Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Imaging ovarian cancer and peritoneal metastases—current and emerging techniques

Abstract

Peritoneal metastases are often the first presentation of ovarian malignancy. Evaluating the extent of disease critically determines tumor resectability and can also predict outcome. Standard CT, however, frequently fails to identify small sites of peritoneal spread. Moreover, it does not provide a quantitative index of disease response to cytotoxic therapy as it relies on macroscopic morphological changes in tumor volume, and does not reflect preceding molecular events in the microenvironment of the tumor. We describe the emerging role of functional imaging techniques, such as radioimmunoscintigraphy, PET/CT, diffusion-weighted MRI, dynamic contrast-enhanced MRI, and magnetic resonance spectroscopy in staging ovarian cancer and assessing treatment response. The combination of functional information with conventional anatomical visualization holds promise to accurately characterize peritoneal disease, and provides noninvasive biomarkers of therapeutic performance and patient prognosis.

Key Points

  • The use of imaging to evaluate peritoneal disease in ovarian cancer is essential for patient stratification to receive either primary surgery or chemotherapy, and to determine therapeutic result

  • CT is the standard imaging modality to assess disease bulk and indicate primary resectability, but its performance is suboptimal for the identification of multifocal and low-volume disease

  • CT and MRI use reduction of tumor size as a biomarker of clinical response, but macroscopic volume changes often have late onset and slow rate

  • Dual anatomical and functional imaging techniques, such as PET/CT and diffusion-weighted MRI, are superior to purely morphological imaging for detecting peritoneal disease, and could facilitate preoperative planning

  • Molecular imaging techniques provide quantitative parameters for early assessment of treatment response; however, standardization and validation are still warranted for their wider application in drug research and clinical practice

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Imaging the peritoneal membranes and spaces.
Figure 2: Peritoneal carcinomatosis in a 48-year-old female with ovarian cancer.
Figure 3: PET/CT in a 29-year-old female with stage IV ovarian cancer.
Figure 4: Diffusion-weighted MRI series of advanced peritoneal cancer in a 49-year-old female.
Figure 5: Imaging post primary cytoreductive surgery in a 59-year-old female with stage III ovarian cancer with no macroscopic disease on closure.
Figure 6: Dynamic contrast-enhanced MRI study of a subhepatic peritoneal deposit in a 73-year-old female with stage IV ovarian cancer.

Similar content being viewed by others

References

  1. Jemal, A. et al. Cancer statistics, 2009. CA Cancer J. Clin. 59, 225–249 (2009).

    Article  PubMed  Google Scholar 

  2. Heintz, A. P. et al. Carcinoma of the ovary. FIGO 6th Annual Report on the Results of Treatment in Gynecological Cancer. Int. J. Gynaecol. Obstet. 95 (Suppl. 1), S161–S192 (2006).

    PubMed  Google Scholar 

  3. Meyers, M. A., Oliphant, M., Berne, A. S. & Feldberg, M. A. The peritoneal ligaments and mesenteries: pathways of intraabdominal spread of disease. Radiology 163, 593–604 (1987).

    CAS  PubMed  Google Scholar 

  4. Carmignani, C. P., Sugarbaker, T. A., Bromley, C. M. & Sugarbaker, P. H. Intraperitoneal cancer dissemination: mechanisms of the patterns of spread. Cancer Metastasis Rev. 22, 465–472 (2003).

    PubMed  Google Scholar 

  5. Pannu, H. K., Bristow, R. E., Montz, F. J. & Fishman, E. K. Multidetector CT of peritoneal carcinomatosis from ovarian cancer. Radiographics 23, 687–701 (2003).

    PubMed  Google Scholar 

  6. Feki, A. et al. Dissemination of intraperitoneal ovarian cancer: discussion of mechanisms and demonstration of lymphatic spreading in ovarian cancer model. Crit. Rev. Oncol. Hematol. 72, 1–9 (2009).

    PubMed  Google Scholar 

  7. Akin, O. et al. Perihepatic metastases from ovarian cancer: sensitivity and specificity of CT for the detection of metastases with and those without liver parenchymal invasion. Radiology 248, 511–517 (2008).

    PubMed  Google Scholar 

  8. Buy, J. N. et al. Peritoneal implants from ovarian tumors: CT findings. Radiology 169, 691–694 (1988).

    CAS  PubMed  Google Scholar 

  9. Mitchell, D. G., Hill, M. C., Hill, S. & Zaloudek, C. Serous carcinoma of the ovary: CT identification of metastatic calcified implants. Radiology 158, 649–652 (1986).

    CAS  PubMed  Google Scholar 

  10. Levy, A. D., Shaw, J. C. & Sobin, L. H. Secondary tumors and tumorlike lesions of the peritoneal cavity: imaging features with pathologic correlation. Radiographics 29, 347–373 (2009).

    PubMed  Google Scholar 

  11. van der Burg, M. E. et al. The effect of debulking surgery after induction chemotherapy on the prognosis in advanced epithelial ovarian cancer. Gynecological Cancer Cooperative Group of the European Organization for Research and Treatment of Cancer. N. Engl. J. Med. 332, 629–634 (1995).

    CAS  PubMed  Google Scholar 

  12. Vergote, I. et al. Neoadjuvant chemotherapy or primary debulking surgery in advanced ovarian carcinoma: a retrospective analysis of 285 patients. Gynecol. Oncol. 71, 431–436 (1998).

    CAS  PubMed  Google Scholar 

  13. Vergote, I. et al. EORTC-GCG/NCIC-CTG randomised trial comparing primary debulking surgery with neoadjuvant chemotherapy in stage IIIc–IV ovarian, fallopian tube and peritoneal cancer (OVCA). Presented at the 12th Biennial Meeting of the International Gynecologic Cancer Society 2008.

  14. Qayyum, A. et al. Role of CT and MR imaging in predicting optimal cytoreduction of newly diagnosed primary epithelial ovarian cancer. Gynecol. Oncol. 96, 301–306 (2005).

    PubMed  Google Scholar 

  15. Bristow, R. E., Tomacruz, R. S., Armstrong, D. K., Trimble, E. L. & Montz, F. J. Survival effect of maximal cytoreductive surgery for advanced ovarian carcinoma during the platinum era: a meta-analysis. J. Clin. Oncol. 20, 1248–1259 (2002).

    PubMed  Google Scholar 

  16. Souza, F. F., Mortelé, K. J., Cibas, E. S., Erturk, S. M. & Silverman, S. G. Predictive value of percutaneous imaging-guided biopsy of peritoneal and omental masses: results in 111 patients. AJR Am. J. Roentgenol. 192, 131–136 (2009).

    PubMed  Google Scholar 

  17. Spencer, J. A. et al. Peritoneal carcinomatosis: image-guided peritoneal core biopsy for tumor type and patient care. Radiology 221, 173–177 (2001).

    CAS  PubMed  Google Scholar 

  18. Griffin, N. et al. Image-guided biopsy in patients with suspected ovarian carcinoma: a safe and effective technique? Eur. Radiol. 19, 230–235 (2009).

    PubMed  Google Scholar 

  19. Tempany, C. M. et al. Staging of advanced ovarian cancer: comparison of imaging modalities—report from the Radiological Diagnostic Oncology Group. Radiology 215, 761–767 (2000).

    CAS  PubMed  Google Scholar 

  20. Hanbidge, A. E., Lynch, D. & Wilson, S. R. US of the peritoneum. Radiographics 23, 663–685 (2003).

    PubMed  Google Scholar 

  21. Coakley, F. V. et al. Peritoneal metastases: detection with spiral CT in patients with ovarian cancer. Radiology 223, 495–499 (2002).

    PubMed  Google Scholar 

  22. Pannu, H. K., Horton, K. M. & Fishman, E. K. Thin section dual-phase multidetector-row computed tomography detection of peritoneal metastases in gynecologic cancers. J. Comput. Assist. Tomogr. 27, 333–340 (2003).

    PubMed  Google Scholar 

  23. Woodward, P. J., Hosseinzadeh, K. & Saenger, J. From the archives of the AFIP: radiologic staging of ovarian carcinoma with pathologic correlation. Radiographics 24, 225–246 (2004).

    PubMed  Google Scholar 

  24. Jacquet, P., Jelinek, J. S., Steves, M. A. & Sugarbaker, P. H. Evaluation of computed tomography in patients with peritoneal carcinomatosis. Cancer 72, 1631–1636 (1993).

    CAS  PubMed  Google Scholar 

  25. de Bree, E. et al. Peritoneal carcinomatosis from colorectal or appendiceal origin: correlation of preoperative CT with intraoperative findings and evaluation of interobserver agreement. J. Surg. Oncol. 86, 64–73 (2004).

    PubMed  Google Scholar 

  26. Chi, D. S. et al. What is the optimal goal of primary cytoreductive surgery for bulky stage IIIC epithelial ovarian carcinoma (EOC)? Gynecol. Oncol. 103, 559–564 (2006).

    CAS  PubMed  Google Scholar 

  27. Low, R. N. et al. Peritoneal tumor: MR imaging with dilute oral barium and intravenous gadolinium-containing contrast agents compared with unenhanced MR imaging and CT. Radiology 204, 513–520 (1997).

    CAS  PubMed  Google Scholar 

  28. Fultz, P. J. et al. Ovarian cancer: comparison of observer performance for four methods of interpreting CT scans. Radiology 212, 401–410 (1999).

    CAS  PubMed  Google Scholar 

  29. Bristow, R. E. et al. A model for predicting surgical outcome in patients with advanced ovarian carcinoma using computed tomography. Cancer 89, 1532–1540 (2000).

    CAS  PubMed  Google Scholar 

  30. Axtell, A. E. et al. Multi-institutional reciprocal validation study of computed tomography predictors of suboptimal primary cytoreduction in patients with advanced ovarian cancer. J. Clin. Oncol. 25, 384–389 (2007).

    PubMed  Google Scholar 

  31. Salani, R., Axtell, A., Gerardi, M., Holschneider, C. & Bristow, R. E. Limited utility of conventional criteria for predicting unresectable disease in patients with advanced stage epithelial ovarian cancer. Gynecol. Oncol. 108, 271–275 (2008).

    PubMed  Google Scholar 

  32. Hricak, H. et al. Complex adnexal masses: detection and characterization with MR imaging—multivariate analysis. Radiology 214, 39–46 (2000).

    CAS  PubMed  Google Scholar 

  33. Sohaib, S. A., Sahdev, A., Van Trappen, P., Jacobs, I. J. & Reznek, R. H. Characterization of adnexal mass lesions on MR imaging. AJR Am. J. Roentgenol. 180, 1297–1304 (2003).

    PubMed  Google Scholar 

  34. Rustin, G. J. et al. Defining response of ovarian carcinoma to initial chemotherapy according to serum CA 125. J. Clin. Oncol. 14, 1545–1551 (1996).

    CAS  PubMed  Google Scholar 

  35. Eisenhauer, E. A. et al. New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). Eur. J. Cancer 45, 228–247 (2009).

    CAS  PubMed  Google Scholar 

  36. Choi, H. et al. CT evaluation of the response of gastrointestinal stromal tumors after imatinib mesylate treatment: a quantitative analysis correlated with FDG PET findings. AJR Am. J. Roentgenol. 183, 1619–1628 (2004).

    PubMed  Google Scholar 

  37. Greenlee, R. T., Hill-Harmon, M. B., Murray, T. & Thun, M. Cancer statistics, 2001. CA Cancer J. Clin. 51, 15–36 (2001).

    CAS  PubMed  Google Scholar 

  38. Oksefjell, H., Sandstad, B. & Tropé, C. The role of secondary cytoreduction in the management of the first relapse in epithelial ovarian cancer. Ann. Oncol. 20, 286–293 (2009).

    CAS  PubMed  Google Scholar 

  39. Eisenkop, S. M., Friedman, R. L. & Spirtos, N. M. The role of secondary cytoreductive surgery in the treatment of patients with recurrent epithelial ovarian carcinoma. Cancer 88, 144–153 (2000).

    CAS  PubMed  Google Scholar 

  40. Gadducci, A. & Cosio, S. Surveillance of patients after initial treatment of ovarian cancer. Crit. Rev. Oncol. Hematol. 71, 43–52 (2009).

    PubMed  Google Scholar 

  41. Spencer, J. A. Ovarian cancer: what's new, where next? Cancer Imaging 4, 19–21 (2003).

    PubMed  Google Scholar 

  42. Kwek, J. W. & Iyer, R. B. Recurrent ovarian cancer: spectrum of imaging findings. AJR Am. J. Roentgenol. 187, 99–104 (2006).

    PubMed  Google Scholar 

  43. Sanderson, A., Bonington, S. C., Carrington, B. M., Alison, D. L. & Spencer, J. A. Cerebral metastasis and other cerebral events in women with ovarian cancer. Clin. Radiol. 57, 815–819 (2002).

    CAS  PubMed  Google Scholar 

  44. Patel, S. V., Spencer, J. A., Wilkinson, N. & Perren, T. J. Supradiaphragmatic manifestations of papillary serous adenocarcinoma of the ovary. Clin. Radiol. 54, 748–754 (1999).

    CAS  PubMed  Google Scholar 

  45. Topuz, E. et al. Correlations of serum CA125 level and computerized tomography (CT) imaging with laparotomic findings following intraperitoneal chemotherapy in patients with ovarian cancer. Eur. J. Gynaecol. Oncol. 21, 599–602 (2000).

    CAS  PubMed  Google Scholar 

  46. Kubik-Huch, R. A. et al. Value of (18F)-FDG positron emission tomography, computed tomography, and magnetic resonance imaging in diagnosing primary and recurrent ovarian carcinoma. Eur. Radiol. 10, 761–767 (2000).

    CAS  PubMed  Google Scholar 

  47. Sebastian, S. et al. PET-CT vs CT alone in ovarian cancer recurrence. Abdom. Imaging 33, 112–118 (2008).

    PubMed  Google Scholar 

  48. Bellomi, M. et al. Accuracy of computed tomography and magnetic resonance imaging in the detection of lymph node involvement in cervix carcinoma. Eur. Radiol. 15, 2469–2474 (2005).

    PubMed  Google Scholar 

  49. Rustin, G. J. et al. A randomized trial in ovarian cancer (OC) of early treatment of relapse based on CA125 level alone versus delayed treatment based on conventional clinical indicators (MRC OV05/EORTC 55955 trials) [abstract]. J. Clin. Oncol. 27, 18s (2009).

    Google Scholar 

  50. Barzen, G. et al. Radioimmunoscintigraphy of ovarian cancer with 131-iodine labeled OC-125 antibody fragments. Eur. J. Nucl. Med. 15, 42–48 (1989).

    CAS  PubMed  Google Scholar 

  51. Peltier, P. et al. Usefulness of imaging ovarian cancer recurrence with In-111-labeled monoclonal antibody (OC125) specific for CA 125 antigen. Ann. Oncol. 4, 307–311 (1993).

    CAS  PubMed  Google Scholar 

  52. Kalofonos, H. P. et al. Radioimmunoscintigraphy in patients with ovarian cancer. Acta Oncol. 38, 629–634 (1999).

    CAS  PubMed  Google Scholar 

  53. Surwit, E. A. et al. Clinical assessment of 111In-CYT-103 immunoscintigraphy in ovarian cancer. Gynecol. Oncol. 48, 285–292 (1993).

    CAS  PubMed  Google Scholar 

  54. Turlakow, A., Yeung, H. W., Salmon, A. S., Macapinlac, H. A. & Larson, S. M. Peritoneal carcinomatosis: role of (18)F-FDG PET. J. Nucl. Med. 44, 1407–1412 (2003).

    PubMed  Google Scholar 

  55. Yoshida, Y. et al. Incremental benefits of FDG positron emission tomography over CT alone for the preoperative staging of ovarian cancer. AJR Am. J. Roentgenol. 182, 227–233 (2004).

    PubMed  Google Scholar 

  56. Kitajima, K. et al. Diagnostic accuracy of integrated FDG-PET/contrast-enhanced CT in staging ovarian cancer: comparison with enhanced CT. Eur. J. Nucl. Med. Mol. Imaging 35, 1912–1920 (2008).

    PubMed  Google Scholar 

  57. Dirisamer, A. et al. Detection of histologically proven peritoneal carcinomatosis with fused 18F-FDG-PET/MDCT. Eur. J. Radiol. 69, 536–541 (2009).

    PubMed  Google Scholar 

  58. Nakamoto, Y. et al. Clinical value of positron emission tomography with FDG for recurrent ovarian cancer. AJR Am. J. Roentgenol. 176, 1449–1454 (2002).

    Google Scholar 

  59. Rose, P. G., Faulhaber, P., Miraldi, F. & Abdul-Karim, F. W. Positive emission tomography for evaluating a complete clinical response in patients with ovarian or peritoneal carcinoma: correlation with second-look laparotomy. Gynecol. Oncol. 82, 17–21 (2001).

    CAS  PubMed  Google Scholar 

  60. Lee, H. Y. et al. Mucinous versus nonmucinous solitary pulmonary nodular bronchioloalveolar carcinoma: CT and FDG PET findings and pathologic comparisons. Lung Cancer 65, 170–175 (2009).

    PubMed  Google Scholar 

  61. Berger, K. L., Nicholson, S. A., Dehdashti, F. & Siegel, B. A. FDG PET evaluation of mucinous neoplasms: correlation of FDG uptake with histopathologic features. AJR Am. J. Roentgenol. 174, 1005–1008 (2000).

    CAS  PubMed  Google Scholar 

  62. Uzan, C. et al. Outcomes after combined therapy including surgical resection in patients with epithelial ovarian cancer recurrence(s) exclusively in lymph nodes. Ann. Surg. Oncol. 11, 658–664 (2004).

    PubMed  Google Scholar 

  63. Risum, S. et al. Prediction of suboptimal primary cytoreduction in primary ovarian cancer with combined positron emission tomography/computed tomography—a prospective study. Gynecol. Oncol. 108, 265–270 (2008).

    CAS  PubMed  Google Scholar 

  64. Pannu, H. K., Cohade, C., Bristow, R. E., Fishman, E. K. & Wahl, R. L. PET-CT detection of abdominal recurrence of ovarian cancer: radiologic-surgical correlation. Abdom. Imaging 29, 398–403 (2004).

    CAS  PubMed  Google Scholar 

  65. Sironi, S. et al. Integrated FDG PET/CT in patients with persistent ovarian cancer: correlation with histologic findings. Radiology 233, 433–440 (2004).

    PubMed  Google Scholar 

  66. Thrall, M. M., DeLoia, J. A., Gallion, H. & Avril, N. Clinical use of combined positron emission tomography and computed tomography (FDG-PET/CT) in recurrent ovarian cancer. Gynecol. Oncol. 105, 17–22 (2007).

    PubMed  Google Scholar 

  67. Fagotti, A. et al. A treatment selection protocol for recurrent ovarian cancer patients: the role of FDG-PET/CT and staging laparotomy. Oncology 75, 152–158 (2008).

    CAS  PubMed  Google Scholar 

  68. Risum, S. et al. Influence of 2-(18F) fluoro-2-deoxy-D-glucose positron emission tomography/computed tomography on recurrent ovarian cancer diagnosis and on selection of patients for secondary cytoreductive surgery. Int. J. Gynecol. Cancer 19, 600–604 (2009).

    PubMed  Google Scholar 

  69. Gu, P., Pan, L. L., Wu, S. Q., Sun, L. & Huang, G. CA 125, PET alone, PET-CT, CT and MRI in diagnosing recurrent ovarian carcinoma: a systematic review and meta-analysis. Eur. J. Radiol. 71, 164–174 (2009).

    PubMed  Google Scholar 

  70. Soussan, M. et al. Impact of FDG PET-CT imaging on the decision making in the biologic suspicion of ovarian carcinoma recurrence. Gynecol. Oncol. 108, 160–165 (2008).

    PubMed  Google Scholar 

  71. Simcock, B. et al. The impact of PET/CT in the management of recurrent ovarian cancer. Gynecol. Oncol. 103, 271–276 (2006).

    PubMed  Google Scholar 

  72. Mangili, G. et al. Integrated PET/CT as a first-line re-staging modality in patients with suspected recurrence of ovarian cancer. Eur. J. Nucl. Med. Mol. Imaging 34, 658–666 (2007).

    CAS  PubMed  Google Scholar 

  73. Fulham, M. J. et al. The impact of PET-CT in suspected recurrent ovarian cancer: a prospective multi-centre study as part of the Australian PET Data Collection Project. Gynecol. Oncol. 112, 462–468 (2009).

    CAS  PubMed  Google Scholar 

  74. Kurokawa, T. et al. Expression of GLUT-1 glucose transfer, cellular proliferation activity and grade of tumor correlate with [F-18]-fluorodeoxyglucose uptake by positron emission tomography in epithelial tumors of the ovary. Int. J. Cancer 109, 926–932 (2004).

    CAS  PubMed  Google Scholar 

  75. Nahmias, C. & Wahl, L. M. Reproducibility of standardized uptake value measurements determined by 18F-FDG PET in malignant tumors. J. Nucl. Med. 49, 1804–1808 (2008).

    PubMed  Google Scholar 

  76. Wahl, R. L., Jacene, H., Kasamon, Y. & Lodge, M. A. From RECIST to PERCIST: evolving considerations for PET response criteria in solid tumors. J. Nucl. Med. 50 (Suppl. 1), 122S–150S (2009).

    CAS  PubMed  Google Scholar 

  77. Stroobants, S. et al. 18FDG-Positron emission tomography for the early prediction of response in advanced soft tissue sarcoma treated with imatinib mesylate (Glivec). Eur. J. Cancer 39, 2012–2020 (2003).

    CAS  PubMed  Google Scholar 

  78. Desar, I. M. et al. Beyond RECIST: molecular and functional imaging techniques for evaluation of response to targeted therapy. Cancer Treat. Rev. 35, 309–321 (2009).

    CAS  PubMed  Google Scholar 

  79. Avril, N. et al. Prediction of response to neoadjuvant chemotherapy by sequential F-18-fluorodeoxyglucose positron emission tomography in patients with advanced-stage ovarian cancer. J. Clin. Oncol. 23, 7445–7453 (2005).

    PubMed  Google Scholar 

  80. Nishiyama, Y. et al. Monitoring the neoadjuvant therapy response in gynaecological cancer patients using FDG PET. Eur. J. Nucl. Med. Mol. Imaging 35, 287–295 (2008).

    PubMed  Google Scholar 

  81. Norris, D. G. The effects of microscopic tissue parameters on the diffusion weighted magnetic resonance imaging experiment. NMR Biomed. 14, 77–93 (2001).

    CAS  PubMed  Google Scholar 

  82. deSouza, N. M., Reinsberg, S. A., Scurr, E. D., Brewster, J. M. & Payne, G. S. Magnetic resonance imaging in prostate cancer: the value of apparent diffusion coefficients for identifying malignant nodules. Br. J. Radiol. 80, 90–95 (2007).

    CAS  PubMed  Google Scholar 

  83. Holzapfel, K. et al. Characterization of small (</=10 mm) focal liver lesions: Value of respiratory-triggered echo-planar diffusion-weighted MR imaging. Eur. J. Radiol. doi:10.1016/j.ejrad.2009.05.014.

    PubMed  Google Scholar 

  84. Guo, Y. et al. Differentiation of clinically benign and malignant breast lesions using diffusion-weighted imaging. J. Magn. Reson. Imaging 16, 172–178 (2002).

    PubMed  Google Scholar 

  85. Murakami, R. et al. Grading astrocytic tumors by using apparent diffusion coefficient parameters: superiority of a one- versus two-parameter pilot method. Radiology 251, 838–845 (2009).

    PubMed  Google Scholar 

  86. Squillaci, E. et al. Correlation of diffusion-weighted MR imaging with cellularity of renal tumours. Anticancer Res. 24, 4175–4179 (2004).

    PubMed  Google Scholar 

  87. Sugahara, T. et al. Usefulness of diffusion-weighted MRI with echo-planar technique in the evaluation of cellularity in gliomas. J. Magn. Reson. Imaging 9, 53–60 (1999).

    CAS  PubMed  Google Scholar 

  88. Woodhams, R. et al. Diffusion-weighted imaging of mucinous carcinoma of the breast: evaluation of apparent diffusion coefficient and signal intensity in correlation with histologic findings. AJR Am. J. Roentgenol. 193, 260–266 (2009).

    PubMed  Google Scholar 

  89. Kim, H. et al. Early therapy evaluation of combined anti-death receptor 5 antibody and gemcitabine in orthotopic pancreatic tumor xenografts by diffusion-weighted magnetic resonance imaging. Cancer Res. 68, 8369–8376 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Morse, D. L. et al. MRI-measured water mobility increases in response to chemotherapy via multiple cell-death mechanisms. NMR Biomed. 20, 602–614 (2007).

    CAS  PubMed  Google Scholar 

  91. Kamel, I. R. et al. Unresectable hepatocellular carcinoma: serial early vascular and cellular changes after transarterial chemoembolization as detected with MR imaging. Radiology 250, 466–473 (2009).

    PubMed  Google Scholar 

  92. Kim, S. et al. Diffusion-weighted magnetic resonance imaging for predicting and detecting early response to chemoradiation therapy of squamous cell carcinomas of the head and neck. Clin. Cancer Res. 15, 986–994 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Niwa, T. et al. Advanced pancreatic cancer: the use of the apparent diffusion coefficient to predict response to chemotherapy. Br. J. Radiol. 82, 28–34 (2009).

    CAS  PubMed  Google Scholar 

  94. Sharma, U., Danishad, K. K., Seenu, V. & Jagannathan, N. R. Longitudinal study of the assessment by MRI and diffusion-weighted imaging of tumor response in patients with locally advanced breast cancer undergoing neoadjuvant chemotherapy. NMR Biomed. 22, 104–113 (2009).

    PubMed  Google Scholar 

  95. Koh, D. M. et al. Predicting response of colorectal hepatic metastasis: value of pretreatment apparent diffusion coefficients. AJR Am. J. Roentgenol. 188, 1001–1008 (2007).

    PubMed  Google Scholar 

  96. Cui, Y., Zhang, X. P., Sun, Y. S., Tang, L. & Shen, L. Apparent diffusion coefficient: potential imaging biomarker for prediction and early detection of response to chemotherapy in hepatic metastases. Radiology 248, 894–900 (2008).

    PubMed  Google Scholar 

  97. Low, R. N. & Gurney, J. Diffusion-weighted MRI (DWI) in the oncology patient: value of breathhold DWI compared to unenhanced and gadolinium-enhanced MRI. J. Magn. Reson. Imaging 25, 848–858 (2007).

    PubMed  Google Scholar 

  98. Low, R. N., Sebrechts, C. P., Barone, R. M. & Muller, W. Diffusion-weighted MRI of peritoneal tumors: comparison with conventional MRI and surgical and histopathological findings—a feasibility study. AJR Am. J. Roentgenol. 193, 461–470 (2009).

    PubMed  Google Scholar 

  99. Fujii, S. et al. Detection of peritoneal dissemination in gynecological malignancy: evaluation by diffusion-weighted MR imaging. Eur. Radiol. 18, 18–23 (2008).

    PubMed  Google Scholar 

  100. Klerkx, W. M. et al. Lymph node detection by MRI before and after a systematic pelvic lymphadenectomy. Gynecol. Oncol. 114, 315–318 (2009).

    CAS  PubMed  Google Scholar 

  101. Padhani, A. R. Diffusion-weighted magnetic resonance imaging as a cancer biomarker: consensus and recommendations. Neoplasia 11, 102–125 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Moteki, T. & Ishizaka, H. Diffusion-weighted EPI of cystic ovarian lesions: evaluation of cystic contents using apparent diffusion coefficients. J. Magn. Reson. Imaging 12, 1014–1019 (2000).

    CAS  PubMed  Google Scholar 

  103. Moteki, T., Horikoshi, H. & Endo, K. Relationship between apparent diffusion coefficient and signal intensity in endometrial and other pelvic cysts. Magn. Reson. Imaging 20, 463–470 (2002).

    PubMed  Google Scholar 

  104. Nakayama, T. et al. Diffusion-weighted echo-planar MR imaging and ADC mapping in the differential diagnosis of ovarian cystic masses: usefulness of detecting keratinoid substances in mature cystic teratomas. J. Magn. Reson. Imaging 22, 271–278 (2005).

    PubMed  Google Scholar 

  105. Fujii, S. et al. Diagnostic accuracy of diffusion-weighted imaging in differentiating benign from malignant ovarian lesions. J. Magn. Reson. Imaging 28, 1149–1156 (2008).

    PubMed  Google Scholar 

  106. Katayama, M. et al. Diffusion-weighted echo planar imaging of ovarian tumors: is it useful to measure apparent diffusion coefficients? J. Comput. Assist. Tomogr. 26, 250–256 (2002).

    PubMed  Google Scholar 

  107. Thomassin-Naggara, I. et al. Dynamic contrast-enhanced magnetic resonance imaging: a useful tool for characterizing ovarian epithelial tumors. J. Magn. Reson. Imaging 28, 111–120 (2008).

    PubMed  Google Scholar 

  108. Thomassin-Naggara, I. et al. Contribution of diffusion-weighted MR imaging for predicting benignity of complex adnexal masses. Eur. Radiol. 19, 1544–1552 (2009).

    PubMed  Google Scholar 

  109. Sala, E. et al. Apparent diffusion coefficient and vascular signal fraction measurements with magnetic resonance imaging: feasibility in metastatic ovarian cancer at 3 Tesla: technical development. Eur. Radiol. 20, 491–496 (2009).

    PubMed  Google Scholar 

  110. Leach, M. O. et al. The assessment of antiangiogenic and antivascular therapies in early-stage clinical trials using magnetic resonance imaging: issues and recommendations. Br. J. Cancer 92, 1599–1610 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. O'Connor, J. P., Jackson, A., Parker, G. J. & Jayson, G. C. DCE-MRI biomarkers in the clinical evaluation of antiangiogenic and vascular disrupting agents. Br. J. Cancer 96, 189–195 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Thomassin-Naggara, I. et al. Epithelial ovarian tumors: value of dynamic contrast-enhanced MR imaging and correlation with tumor angiogenesis. Radiology 248, 148–159 (2008).

    PubMed  Google Scholar 

  113. Johansen, R. et al. Predicting survival and early clinical response to primary chemotherapy for patients with locally advanced breast cancer using DCE-MRI. J. Magn. Reson. Imaging 29, 1300–1307 (2009).

    PubMed  Google Scholar 

  114. Kim, C. K., Park, B. K., Lee, H. M., Kim, S. S. & Kim, E. MRI techniques for prediction of local tumor progression after high-intensity focused ultrasonic ablation of prostate cancer. AJR Am. J. Roentgenol. 190, 1180–1186 (2008).

    PubMed  Google Scholar 

  115. Zahra, M. A. et al. Semiquantitative and quantitative dynamic contrast-enhanced magnetic resonance imaging measurements predict radiation response in cervix cancer. Int. J. Radiat. Oncol. Biol. Phys. 74, 766–773 (2009).

    PubMed  Google Scholar 

  116. Jarnagin, W. R. et al. Regional chemotherapy for unresectable primary liver cancer: results of a phase II clinical trial and assessment of DCE-MRI as a biomarker of survival. Ann. Oncol. 20, 1589–1595 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. van Laarhoven, H. W. et al. Prediction of chemotherapeutic response of colorectal liver metastases with dynamic gadolinium-DTPA-enhanced MRI and localized 19F MRS pharmacokinetic studies of 5-fluorouracil. NMR Biomed. 20, 128–140 (2007).

    CAS  PubMed  Google Scholar 

  118. Lankester, K. J. et al. Effects of platinum/taxane based chemotherapy on acute perfusion in human pelvic tumours measured by dynamic MRI. Br. J. Cancer 93, 979–985 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Galbraith, S. M. et al. Effects of 5,6-dimethylxanthenone-4-acetic acid on human tumor microcirculation assessed by dynamic contrast-enhanced magnetic resonance imaging. J. Clin. Oncol. 20, 3826–3840 (2002).

    CAS  PubMed  Google Scholar 

  120. Burger, R. A., Sill, M. W., Monk, B. J., Greer, B. E. & Sorosky, J. I. Phase II trial of bevacizumab in persistent or recurrent epithelial ovarian cancer or primary peritoneal cancer: a Gynecologic Oncology Group Study. J. Clin. Oncol. 25, 5165–5171 (2007).

    CAS  PubMed  Google Scholar 

  121. Zakian, K. L. et al. 1H Magnetic resonance spectroscopy of prostate cancer: biomarkers for tumor characterization. Cancer Biomark. 4, 263–276 (2008).

    CAS  PubMed  Google Scholar 

  122. Massuger, L. F., van Vierzen, P. B., Engelke, U., Heerschap, A. & Wevers, R. 1H-Magnetic resonance spectroscopy: a new technique to discriminate benign from malignant ovarian tumors. Cancer 82, 1726–1730 (1998).

    CAS  PubMed  Google Scholar 

  123. Boss, E. A. et al. High-resolution proton nuclear magnetic resonance spectroscopy of ovarian cyst fluid. NMR Biomed. 13, 297–305 (2000).

    CAS  PubMed  Google Scholar 

  124. Okada, T., Harada, M., Matsuzaki, K., Nishitani, H. & Aono, T. Evaluation of female intrapelvic tumors by clinical proton MR spectroscopy. J. Magn. Reson. Imaging 13, 912–917 (2001).

    CAS  PubMed  Google Scholar 

  125. Iorio, E. et al. Alterations of choline phospholipid metabolism in ovarian tumor progression. Cancer Res. 65, 9369–9376 (2005).

    CAS  PubMed  Google Scholar 

  126. Stanwell, P. et al. Evaluation of ovarian tumors by proton magnetic resonance spectroscopy at three Tesla. Invest. Radiol. 43, 745–751 (2008).

    PubMed  Google Scholar 

  127. McLean, M. A. et al. Metabolic characterization of primary and metastatic ovarian cancer by 1H-MRS in vivo at 3T. Magn. Reson. Med. 62, 855–861 (2009).

    CAS  PubMed  Google Scholar 

  128. Meisamy, S. et al. Neoadjuvant chemotherapy of locally advanced breast cancer: predicting response with in vivo (1)H MR spectroscopy—a pilot study at 4 T. Radiology 233, 424–431 (2004).

    PubMed  Google Scholar 

  129. Tozaki, M. et al. Monitoring of early response to neoadjuvant chemotherapy in breast cancer with (1)H MR spectroscopy: comparison to sequential 2-[18F]-fluorodeoxyglucose positron emission tomography. J. Magn. Reson. Imaging 28, 420–427 (2008).

    PubMed  Google Scholar 

  130. Takahara, T. et al. Diffusion weighted whole body imaging with background body signal suppression (DWBIS): technical improvement using free breathing, STIR and high resolution 3D display. Radiat. Med. 22, 275–282 (2004).

    PubMed  Google Scholar 

  131. Kwee, T. C. et al. Whole-body diffusion-weighted magnetic resonance imaging. Eur. J. Radiol. 70, 409–417 (2009).

    PubMed  Google Scholar 

  132. Schmidt, G. P., Reiser, M. F. & Baur-Melnyk, A. Whole-body MRI for the staging and follow-up of patients with metastasis. Eur. J. Radiol. 70, 393–400 (2009).

    PubMed  Google Scholar 

  133. Hariri, L. P. et al. Laparoscopic optical coherence tomography imaging of human ovarian cancer. Gynecol. Oncol. 114, 188–194 (2009).

    PubMed  PubMed Central  Google Scholar 

  134. Sheth, R. A. et al. Improved detection of ovarian cancer metastases by intraoperative quantitative fluorescence protease imaging in a pre-clinical model. Gynecol. Oncol. 112, 616–622 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Hama, Y., Urano, Y., Koyama, Y., Choyke, P. L. & Kobayashi, H. Activatable fluorescent molecular imaging of peritoneal metastases following pretargeting with a biotinylated monoclonal antibody. Cancer Res. 67, 3809–3817 (2007).

    CAS  PubMed  Google Scholar 

  136. Weber, W. A., Ziegler, S. I., Thödtmann, R., Hanauske, A. R. & Schwaiger, M. Reproducibility of metabolic measurements in malignant tumors using FDG PET. J. Nucl. Med. 40, 1771–1777 (1999).

    CAS  PubMed  Google Scholar 

  137. Miller, K. D. et al. A physiologic imaging pilot study of breast cancer treated with AZD2171. Clin. Cancer Res. 12, 281–288 (2006).

    CAS  PubMed  Google Scholar 

  138. Tozer, D. J. et al. Apparent diffusion coefficient histograms may predict low-grade glioma subtype. NMR Biomed. 20, 49–57 (2007).

    PubMed  Google Scholar 

  139. Moffat, B. A. et al. Functional diffusion map: a non-invasive MRI biomarker for early stratification of clinical brain tumor response. Proc. Natl Acad. Sci. USA 102, 5524–5529 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Braithwaite, A. C., Dale, B. M., Boll, D. T. & Merkle, E. M. Short- and midterm reproducibility of apparent diffusion coefficient measurements at 3.0-T diffusion-weighted imaging of the abdomen. Radiology 250, 459–465 (2009).

    PubMed  Google Scholar 

  141. Chen, W. et al. Imaging proliferation in brain tumors with 18F-FLT PET: comparison with 18F-FDG. J. Nucl. Med. 46, 945–952 (2005).

    CAS  PubMed  Google Scholar 

  142. Menda, Y. et al. Kinetic analysis of 3′-deoxy-3′-(18)F-fluorothymidine ((18)F-FLT) in head and neck cancer patients before and early after initiation of chemoradiation therapy. J. Nucl. Med. 50, 1028–1035 (2009).

    CAS  PubMed  Google Scholar 

  143. Dehdashti, F. et al. PET-based estradiol challenge as a predictive biomarker of response to endocrine therapy in women with estrogen-receptor-positive breast cancer. Breast Cancer Res. Treat. 113, 509–517 (2009).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stavroula Kyriazi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kyriazi, S., Kaye, S. & deSouza, N. Imaging ovarian cancer and peritoneal metastases—current and emerging techniques. Nat Rev Clin Oncol 7, 381–393 (2010). https://doi.org/10.1038/nrclinonc.2010.47

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrclinonc.2010.47

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer