Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Viewpoint
  • Published:

Examining the utility of patient-derived xenograft mouse models

Abstract

Patient-derived xenograft (PDX) models are now being widely used in cancer research and have the potential to greatly inform our understanding of cancer biology. However, many questions remain, especially regarding the ability of PDX models to affect clinical decision making. With these points in mind, we asked three scientists to give their opinions on the generation and uses of PDX models and the future of this field.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. DeRose, Y. S. et al. Tumor grafts derived from women with breast cancer authentically reflect tumor pathology, growth, metastasis and disease outcomes. Nature Med. 17, 1514–1520 (2011).

    Article  CAS  PubMed  Google Scholar 

  2. Zhang, X. et al. A renewable tissue resource of phenotypically stable, biologically and ethnically diverse, patient-derived human breast cancer xenograft models. Cancer Res. 73, 4885–4897 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Zhao, X. et al. Global gene expression profiling confirms the molecular fidelity of primary tumor-based orthotopic xenograft mouse models of medulloblastoma. Neuro Oncol. 14, 574–583 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Loukopoulos, P. et al. Orthotopic transplantation models of pancreatic adenocarcinoma derived from cell lines and primary tumors and displaying varying metastatic activity. Pancreas 29, 193–203 (2004).

    Article  CAS  PubMed  Google Scholar 

  5. Kabos, P. et al. Patient-derived luminal breast cancer xenografts retain hormone receptor heterogeneity and help define unique estrogen-dependent gene signatures. Breast Cancer Res. Treat. 135, 415–432 (2012).

    Article  CAS  PubMed  Google Scholar 

  6. Eirew, P. et al. Dynamics of genomic clones in breast cancer patient xenografts at single-cell resolution. Nature 518, 422–426 (2015).

    Article  CAS  PubMed  Google Scholar 

  7. Shah, S. P. et al. The clonal and mutational evolution spectrum of primary triple-negative breast cancers. Nature 486, 395–399 (2012).

    CAS  PubMed  Google Scholar 

  8. Roth, A. et al. PyClone: statistical inference of clonal population structure in cancer. Nature Meth. 11, 396–398 (2014).

    Article  CAS  Google Scholar 

  9. Ding, L. et al. Genome remodelling in a basal-like breast cancer metastasis and xenograft. Nature 464, 999–1005 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Hidalgo, M. et al. Patient-derived xenograft models: an emerging platform for translational cancer research. Cancer Discov. 4, 998–1013 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Reyal, F. et al. Molecular profiling of patient-derived breast cancer xenografts. Breast Cancer Res. 14, R11 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Garrido-Laguna, I. et al. Tumor engraftment in nude mice and enrichment in stroma- related gene pathways predict poor survival and resistance to gemcitabine in patients with pancreatic cancer. Clin. Cancer Res. 17, 5793–5800 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Martinez-Garcia, R. et al. Transcriptional dissection of pancreatic tumors engrafted in mice. Genome Med. 6, 27 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Kung, A. L. Practices and pitfalls of mouse cancer models in drug discovery. Adv. Cancer Res. 96, 191–212 (2007).

    Article  CAS  PubMed  Google Scholar 

  15. Johnson, J. I. et al. Relationships between drug activity in NCI preclinical in vitro and in vivo models and early clinical trials. Br. J. Cancer 84, 1424–1431 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Bertotti, A. et al. A molecularly annotated platform of patient-derived xenografts (“xenopatients”) identifies HER2 as an effective therapeutic target in cetuximab-resistant colorectal cancer. Cancer Discov. 1, 508–523 (2011).

    Article  CAS  PubMed  Google Scholar 

  17. Marangoni, E. et al. A new model of patient tumor-derived breast cancer xenografts for preclinical assays. Clin. Cancer Res. 13, 3989–3998 (2007).

    Article  CAS  PubMed  Google Scholar 

  18. Fichtner, I. et al. Establishment of patient-derived non-small cell lung cancer xenografts as models for the identification of predictive biomarkers. Clin. Cancer Res. 14, 6456–6468 (2008).

    Article  CAS  PubMed  Google Scholar 

  19. Sivanand, S. et al. A validated tumorgraft model reveals activity of dovitinib against renal cell carcinoma. Sci. Transl. Med. 4, 137ra75 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Julien, S. et al. Characterization of a large panel of patient-derived tumor xenografts representing the clinical heterogeneity of human colorectal cancer. Clin. Cancer Res. 18, 5314–5328 (2012).

    Article  CAS  PubMed  Google Scholar 

  21. Peterson, J. K. & Houghton, P. J. Integrating pharmacology and in vivo cancer models in preclinical and clinical drug development. Eur. J. Cancer 40, 837–844 (2004).

    Article  CAS  PubMed  Google Scholar 

  22. Hidalgo, M. et al. A pilot clinical study of treatment guided by personalized tumorgrafts in patients with advanced cancer. Mol. Cancer Ther. 10, 1311–1316 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Morelli, M. P. et al. Prioritizing phase I treatment options through preclinical testing on personalized tumorgraft. J. Clin. Oncol. 30, e45–e48 (2012).

    Article  CAS  PubMed  Google Scholar 

  24. Garralda, E. Integrated next generation sequencing and ¨avatar¨ mouse models for personalized cancer treatment. J. Clin. Oncol. 13, 2476–2484 (2013).

    Google Scholar 

  25. Crystal, A. S. et al. Patient-derived models of acquired resistance can identify effective drug combinations for cancer. Science 346, 1480–1486 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Boven, E. et al. Phase II preclinical drug screening in human tumor xenografts: a first European multicenter collaborative study. Cancer Res. 52, 5940–5947 (1992).

    CAS  PubMed  Google Scholar 

  27. Hammer, S. et al. Comparative profiling of the novel epothilone, sagopilone, in xenografts derived from primary non-small cell lung cancer. Clin. Cancer Res. 16, 1452–1465 (2010).

    Article  CAS  PubMed  Google Scholar 

  28. Boj, S. F. et al. Organoid models of human and mouse ductal pancreatic cancer. Cell 160, 324–338 (2015).

    Article  CAS  PubMed  Google Scholar 

  29. Gao, D. et al. Organoid cultures derived from patients with advanced prostate cancer. Cell 159, 176–187 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Karthaus, W. R. et al. Identification of multipotent luminal progenitor cells in human prostate organoid cultures. Cell 159, 163–175 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Li, X. et al. Oncogenic transformation of diverse gastrointestinal tissues in primary organoid culture. Nature Med. 20, 769–777 (2014).

    Article  CAS  PubMed  Google Scholar 

  32. Baccelli, I. et al. Identification of a population of blood circulating tumor cells from breast cancer patients that initiates metastasis in a xenograft assay. Nature Biotech. 31, 539–544 (2013).

    Article  CAS  Google Scholar 

  33. Vidal, A. et al. Lurbinectedin (PM01183), a new DNA minor groove binder, inhibits growth of orthotopic primary graft of cisplatin-resistant epithelial ovarian cancer. Clin. Cancer Res. 18, 5399–5411 (2012).

    Article  CAS  PubMed  Google Scholar 

  34. Lock, R. B., Liem, N. L. & Papa, R. A. Preclinical testing of antileukemic drugs using an in vivo model of systemic disease. Methods Mol. Med. 111, 323–334 (2005).

    CAS  PubMed  Google Scholar 

  35. Kalscheuer, H. et al. A model for personalized in vivo analysis of human immune responsiveness. Sci. Transl. Med. 4, 125ra30 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Kreso, A. et al. Variable clonal repopulation dynamics influence chemotherapy response in colorectal cancer. Science 339, 543–548 (2013).

    Article  CAS  PubMed  Google Scholar 

  37. Marusyk, A. et al. Non-cell-autonomous driving of tumour growth supports sub-clonal heterogeneity. Nature 514, 54–58 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Bardelli, A. et al. Amplification of the MET receptor drives resistance to anti-EGFR therapies in colorectal cancer. Cancer Discov. 3, 658–673 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Alvarez, R. et al. Stromal disrupting effects of nab-paclitaxel in pancreatic cancer. Br. J. Cancer 109, 926–933 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Von Hoff, D. D. et al. Gemcitabine plus nab-paclitaxel is an active regimen in patients with advanced pancreatic cancer: a phase I/II trial. J. Clin. Oncol. 29, 4548–4554 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Von Hoff, D. D. et al. Increased survival in pancreatic cancer with nab-paclitaxel plus gemcitabine. N. Engl. J. Med. 369, 1691–1703 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Krumbach, R. et al. Primary resistance to cetuximab in a panel of patient-derived tumour xenograft models: activation of MET as one mechanism for drug resistance. Eur. J. Cancer 47, 1231–1243 (2011).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Samuel Aparicio, Manuel Hidalgo or Andrew L. Kung.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aparicio, S., Hidalgo, M. & Kung, A. Examining the utility of patient-derived xenograft mouse models. Nat Rev Cancer 15, 311–316 (2015). https://doi.org/10.1038/nrc3944

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc3944

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer