Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Science and Society
  • Published:

Cancer after nuclear fallout: lessons from the Chernobyl accident

Abstract

The Chernobyl accident exposed people located hundreds of kilometres away to fallout, but increases in cancer incidence as a result of the accident seem, at present, to be restricted to one tumour type. These thyroid tumours form the largest number of cancers of one type, caused by a single event on one date, ever recorded. Epidemiological, pathological and molecular studies have provided new insights into the carcinogenic process, as well as lessons for future nuclear accidents.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Surface ground deposition of 137caesium released after the Chernobyl accident.
Figure 2: The features of papillary and follicular thyroid tumours.
Figure 3: The role of RET in thyroid carcinogenesis.

References

  1. The International Chernobyl Project Technical Report (International Atomic Energy Agency, Vienna, 1991).

  2. UNSCEAR 2000 Report Vol. 2, Annex J. (United Nations, New York and Geneva, 2000).

  3. Kazakov, V. S., Demidchik, E. P. & Astakhova, L. N. Thyroid cancer after Chernobyl. Nature 359, 21 (1992).

    Article  CAS  Google Scholar 

  4. Baverstock, K., Egloff, B., Pinchera, A. & Williams, D. Thyroid cancer after Chernobyl. Nature 359, 21–22 (1992).

    Article  CAS  Google Scholar 

  5. Demidchik, E. et al. in Radiation and Thyroid Cancer (eds Thomas, G., Karaoglou, A. & Williams, E. D.) 51–54 (World Scientific, Singapore, 1999).

    Google Scholar 

  6. Tronko, M. et al. in Radiation and Thyroid Cancer (eds Thomas, G., Karaoglou, A. & Williams, E. D.) 61–70 (World Scientific, Singapore, 1999).

    Google Scholar 

  7. Astakhova, L. N. et al. Chernobyl-related thyroid cancer in children of Belarus: a case–control study. Radiat. Res. 150, 349–356 (1998).

    Article  CAS  Google Scholar 

  8. Farahati, J., Demidchik, E. P., Biko, J. & Reiners, C. Inverse association between age at the time of radiation exposure and extend of disease in cases of radiation-induced childhood thyroid carcinoma in Belarus. Cancer 88, 1470–1475 (2000).

    Article  CAS  Google Scholar 

  9. Braverman, L. E. & Utiger, R. D. (eds) The Thyroid, a Fundamental and Clinical Text 6th edn (J. D. Lippincott, Philadelphia, 1991).

    Google Scholar 

  10. Jacob, P. et al. Childhood exposure due to the Chernobyl accident and thyroid cancer risk in contaminated areas of Belarus and Russia. Br. J. Cancer 80, 1461–1469 (1999).

    Article  CAS  Google Scholar 

  11. Harach, H. R. & Williams, E. D. Childhood thyroid cancer in England and Wales. Br. J Cancer 72, 777–783 (1995).

    Article  CAS  Google Scholar 

  12. Furmanchuk, A. W. et al. Pathomorphological findings in thyroid cancers of children from the Republic of Belarus. Histopathology 21, 401–408 (1992).

    Article  CAS  Google Scholar 

  13. Nikiforov, Y. & Gnepp, D. R. Pediatric thyroid cancer after the Chernobyl disaster. Cancer 74, 748–766 (1994).

    Article  CAS  Google Scholar 

  14. Williams, E. D. in One Decade after Chernobyl (International Atomic Energy Authority, Vienna, 1996).

    Google Scholar 

  15. Grieco, M. et al. PTC is a novel rearranged form of the RET proto-oncogene and is frequently detected in vivo in human thyroid papillary carcinomas. Cell 60, 557–563 (1990).

    Article  CAS  Google Scholar 

  16. Bongarzone, I. et al. Molecular characterisation of a thyroid tumour specific transforming sequence formed by the fusion of RET tyrosine kinase and the regulatory subunit RIα of cyclic AMP-dependent protein kinase A. Mol. Cell. Biol. 13, 358–366 (1993).

    Article  CAS  Google Scholar 

  17. Santoro, M. et al. Molecular characterisation of RET-PTC3, a novel rearranged version of the RET proto-oncogene in a human thyroid papillary carcinoma. Oncogene 9, 509–516 (1994).

    CAS  PubMed  Google Scholar 

  18. Santoro, M. et al. RET oncogene activation in human thyroid neoplasms is restricted to the papillary carcinoma subtype. J. Clin. Invest. 89, 1517–1522 (1992).

    Article  CAS  Google Scholar 

  19. Monaco, C. et al. The RFG oligomerization domain mediates kinase activation and relocation of the RET-PTC3 onco-protein to the plasma membrane. Oncogene 20, 599–608 (2001).

    Article  CAS  Google Scholar 

  20. Eng, C. et al. The relationship between specific RET proto-oncogene mutations and disease phenotype in multiple endocrine neoplasia type 2. JAMA 276, 1575–1579 (1996).

    Article  CAS  Google Scholar 

  21. Manenti, G., Pilotti, S., Re, F. C., Della Porta, G. & Pierotti, M. A. Selective activation of RAS oncogenes in follicular and undifferentiated thyroid carcinomas. Eur. J. Cancer 30A, 987–993 (1994).

    Article  CAS  Google Scholar 

  22. Nikiforov, Y. E., Rowland, J. M., Bore, K. E., Montfort–Mungo, H. & Fagin, J. A. Distinct pattern of RET oncogene rearrangements in morphological variants of radiation induced and sporadic thyroid papillary carcinomas in children. Cancer Res. 57, 1690–1694 (1997).

    CAS  PubMed  Google Scholar 

  23. Thomas, G. A. et al. High prevalence of RET-PTC rearrangements in Ukrainian and Belarussian post-Chernobyl thyroid papillary carcinomas: a strong correlation between RET-PTC3 and the solid follicular variant. J. Clin. Endocr. Metab. 84, 4232–4238 (1999).

    CAS  PubMed  Google Scholar 

  24. Santoro, M. et al. Gene rearrangement and Chernobyl related thyroid cancers. Br. J. Cancer 82, 315–322 (2000).

    Article  CAS  Google Scholar 

  25. Rabes, H. M. et al. Pattern of radiation induced RET and NTRK1 rearrangements in 191 post Chernobyl papillary carcinomas: biologic, phenotypic and clinical implications. Clin. Cancer Res. 6, 1093–1103 (2000).

    CAS  PubMed  Google Scholar 

  26. Suchy, B., Waldmann, V., Klugbauer, S. & Rabes, H. M. Absence of RAS and p53 mutations in thyroid carcinomas of children after Chernobyl in contrast to adult thyroid tumours. Br. J. Cancer 77, 952–955 (1998).

    Article  CAS  Google Scholar 

  27. Nikiforov, Y. E., Nikiforova, M. N., Gnepp, D. R. & Fagin, J. A. Prevalence of RAS and p53 mutations in benign and malignant thyroid tumours from children exposed to radiation after the Chernobyl nuclear accident. Oncogene 13, 687–693 (1996).

    CAS  PubMed  Google Scholar 

  28. Santoro, M. et al. Development of thyroid papillary carcinomas secondary to tissue specific expression of the RET-PTC1 oncogene in transgenic mice. Oncogene 12, 1821–1826 (1996).

    CAS  PubMed  Google Scholar 

  29. Powell, D. J. et al. The RET-PTC3 oncogene: metastatic solid type papillary carcinomas in murine thyroids. Cancer Res. 58, 5523–5528 (1998).

    CAS  PubMed  Google Scholar 

  30. Sankaranarayanan, K. Ionizing radiation and genetic risks. Nature of spontaneous and radiation induced mutations in mammalian in vitro systems and mechanisms of induction of mutation by radiation. Mutat. Res. 258, 75–97 (1991).

    Article  CAS  Google Scholar 

  31. Shore, R. E., Hildreth, N., Dvoretsky, P., Pasternack, B. & Andressa, E. Benign thyroid adenomas among persons X irradiated in infancy for enlarged thymus glands. Radiat. Res. 134, 217–223 (1993).

    Article  CAS  Google Scholar 

  32. Yamashita, S. & Shibata, Y. (eds) Findings of the Chernobyl Sasakawa Health and Medical Cooperation Project in Chernobyl, a Decade (Elsevier, Amsterdam, 1997).

    Google Scholar 

  33. Thurston, V. & Williams, E. D. The effect of radiation on thyroid C cells. Acta Endocrinol. 99, 72–78 (1982).

    Article  CAS  Google Scholar 

  34. Nikiforova, M. N. et al. Proximity of chromosomal loci that participate in radiation-induced rearrangements in human cells. Science 290, 138–141 (2000).

    Article  CAS  Google Scholar 

  35. Cardis, E. et al. in Radiation and Thyroid Cancer (eds Thomas, G., Karaoglou, A. & Williams, E. D.) (World Scientific, Singapore, 1999).

    Google Scholar 

  36. Ron, E. et al. Thyroid cancer after exposure to external radiation, a pooled analysis of 7 studies. Radiat. Res. 141, 259–277 (1995).

    Article  CAS  Google Scholar 

  37. Williams, E. D. in Radiation and Thyroid Cancer (eds Thomas, G., Karaoglou, A. & Williams, E. D.) (World Scientific, Singapore, 1999).

    Google Scholar 

  38. Wynford–Thomas, D., Stringer, B. M. J. & Williams, E. D. Dissociation of growth and function in the rat thyroid during prolonged goitrogen administration. Acta Endocrinol. 101, 210–216 (1982).

    Article  Google Scholar 

  39. Wynford–Thomas, D., Stringer, B. M. J. & Williams, E. D. Dissociation of growth and function in the rat thyroid during prolonged goitrogen administration, persistence of refractoriness following withdrawal of stimulus. Acta Endocrinol. 101, 562–569 (1982).

    Article  Google Scholar 

  40. Harach, H. R., Williams, G. T. & Williams, E. D. Familial adenomatous polyposis associated with thyroid carcinoma, a distinct type of follicular cell neoplasm. Histopathology 25, 549–561 (1994).

    Article  CAS  Google Scholar 

  41. Katoh, R., Harach, H. R. & Williams, E. D. Solitary, multiple and familial oxyphil tumours of the thyroid gland. J. Pathol. 186, 292–299 (1998).

    Article  CAS  Google Scholar 

  42. Canzian, F. et al. A gene predisposing to familial thyroid tumours with cell oxyphilia maps to chromosome 19p 13.2. Am. J. Hum. Genet. 63, 1743–1748 (1998).

    Article  CAS  Google Scholar 

  43. Bignell, C. R. et al. Familial nontoxic multinodular thyroid goitre locus maps to chromosome 14q, but does not account for familial non medullary thyroid cancer. Am. J. Hum. Genet. 61, 1123–1130 (1997).

    Article  CAS  Google Scholar 

  44. Liaw, D. et al. Germline mutations of the PTEN gene in Cowden's disease, an inherited breast and thyroid cancer syndrome. Nature Genet. 16, 64–67 (1997).

    Article  CAS  Google Scholar 

  45. Ron, E. & Modan, B. Benign and malignant thyroid neoplasms after childhood irradiation for tinea capitis. J. Natl Cancer Inst. 65, 7–11 (1980).

    CAS  PubMed  Google Scholar 

  46. Holm, L. E. et al. Cancer risk after iodine 131 therapy for hyperthyroidism. J. Natl Cancer Inst. 83, 1072–1077 (1991).

    Article  CAS  Google Scholar 

  47. Shore, R. E. Issues and epidemiologic evidence regarding radiation induced thyroid cancer. Radiat. Res. 131, 98–111 (1992).

    Article  CAS  Google Scholar 

  48. Williams, E. D. Lessons from Chernobyl. BMJ 323, 643–644 (2001).

    Article  CAS  Google Scholar 

  49. Thomas, G. A. & Williams, E. D. Thyroid tumour banks. Science 289, 2283 (2000).

    Article  CAS  Google Scholar 

  50. Estimated exposure, and thyroid doses received by the American people from iodine 131 in fallout following Nevada atmospheric nuclear bomb tests. A report from the National Cancer Institute. (US Department of Health and Human Services, Washington, 1997).

  51. Basolo, F. et al. Potent mitogenicity of the RET-PTC3 oncogene correlates with its presence in tall-cell variant of papillary thyroid carcinoma. Am. J. Pathol. 160, 247–254 (2002).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The invaluable work of the many doctors and scientists in the three affected countries who have contributed to so many of the studies is acknowledged, as are many discussions with G. A. Thomas, and the financial support from the European Community and the Leverhulme Trust.

Author information

Authors and Affiliations

Authors

Related links

Related links

DATABASES

Cancer.gov

breast cancer

thyroid cancer

LocusLink

APC

ELE1

GDNF

Gsα G-protein subunit

HRAS

KRAS2

NRAS

PTEN

RAS

Ret

RET

thyroid-stimulating hormone receptor

TP53

TRK

OMIM

Cowden's syndrome

FURTHER INFORMATION

National Cancer Institute fallout report

Newly Independent States Chernobyl Tissue Bank

United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Williams, D. Cancer after nuclear fallout: lessons from the Chernobyl accident. Nat Rev Cancer 2, 543–549 (2002). https://doi.org/10.1038/nrc845

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc845

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing