7461 (2005).

    CAS  PubMed  Google Scholar 

  161. Morris, M. J. et al. Phase I evaluation of J591 as a vascular targeting agent in progressive solid tumors. Clin. Cancer Res. 13, 2707–2713 (2007).

    CAS  PubMed  Google Scholar 

  162. Vallabhajosula, S. et al. Prediction of myelotoxicity based on bone marrow radiation-absorbed dose: radioimmunotherapy studies using 90Y- and 177Lu-labeled J591 antibodies specific for prostate-specific membrane antigen. J. Nucl. Med. 46, 850–858 (2005).

    CAS  PubMed  Google Scholar 

  163. Vallabhajosula, S. et al. Radioimmunotherapy of prostate cancer using 90Y- and 177Lu-labeled J591 monoclonal antibodies: effect of multiple treatments on myelotoxicity. Clin. Cancer Res. 11, 7195s–7200s (2005).

    CAS  PubMed  Google Scholar 

  164. Meredith, R. F. et al. Phase I trial of iodine-131-chimeric B72.3 (human IgG4) in metastatic colorectal cancer. J. Nucl. Med. 33, 23–29 (1992).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors researched data for the article, wrote the article, and reviewed or edited the manuscript before submission. J. P. Pouget, I. Navarro-Teulon, A. Pelegrin, and D. Azria provided substantial contributions to the discussion of content.

Corresponding author

Correspondence to Jean-Pierre Pouget.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pouget, JP., Navarro-Teulon, I., Bardiès, M. et al. Clinical radioimmunotherapy—the role of radiobiology. Nat Rev Clin Oncol 8, 720–734 (2011). https://doi.org/10.1038/nrclinonc.2011.160

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrclinonc.2011.160

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing