Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Myocardial remodeling after infarction: the role of myofibroblasts

Abstract

Myofibroblasts have characteristics of fibroblasts and smooth muscle cells: they produce extracellular matrix and are able to contract. In so doing, they can contribute to tissue replacement and interstitial fibrosis following cardiac injury. The scar formed after myocardial injury is no longer considered to be passive tissue; it is an active playground where myofibroblasts play a role in collagen turnover and scar contraction. Maintaining the extracellular matrix in the scar is essential and can prevent dilatation of the infarct area leading to heart failure. On the other hand, extracellular matrix deposition at sites remote from the infarct area can lead to cardiac stiffness, an inevitable process of myocardial remodeling that occurs in the aftermath of myocardial infarction and constitutes the basis of the development of heart failure. Defining molecular targets on myofibroblasts in conjunction with establishing the feasibility of molecular imaging of these cells might facilitate the early detection and treatment of patients who are at risk of developing heart failure after myocardial infarction.

Key Points

  • Myofibroblasts have characteristics of fibroblasts and smooth muscle cells and contribute to tissue replacement and interstitial fibrosis following cardiac injury

  • Maintaining the extracellular matrix in the scar is essential and can prevent dilatation of the infarct area

  • Extracellular matrix deposition at sites remote from the infarct area can contribute to the development of cardiac remodeling and heart failure

  • Defining molecular targets on myofibroblasts in conjunction with establishing the feasibility of molecular imaging might facilitate early detection and treatment of patients at risk of developing heart failure after myocardial infarction

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Myofibroblast precursors and characteristics.
Figure 2: Markers of myofibroblast differentiation.
Figure 3: The suggested role of myofibroblasts in infarct healing.
Figure 4: Optical imaging of ATRs in a mouse model of MI 3 weeks post-infarction.

Similar content being viewed by others

References

  1. Hein, S. & Schaper, J. The extracellular matrix in normal and diseased myocardium. J. Nucl. Cardiol. 8, 188–196 (2001).

    Article  CAS  PubMed  Google Scholar 

  2. Medugorac, I. Characterization of intramuscular collagen in mammalian left ventricle. Basic Res. Cardiol. 77, 589–598 (1982).

    Article  CAS  PubMed  Google Scholar 

  3. Camelliti, P., Borg, T. K. & Kohl, P. Structural and functional characterisation of cardiac fibroblasts. Cardiovasc. Res. 65, 40–51 (2005).

    Article  CAS  PubMed  Google Scholar 

  4. Porter, K. E. & Turner, N. A. Cardiac fibroblasts: at the heart of myocardial remodeling. Pharmacol. Ther. 123, 255–278 (2009).

    Article  CAS  PubMed  Google Scholar 

  5. Leask, A. & Abraham, D. J. TGF-beta signaling and the fibrotic response. FASEB J. 18, 816–827 (2004).

    Article  CAS  PubMed  Google Scholar 

  6. Prockop, D. J. & Kivirikko, K. I. Collagens: molecular biology, diseases, and potentials for therapy. Annu. Rev. Biochem. 64, 403–434 (1995).

    Article  CAS  PubMed  Google Scholar 

  7. Kagan, H. M. & Trackman, P. C. Properties and function of lysyl oxidase. Am. J. Respir. Cell. Mol. Biol. 5, 206–210 (1991).

    Article  CAS  PubMed  Google Scholar 

  8. Shapiro, S. D. Matrix metalloproteinase degradation of extracellular matrix: biological consequences. Curr. Opin. Cell Biol. 10, 602–608 (1998).

    Article  CAS  PubMed  Google Scholar 

  9. Cleutjens, J. P., Blankesteijn, W. M., Daemen, M. J. & Smits, J. F. The infarcted myocardium: simply dead tissue, or a lively target for therapeutic interventions. Cardiovasc. Res. 44, 232–241 (1999).

    Article  CAS  PubMed  Google Scholar 

  10. Brown, R. D., Ambler, S. K., Mitchell, M. D. & Long, C. S. The cardiac fibroblast: therapeutic target in myocardial remodeling and failure. Annu. Rev. Pharmacol. Toxicol. 45, 657–687 (2005).

    Article  CAS  PubMed  Google Scholar 

  11. Wynn, T. A. Cellular and molecular mechanisms of fibrosis. J. Pathol. 214, 199–210 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kalluri, R. & Neilson, E. G., Epithelial-mesenchymal transition and its implications for fibrosis. J. Clin. Invest. 112, 1776–1784 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Zeisberg, E. M. et al. Endothelial-to-mesenchymal transition contributes to cardiac fibrosis. Nat. Med. 13, 952–961 (2007).

    Article  CAS  PubMed  Google Scholar 

  14. Bucala, R., Spiegel, L. A., Chesney, J., Hogan, M. & Cerami, A. Circulating fibrocytes define a new leukocyte subpopulation that mediates tissue repair. Mol. Med. 1, 71–81 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Iwano, M. et al. Evidence that fibroblasts derive from epithelium during tissue fibrosis. J. Clin. Invest. 110, 341–350 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Chang, H. Y. et al. Diversity, topographic differentiation, and positional memory in human fibroblasts. Proc. Natl Acad. Sci. USA 99, 12877–12882 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Tomasek, J. J., Gabbiani, G., Hinz, B., Chaponnier, C. & Brown, R. A. Myofibroblasts and mechano-regulation of connective tissue remodelling. Nat. Rev. Mol. Cell Biol. 3, 349–363 (2002).

    Article  CAS  PubMed  Google Scholar 

  18. Squires, C. E. et al. Altered fibroblast function following myocardial infarction. J. Mol. Cell Cardiol. 39, 699–707 (2005).

    Article  CAS  PubMed  Google Scholar 

  19. Hinz, B. & Gabbiani, G. Mechanisms of force generation and transmission by myofibroblasts. Curr. Opin. Biotechnol. 14, 538–546 (2003).

    Article  CAS  PubMed  Google Scholar 

  20. Serini, G. et al. The fibronectin domain ED-A is crucial for myofibroblastic phenotype induction by transforming growth factor-beta1. J. Cell Biol. 142, 873–881 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Wang, J., Chen, H., Seth, A. & McCulloch, C. A. Mechanical force regulation of myofibroblast differentiation in cardiac fibroblasts. Am. J. Physiol. Heart Circ. Physiol. 285, H1871–H1881 (2003).

    Article  CAS  PubMed  Google Scholar 

  22. Muro, A. F. et al. Regulated splicing of the fibronectin EDA exon is essential for proper skin wound healing and normal lifespan. J. Cell Biol. 162, 149–160 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Hinz, B. Masters and servants of the force: the role of matrix adhesions in myofibroblast force perception and transmission. Eur. J. Cell Biol. 85, 175–181 (2006).

    Article  CAS  PubMed  Google Scholar 

  24. Asano, Y. et al. Increased expression of integrin alpha(v)beta3 contributes to the establishment of autocrine TGF-beta signaling in scleroderma fibroblasts. J. Immunol. 175, 7708–7718 (2005).

    Article  CAS  PubMed  Google Scholar 

  25. Gabbiani, G. The myofibroblast in wound healing and fibrocontractive diseases. J. Pathol. 200, 500–503 (2003).

    Article  CAS  PubMed  Google Scholar 

  26. Virag, J. I. & Murry, C. E. Myofibroblast and endothelial cell proliferation during murine myocardial infarct repair. Am. J. Pathol. 163, 2433–2440 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Foo, I. T., Naylor, I. L., Timmons, M. J. & Trejdosiewicz, L. K. Intracellular actin as a marker for myofibroblasts in vitro. Lab. Invest. 67, 727–733 (1992).

    CAS  PubMed  Google Scholar 

  28. Hinz, B. et al. The myofibroblast: one function, multiple origins. Am. J. Pathol. 170, 1807–1816 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. van Eys, G. J., Niessen, P. M. & Rensen, S. S. Smoothelin in vascular smooth muscle cells. Trends Cardiovasc. Med. 17, 26–30 (2007).

    Article  CAS  PubMed  Google Scholar 

  30. Chambers, R. C., Leoni, P., Kaminski, N., Laurent, G. J. & Heller, R. A. Global expression profiling of fibroblast responses to transforming growth factor-beta1 reveals the induction of inhibitor of differentiation-1 and provides evidence of smooth muscle cell phenotypic switching. Am. J. Pathol. 162, 533–546 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ronty, M. J. et al. Isoform-specific regulation of the actin-organizing protein palladin during TGF-beta1-induced myofibroblast differentiation. J. Invest. Dermatol. 126, 2387–2396 (2006).

    Article  PubMed  Google Scholar 

  32. Mykkanen, O. M. et al. Characterization of human palladin, a microfilament-associated protein. Mol. Biol. Cell 12, 3060–3073 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Paine, R., 3rd & Ward, P. A. Cell adhesion molecules and pulmonary fibrosis. Am. J. Med. 107, 268–279 (1999).

    Article  CAS  PubMed  Google Scholar 

  34. Kuncio, G. S., Neilson, E. G. & Haverty, T. Mechanisms of tubulointerstitial fibrosis. Kidney Int. 39, 550–556 (1991).

    Article  CAS  PubMed  Google Scholar 

  35. Blankesteijn, W. M., Essers-Janssen, Y. P., Verluyten, M. J., Daemen, M. J. & Smits, J. F. A homologue of Drosophila tissue polarity gene frizzled is expressed in migrating myofibroblasts in the infarcted rat heart. Nat. Med. 3, 541–544 (1997).

    Article  CAS  PubMed  Google Scholar 

  36. Cleutjens, J. P., Verluyten, M. J., Smiths, J. F. & Daemen, M. J. Collagen remodeling after myocardial infarction in the rat heart. Am. J. Pathol. 147, 325–338 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Smith-Mungo, L. I. & Kagan, H. M. Lysyl oxidase: properties, regulation and multiple functions in biology. Matrix Biol. 16, 387–398 (1998).

    Article  CAS  PubMed  Google Scholar 

  38. Hong, H. H., Uzel, M. I., Duan, C., Sheff, M. C. & Trackman, P. C. Regulation of lysyl oxidase, collagen, and connective tissue growth factor by TGF-beta1 and detection in human gingiva. Lab. Invest. 79, 1655–1667 (1999).

    CAS  PubMed  Google Scholar 

  39. Gabbiani, G., Hirschel, B. J., Ryan, G. B., Statkov, P. R. & Majno, G. Granulation tissue as a contractile organ. A study of structure and function. J. Exp. Med. 135, 719–734 (1972).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Desmouliere, A., Redard, M., Darby, I. & Gabbiani, G. Apoptosis mediates the decrease in cellularity during the transition between granulation tissue and scar. Am. J. Pathol. 146, 56–66 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Willems, I. E., Havenith, M. G., De Mey, J. G. & Daemen, M. J. The alpha-smooth muscle actin-positive cells in healing human myocardial scars. Am. J. Pathol. 145, 868–875 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Sun, Y., Kiani, M. F., Postlethwaite, A. E. & Weber, K. T. Infarct scar as living tissue. Basic Res. Cardiol. 97, 343–347 (2002).

    Article  PubMed  Google Scholar 

  43. Li, Y. et al. Critical roles for the Fas/Fas ligand system in postinfarction ventricular remodeling and heart failure. Circ. Res. 95, 627–636 (2004).

    Article  CAS  PubMed  Google Scholar 

  44. von Harsdorf, R. “Fas-ten” your seat belt: anti-apoptotic treatment in heart failure takes off. Circ. Res. 95, 554–556 (2004).

    Article  CAS  PubMed  Google Scholar 

  45. Okada, H. et al. Postinfarction gene therapy against transforming growth factor-beta signal modulates infarct tissue dynamics and attenuates left ventricular remodeling and heart failure. Circulation 111, 2430–2437 (2005).

    Article  CAS  PubMed  Google Scholar 

  46. Kanamori, H. et al. Inhibition of Fas-associated apoptosis in granulation tissue cells accompanies attenuation of postinfarction left ventricular remodeling by olmesartan. Am. J. Physiol. Heart Circ. Physiol. 292, H2184–2194 (2007).

    Article  CAS  PubMed  Google Scholar 

  47. Petridou, S., Maltseva, O., Spanakis, S. & Masur, S. K. TGF-beta receptor expression and smad2 localization are cell density dependent in fibroblasts. Invest. Ophthalmol. Vis. Sci. 41, 89–95 (2000).

    CAS  PubMed  Google Scholar 

  48. Opie, L. H., Commerford, P. J., Gersh, B. J. & Pfeffer, M. A. Controversies in ventricular remodelling. Lancet 367, 356–367 (2006).

    Article  PubMed  Google Scholar 

  49. Schocken, D. D. et al. Prevention of heart failure: a scientific statement from the American Heart Association Councils on Epidemiology and Prevention, Clinical Cardiology, Cardiovascular Nursing, and High Blood Pressure Research; Quality of Care and Outcomes Research Interdisciplinary Working Group; and Functional Genomics and Translational Biology Interdisciplinary Working Group. Circulation 117, 2544–2565 (2008).

    Article  PubMed  Google Scholar 

  50. Beltrami, C. A. et al. Structural basis of end-stage failure in ischemic cardiomyopathy in humans. Circulation 89, 151–163 (1994).

    Article  CAS  PubMed  Google Scholar 

  51. Weber, K. T., Sun, Y. & Katwa, L. C. Myofibroblasts and local angiotensin II in rat cardiac tissue repair. Int. J. Biochem. Cell Biol. 29, 31–42 (1997).

    Article  CAS  PubMed  Google Scholar 

  52. Harada, K., Sugaya, T., Murakami, K., Yazaki, Y. & Komuro, I. Angiotensin II type 1A receptor knockout mice display less left ventricular remodeling and improved survival after myocardial infarction. Circulation 100, 2093–2099 (1999).

    Article  CAS  PubMed  Google Scholar 

  53. Pfeffer, M. A. et al. Effects of candesartan on mortality and morbidity in patients with chronic heart failure: the CHARM-Overall programme. Lancet 362, 759–766 (2003).

    Article  CAS  PubMed  Google Scholar 

  54. Pitt, B. et al. Effect of losartan compared with captopril on mortality in patients with symptomatic heart failure: randomised trial--the Losartan Heart Failure Survival Study ELITE II. Lancet 355, 1582–1587 (2000).

    Article  CAS  PubMed  Google Scholar 

  55. Cohn, J. N. & Tognoni, G. A randomized trial of the angiotensin-receptor blocker valsartan in chronic heart failure. N. Engl. J. Med. 345, 1667–1675 (2001).

    Article  CAS  PubMed  Google Scholar 

  56. Effects of enalapril on mortality in severe congestive heart failure. Results of the Cooperative North Scandinavian Enalapril Survival Study (CONSENSUS). The CONSENSUS Trial Study Group. N. Engl. J. Med. 316, 1429–1435 (1987).

  57. Effect of enalapril on survival in patients with reduced left ventricular ejection fractions and congestive heart failure. The SOLVD Investigators. N. Engl. J. Med. 325, 293–302 (1991).

  58. Rosenkranz, S. et al. Alterations of beta-adrenergic signaling and cardiac hypertrophy in transgenic mice overexpressing TGF-beta(1). Am. J. Physiol. Heart Circ. Physiol. 283, H1253–H1262 (2002).

    Article  CAS  PubMed  Google Scholar 

  59. van den Borne, S. W. et al. Molecular imaging of interstitial alterations in remodeling myocardium after myocardial infarction. J. Am. Coll. Cardiol. 52, 2017–2028 (2008).

    Article  CAS  PubMed  Google Scholar 

  60. Landmesser, U., Wollert, K. C. & Drexler, H. Potential novel pharmacological therapies for myocardial remodelling. Cardiovasc. Res. 81, 519–527 (2009).

    Article  CAS  PubMed  Google Scholar 

  61. Katz, A. M. The cardiomyopathy of overload: an unnatural growth response. Eur. Heart J. 16 (Suppl. O), 110–114 (1995).

    Article  PubMed  Google Scholar 

  62. Rosamond, W. et al. Heart disease and stroke statistics--2008 update: a report from the American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Circulation 117, e25–146 (2008).

    PubMed  Google Scholar 

  63. Weisman, H. F., Bush, D. E., Mannisi, J. A., Weisfeldt, M. L. & Healy, B. Cellular mechanisms of myocardial infarct expansion. Circulation 78, 186–201 (1988).

    Article  CAS  PubMed  Google Scholar 

  64. Gaasch, W. H. Diagnosis and treatment of heart failure based on left ventricular systolic or diastolic dysfunction. JAMA 271, 1276–1280 (1994).

    Article  CAS  PubMed  Google Scholar 

  65. Pfeffer, M. A. & Braunwald, E. Ventricular remodeling after myocardial infarction. Experimental observations and clinical implications. Circulation 81, 1161–1172 (1990).

    Article  CAS  PubMed  Google Scholar 

  66. van den Borne, S. W. et al. Mouse strain determines the outcome of wound healing after myocardial infarction. Cardiovasc. Res. 84, 273–282 (2009).

    Article  CAS  PubMed  Google Scholar 

  67. Eyden, B. The myofibroblast: a study of normal, reactive and neoplastic tissues, with an emphasis on ultrastructure. J. Submicrosc. Cytol. Pathol. 7–166 (2007).

  68. Verjans, J. W. H. et al. Noninvasive imaging of angiotensin receptores after myocardial infarction. J. Am. Coll. Cardiol. Cardiovasc. Imaging 1, 354–362 (2008).

    Article  Google Scholar 

  69. Ng, C. P., Hinz, B. & Swartz, M. A. Interstitial fluid flow induces myofibroblast differentiation and collagen alignment in vitro. J. Cell Sci. 118, 4731–4739 (2005).

    Article  CAS  PubMed  Google Scholar 

  70. Verjans, J. W. et al. Imaging avb3/b5 integrin upregulation in patients after myocardial infarction [abstract 3288]. Circulation 116, II_740 (2007).

  71. Pho, M. et al. Cofilin is a marker of myofibroblast differentiation in cells from porcine aortic cardiac valves. Am. J. Physiol. Heart Circ. Physiol. 294, H1767–H1778 (2008).

    Article  CAS  PubMed  Google Scholar 

  72. Gerthoffer, W. T. Mechanisms of vascular smooth muscle cell migration. Circ. Res. 100, 607–621 (2007).

    Article  CAS  PubMed  Google Scholar 

  73. Hinz, B. Formation and function of the myofibroblast during tissue repair. J. Invest. Dermatol. 127, 526–537 (2007).

    Article  CAS  PubMed  Google Scholar 

  74. Yamamoto, Y., Kubota, T., Atoji, Y. & Suzuki, Y. Distribution of alpha-vascular smooth muscle actin in the smooth muscle cells of the gastrointestinal tract of the chicken. J. Anat. 189 (Pt 3), 623–630 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Rosenkranz, S. TGF-beta1 and angiotensin networking in cardiac remodeling. Cardiovasc. Res. 63, 423–432 (2004).

    Article  CAS  PubMed  Google Scholar 

  76. Urbich, C. & Dimmeler, S. Endothelial progenitor cells: characterization and role in vascular biology. Circ. Res. 95, 343–353 (2004).

    Article  CAS  PubMed  Google Scholar 

  77. Castoldi, G. et al. Angiotensin II modulates frizzled-2 receptor expression in rat vascular smooth muscle cells. Clin. Sci. (Lond.) 108, 523–530 (2005).

    Article  CAS  Google Scholar 

  78. Glukhova, M. A. et al. Expression of extra domain A fibronectin sequence in vascular smooth muscle cells is phenotype dependent. J. Cell Biol. 109, 357–366 (1989).

    Article  CAS  PubMed  Google Scholar 

  79. Reynaud, C., Gleyzal, C., Jourdan-Le Saux, C. & Sommer, P. Comparative functional study of the lysyl oxidase promoter in fibroblasts, Ras-transformed fibroblasts, myofibroblasts and smooth muscle cells. Cell. Mol. Biol. (Noisy-le-grand) 45, 1237–1247 (1999).

    CAS  Google Scholar 

  80. Zannad, F., Alla, F., Dousset, B., Perez, A. & Pitt, B. Limitation of excessive extracellular matrix turnover may contribute to survival benefit of spironolactone therapy in patients with congestive heart failure: insights from the randomized aldactone evaluation study (RALES). Rales Investigators. Circulation 102, 2700–2706 (2000).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This article is dedicated to the memory of the late Lovhaug Dagfinn, PhD, who helped to develop the RGD imaging agents described herein for myofibroblast imaging. The authors also gratefully acknowledge all their colleagues for their contributions in this research area.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jagat Narula.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

van den Borne, S., Diez, J., Blankesteijn, W. et al. Myocardial remodeling after infarction: the role of myofibroblasts. Nat Rev Cardiol 7, 30–37 (2010). https://doi.org/10.1038/nrcardio.2009.199

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrcardio.2009.199

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing