Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The molecular biology of head and neck cancer

Key Points

  • Head and neck squamous cell carcinomas (HNSCCs) develop in the mucosal linings of the upper aerodigestive tract and are the sixth leading cause of cancer worldwide. Risk factors are exposure to carcinogens, most notably tobacco smoking and alcohol consumption, infection with high-risk types of human papillomavirus (HPV) and genetic predisposition.

  • HNSCC is a heterogeneous disease. At least two genetic subclasses can be distinguished: HPV-positive and HPV-negative tumours. Preliminary data suggest that further subclassification is likely to follow.

  • A key issue in HNSCC pathogenesis is that carcinomas develop within large preneoplastic fields of mucosal epithelium made up of genetically altered cells that are clonally related to the carcinoma and often extend into the surgical margins when tumours are excised, and can cause local recurrences and second primary tumours.

  • Limitless replicative potential of head and neck cancer cells is caused by abrogation of the p53 and retinoblastoma (RB) pathways that perturb cell cycle regulation, probably in the context of telomerase reverse transcriptase (TERT) expression.

  • A subgroup of HNSCCs becomes independent from growth factors owing to somatic changes in the epidermal growth factor receptor (EGFR) signalling pathway.

  • Some, if not all, HNSCCs escape from the growth inhibitory transforming growth factor-β (TGFβ) pathway by somatic mutation or chromosome loss of key genes. This pathway seems to be interconnected to the nuclear factor-κB (NF-κB) pathway.

  • Somatic mutations and genetic changes indicate that the PI3K–PTEN–AKT pathway is frequently activated in HNSCC.

  • Metastatic dissemination of HNSCC is initially to the lymph nodes in the neck. Expression profiles predict lymph node metastasis, but causative cancer genes have not yet been identified.

  • The unravelling of the biological characteristics of HNSCC will lead to novel and personalized therapies in the near future.

Abstract

Head and neck squamous cell carcinomas (HNSCCs) are caused by tobacco and alcohol consumption and by infection with high-risk types of human papillomavirus (HPV). Tumours often develop within preneoplastic fields of genetically altered cells. The persistence of these fields after treatment presents a major challenge, because it might lead to local recurrences and second primary tumours that are responsible for a large proportion of deaths. Aberrant signalling pathways have been identified in HNSCCs and inhibition of epidermal growth factor receptor (EGFR) has proved a successful therapeutic strategy. In this Review, we discuss the recent literature on tumour heterogeneity, field cancerization, molecular pathogenesis and the underlying causative cancer genes that can be exploited for novel and personalized treatments of patients with HNSCC.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Cell cycle deregulation by human papilloma virus.
Figure 2: Schematic overview of the genetic classification of head and neck squamous cell carcinoma.
Figure 3: Field cancerization and local relapse.
Figure 4: Proposal of an integrated model of molecular carcinogenesis for head and neck squamous cell carcinoma.
Figure 5: Schematic overviews of two signalling pathways that have a role in head and neck squamous cell carcinoma.

Similar content being viewed by others

References

  1. Kamangar, F., Dores, G. M. & Anderson, W. F. Patterns of cancer incidence, mortality, and prevalence across five continents: defining priorities to reduce cancer disparities in different geographic regions of the world. J. Clin. Oncol. 24, 2137–2150 (2006).

    Article  PubMed  Google Scholar 

  2. Kutler, D. I. et al. High incidence of head and neck squamous cell carcinoma in patients with fanconi anemia. Arch. Otolaryngol. Head Neck Surg. 129, 106–112 (2003).

    Article  PubMed  Google Scholar 

  3. Hopkins, J. et al. Genetic polymorphisms and head and neck cancer outcomes: a review. Cancer Epidemiol. Biomark. Prev. 17, 490–499 (2008).

    Article  CAS  Google Scholar 

  4. Cloos, J. et al. Genetic susceptibility to head and neck squamous cell carcinoma. J. Natl Cancer Inst. 88, 530–535 (1996).

    Article  CAS  PubMed  Google Scholar 

  5. Ang, K. K. et al. Human papillomavirus and survival of patients with oropharyngeal cancer. N. Engl. J. Med. 363, 24–35 (2010). This paper classifies a subgroup of oropharyngeal carcinoma patients into three classes: poor, intermediate and good prognosis; taking tumour stage, nodal stage, tobacco consumption and HPV status as parameters in the model. The results have important consequences for the design of future clinical trials with survival as an end point.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Smith, R. B., Sniezek, J. C., Weed, D. T. & Wax, M. K. Utilization of free tissue transfer in head and neck surgery. Otolaryngol. Head Neck Surg. 137, 182–191 (2007).

    Article  PubMed  Google Scholar 

  7. Vergeer, M. R. et al. Intensity-modulated radiotherapy reduces radiation-induced morbidity and improves health-related quality of life: results of a nonrandomized prospective study using a standardized follow-up program. Int. J. Radiat. Oncol. Biol. Phys. 74, 1–8 (2009).

    Article  PubMed  Google Scholar 

  8. Boscolo-Rizzo, P., Maronato, F., Marchiori, C., Gava, A. & Da Mosto, M. C. Long-term quality of life after total laryngectomy and postoperative radiotherapy versus concurrent chemoradiotherapy for laryngeal preservation. Laryngoscope 118, 300–306 (2008).

    Article  PubMed  Google Scholar 

  9. Hanahan, D. & Weinberg, R. A. The hallmarks of cancer. Cell 100, 57–70 (2000). Defines the acquired phenotypes in cancer cells.

    Article  CAS  PubMed  Google Scholar 

  10. Woolgar, J. A. & Triantafyllou, A. Pitfalls and procedures in the histopathological diagnosis of oral and oropharyngeal squamous cell carcinoma and a review of the role of pathology in prognosis. Oral Oncol. 45, 361–385 (2009).

    Article  PubMed  Google Scholar 

  11. Chung, C. H. et al. Molecular classification of head and neck squamous cell carcinomas using patterns of gene expression. Cancer Cell 5, 489–500 (2004). This study generates a classification of HNSCC on the basis of gene expression profiles.

    Article  CAS  PubMed  Google Scholar 

  12. Chung, C. H. et al. Gene expression profiles identify epithelial-to-mesenchymal transition and activation of nuclear factor-kB signalling as characteristic of a high risk squamous cell carcinoma. Cancer Res. 66, 8210–8218 (2006).

    Article  CAS  PubMed  Google Scholar 

  13. Hermsen, M. et al. New chromosomal regions with high-level amplifications in squamous cell carcinomas of the larynx and pharynx, identified by comparative genomic hybridization. J. Pathol. 194, 177–182 (2001).

    Article  CAS  PubMed  Google Scholar 

  14. Jin, C. et al. Cytogenetic abnormalities in 106 oral squamous cell carcinomas. Cancer Genet. Cytogenet. 164, 44–53 (2006).

    Article  CAS  PubMed  Google Scholar 

  15. Smeets, S. J. et al. Genetic classification of oral and oropharyngeal carcinomas identifies subgroups with a different prognosis. Cell. Oncol. 31, 291–300 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Walboomers, J. M. et al. Human papillomavirus is a necessary cause of invasive cervical cancer worldwide. J. Pathol. 189, 12–19 (1999).

    Article  CAS  PubMed  Google Scholar 

  17. zur Hausen, H. Papillomaviruses and cancer: from basic studies to clinical application. Nature Rev. Cancer 2, 342–350 (2002).

    Article  CAS  Google Scholar 

  18. Munoz, N. et al. Epidemiologic classification of human papillomavirus types associated with cervical cancer. N. Engl. J. Med. 348, 518–527 (2003).

    Article  PubMed  Google Scholar 

  19. Syrjanen, S. Human papillomavirus (HPV) in head and neck cancer. J. Clin. Virol. 32, S59–S66 (2005).

    Article  PubMed  CAS  Google Scholar 

  20. Snijders, P. J. F. et al. Prevalence and expression of human papillomavirus in tonsillar carcinomas, indicating a possible viral etiology. Int. J. Cancer 51, 845–850 (1992).

    Article  CAS  PubMed  Google Scholar 

  21. Gillison, M. L. et al. Evidence for a causal association between human papillomavirus and a subset of head and neck cancers. J. Natl Cancer Inst. 92, 709–720 (2000). This papers shows for the first time that HPV-positive oropharyngeal cancers constitute a distinct clinical disease entity with a markedly improved prognosis compared with HPV-negative cases.

    Article  CAS  PubMed  Google Scholar 

  22. Meijer, C. J. et al. Guidelines for human papillomavirus DNA test requirements for primary cervical cancer screening in women 30 years and older. Int. J. Cancer 124, 516–520 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Snijders, P. J., van den Brule, A. J. & Meijer, C. J. The clinical relevance of human papillomavirus testing: relationship between analytical and clinical sensitivity. J. Pathol. 201, 1–6 (2003).

    Article  PubMed  Google Scholar 

  24. Van Houten, V. M. M. et al. Biological evidence that human papillomaviruses are etiologically involved in a subgroup of head and neck squamous cell carcinomas. Int. J. Cancer 93, 232–235 (2001).

    Article  CAS  PubMed  Google Scholar 

  25. Wiest, T., Schwarz, E., Enders, C., Flechtenmacher, C. & Bosch, F. X. Involvement of intact HPV16 E6/E7 gene expression in head and neck cancers with unaltered p53 status and perturbed pRb cell cycle control. Oncogene 21, 1510–1517 (2002).

    Article  CAS  PubMed  Google Scholar 

  26. Braakhuis, B. J. M. et al. Genetic patterns in head and neck cancers that contain or lack transcriptionally active human papillomavirus. J. Natl Cancer Inst. 96, 998–1006 (2004). This paper shows that tumours with transcriptionally active HPV belong to a genetically separate subclass of tumours, typically TP53 wild type. Further data demonstrate the problem of reliable HPV detection.

    Article  CAS  PubMed  Google Scholar 

  27. Smeets, S. J. et al. Genome-wide DNA copy number alterations in head and neck squamous cell carcinomas with or without oncogene-expressing human papillomavirus. Oncogene 25, 2558–2564 (2006).

    Article  CAS  PubMed  Google Scholar 

  28. Slebos, R. J. C. et al. Gene expression differences associated with human papillomavirus status in head and neck squamous cell carcinoma. Clin. Cancer Res. 12, 701–709 (2006).

    Article  CAS  PubMed  Google Scholar 

  29. Smeets, S. J. et al. A novel algorithm for reliable detection of human papillomavirus in paraffin embedded head and neck cancer specimen. Int. J. Cancer 121, 2465–2472 (2007).

    Article  CAS  PubMed  Google Scholar 

  30. Robinson, M., Sloan, P. & Shaw, R. Refining the diagnosis of oropharyngeal squamous cell carcinoma using human papillomavirus testing. Oral Oncol. 46, 492–496 (2010).

    Article  PubMed  Google Scholar 

  31. D'Souza, G. et al. Case-control study of human papillomavirus and oropharyngeal cancer. N. Engl. J. Med. 356, 1944–1956 (2007). A case–control study showing that an individual's number of sexual partners and oral sex partners is associated with HPV-positive oropharyngeal carcinoma risk.

    Article  CAS  PubMed  Google Scholar 

  32. Ragin, C. C. R. & Taioli, E. Survival of squamous cell carcinoma of the head and neck in relation to human papillomavirus infection: review and meta-analysis. Int. J. Cancer 121, 1813–1820 (2007).

    Article  CAS  PubMed  Google Scholar 

  33. Poeta, M. L. et al. Tp53 mutations and survival in squamous-cell carcinoma of the head and neck. N. Engl. J. Med. 357, 2552–2561 (2007). This study shows that the type of TP53 mutation has consequences for the prognosis of HNSCC.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Westra, W. H. et al. Inverse relationship between human papillomavirus-16 infection and disruptive p53 gene mutations in squamous cell carcinoma of the head and neck. Clin. Cancer Res. 14, 366–369 (2008).

    Article  CAS  PubMed  Google Scholar 

  35. Napier, S. S. & Speight, P. M. Natural history of potentially malignant oral lesions and conditions: an overview of the literature. J. Oral Pathol. Med. 37, 1–10 (2008).

    Article  PubMed  Google Scholar 

  36. van der Waal, I. Potentially malignant disorders of the oral and oropharyngeal mucosa; terminology, classification and present concepts of management. Oral Oncol. 45, 317–323 (2009).

    Article  PubMed  Google Scholar 

  37. Lodi, G., Sardella, A., Bez, C., Demarosi, F. & Carrassi, A. Interventions for treating oral leukoplakia. Cochrane Database Syst. Rev. CD001829 (2006).

  38. Partridge, M. et al. A case-control study confirms that microsatellite assay can identify patients at risk of developing oral squamous cell carcinoma within a field of cancerization. Cancer Res. 60, 3893–3898 (2000).

    CAS  PubMed  Google Scholar 

  39. Wrangle, J. M. & Khuri, F. R. Chemoprevention of squamous cell carcinoma of the head and neck. Curr. Opinion Oncol. 19, 180–187 (2007).

    Article  Google Scholar 

  40. Schaaij-Visser, T. B. M. et al. Evaluation of cornulin, keratin 4, keratin 13 expression and grade of dysplasia for predicting malignant progression of oral leukoplakia. Oral Oncol. 46, 123–127 (2010).

    Article  CAS  PubMed  Google Scholar 

  41. Rosin, M. P. et al. Use of allelic loss to predict malignant risk for low-grade oral epithelial dysplasia. Clin. Cancer Res. 6, 357–362 (2000).

    CAS  PubMed  Google Scholar 

  42. Mao, L. et al. Frequent microsatellite alterations at chromosomes 9p21 and 3p14 in oral premalignant lesions and their value in cancer risk assessment. Nature Med. 2, 682–685 (1996).

    Article  CAS  PubMed  Google Scholar 

  43. Torres-Rendon, A., Stewart, R., Craig, G. T., Wells, M. & Speight, P. M. DNA ploidy analysis by image cytometry helps to identify oral epithelial dysplasias with a high risk of malignant progression. Oral Oncol. 45, 468–473 (2009).

    Article  CAS  PubMed  Google Scholar 

  44. Shpitzer, T. et al. Salivary analysis of oral cancer biomarkers. Brit. J. Cancer 101, 1194–1198 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Bremmer, J. F. et al. A noninvasive genetic screening test to detect oral preneoplastic lesions. Lab. Invest. 85, 1481–1488 (2005).

    Article  CAS  PubMed  Google Scholar 

  46. Bremmer, J. F. et al. Screening for oral precancer with noninvasive genetic cytology. Cancer Prev. Res. 2, 128–133 (2009).

    Article  CAS  Google Scholar 

  47. Slaughter, D. P., Southwick, H. W. & Smejkal, W. Field cancerization in oral stratified squamous epithelium; clinical implications of multicentric origin. Cancer 6, 963–968 (1953). This paper introduces the term 'field cancerization' and links it to the recurrence of oral cancer and second primary tumours.

    Article  CAS  PubMed  Google Scholar 

  48. Califano, J. et al. Genetic progression model for head and neck cancer: implications for field cancerization. Cancer Res. 56, 2488–2492 (1996). The authors of this paper propose a multi-step carcinogenesis model with a genetic basis for HNSCC.

    CAS  PubMed  Google Scholar 

  49. Tabor, M. P. et al. Persistence of genetically altered fields in head and neck cancer patients: Biological and clinical implications. Clin. Cancer Res. 7, 1523–1532 (2001). This paper demonstrates the importance of fields defined by genetic markers as potential sources of local recurrences and second primary tumours

    CAS  PubMed  Google Scholar 

  50. Tabor, M. P. et al. Comparative molecular and histological grading of epithelial dysplasia of the oral cavity and the oropharynx. J. Pathol. 199, 354–360 (2003).

    Article  CAS  PubMed  Google Scholar 

  51. Willis, R. A. The mode of origin of tumors. Solitary localized squamous cell growths of the skin. Cancer Res. 4, 469–479 (1944).

    Google Scholar 

  52. Slaughter, D. P. Multicentric origin of intraoral carcinoma. Surgery 133–146 (1946).

  53. Hittelman, W. N. Genetic instability in epithelial tissues at risk for cancer. Ann. NY Acad. Sci. 952, 1–12 (2001).

    Article  CAS  PubMed  Google Scholar 

  54. Tabor, M. P. et al. Genetically altered fields as origin of locally recurrent head and neck cancer: a retrospective study. Clin. Cancer Res. 10, 3607–3613 (2004).

    Article  CAS  PubMed  Google Scholar 

  55. Roesch-Ely, M. et al. Proteomic analysis reveals successive aberrations in protein expression from healthy mucosa to invasive head and neck cancer. Oncogene 26, 54–64 (2007).

    Article  CAS  PubMed  Google Scholar 

  56. Schaaij-Visser, T. B. M. et al. Differential proteomics identifies protein biomarkers that predict local relapse of head and neck squamous cell carcinomas. Clin. Cancer Res. 15, 7666–7675 (2009).

    Article  CAS  PubMed  Google Scholar 

  57. Braakhuis, B. J. M., Tabor, M. P., Kummer, J. A., Leemans, C. R. & Brakenhoff, R. H. A genetic explanation of Slaughter's concept of field cancerization: evidence and clinical implications. Cancer Res. 63, 1727–1730 (2003). This paper presents the patch–field–tumour model and shows the clinical relevance of these fields for local recurrences and second primary tumours.

    CAS  PubMed  Google Scholar 

  58. van Houten, V. M. et al. Mutated p53 as a molecular marker for the diagnosis of head and neck cancer. J. Pathol. 198, 476–486 (2002).

    Article  CAS  PubMed  Google Scholar 

  59. Jonason, A. S. et al. Frequent clones of p53-mutated keratinocytes in normal human skin. Proc. Natl Acad. Sci. USA 93, 14025–14029 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Dakubo, G. D., Jakupciak, J. P., Birch-Machin, M. A. & Parr, R. L. Clinical implications and utility of field cancerization. Cancer Cell. Int. 7, 2 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Negrini, S., Gorgoulis, V. G. & Halazonetis, T. D. Genomic instability — an evolving hallmark of cancer. Nature Rev. Mol. Cell Biol. 11, 220–228 (2010).

    Article  CAS  Google Scholar 

  62. Patmore, H. S., Cawkwell, L., Stafford, N. D. & Greenman, J. Unraveling the chromosomal aberrations of head and neck squamous cell carcinoma: a review. Ann. Surg. Oncol. 12, 831–842 (2005).

    Article  PubMed  Google Scholar 

  63. Wreesmann, V. B. & Singh, B. Chromosomal aberrations in squamous cell carcinomas of the upper aerodigestive tract: biologic insights and clinical opportunities. J. Oral Pathol. Med. 34, 449–459 (2005).

    Article  CAS  PubMed  Google Scholar 

  64. Ha, P. K., Chang, S. S., Glazer, C. A., Califano, J. A. & Sidransky, D. Molecular techniques and genetic alterations in head and neck cancer. Oral Oncol. 45, 335–339 (2009).

    Article  CAS  PubMed  Google Scholar 

  65. Carbone, M., Klein, G., Gruber, J. & Wong, M. Modern criteria to establish human cancer etiology. Cancer Res. 64, 5518–5524 (2004).

    Article  CAS  PubMed  Google Scholar 

  66. Kastan, M. B. & Bartek, J. Cell-cycle checkpoints and cancer. Nature 432, 316–323 (2004).

    Article  CAS  PubMed  Google Scholar 

  67. Balz, V. et al. Is the p53 inactivation frequency in squamous cell carcinomas of the head and neck underestimated? Analysis of p53 exons 2–11 and human papillomavirus 16/18 E6 transcripts in 123 unselected tumor specimens. Cancer Res. 63, 1188–1191 (2003).

    CAS  PubMed  Google Scholar 

  68. Opitz, O. G. et al. Cyclin D1 overexpression and p53 inactivation immortalize primary oral keratinocytes by a telomerase-independent mechanism. J. Clin. Invest. 108, 725–732 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Rheinwald, J. G. et al. A two-stage, p16INK4A- and p53-dependent keratinocyte senescence mechanism that limits replicative potential independent of telomere status. Mol. Cell. Biol. 22, 5157–5172 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Smeets, S. J. et al. Immortalization of oral keratinocytes by functional inactivation of the p53 and pRb pathways. Int. J. Cancer (in the press). References 68–70 demonstrate the crucial role of the p53 and Rb pathways in head and neck carcinogenesis.

  71. Reed, A. L. et al. High frequency of p16 (CDKN2/MTS-1/INK4A) inactivation in head and neck squamous cell carcinoma. Cancer Res. 56, 3630–3633 (1996).

    CAS  PubMed  Google Scholar 

  72. Gibcus, J. H. et al. Amplicon mapping and expression profiling identify the Fas-associated death domain gene as a new driver in the 11q13.3 amplicon in laryngeal/pharyngeal cancer. Clin. Cancer Res. 13, 6257–6266 (2007).

    Article  CAS  PubMed  Google Scholar 

  73. Berns, K. et al. A large-scale RNAi screen in human cells identifies new components of the p53 pathway. Nature 428, 431–437 (2004).

    Article  CAS  PubMed  Google Scholar 

  74. Dickson, M. A. et al. Human keratinocytes that express hTERT and also bypass a p16INK4A-enforced mechanism that limits life span become immortal yet retain normal growth and differentiation characteristics. Mol. Cell. Biol. 20, 1436–1447 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Snijders, P. J. F. et al. Telomerase activity exclusively in cervical carcinomas and a subset of cervical intraepithelial neoplasia grade III lesions: strong association with elevated messenger RNA levels of its catalytic subunit and high-risk human papillomavirus DNA. Cancer Res. 58, 3812–3818 (1998).

    CAS  PubMed  Google Scholar 

  76. Hynes, N. E. & Lane, H. A. ERBB receptors and cancer: the complexity of targeted inhibitors. Nature Rev. Cancer 5, 341–354 (2005).

    Article  CAS  Google Scholar 

  77. Lin, S. Y. et al. Nuclear localization of EGF receptor and its potential new role as a transcription factor. Nature Cell Biol. 3, 802–808 (2001).

    Article  CAS  PubMed  Google Scholar 

  78. Lo, H. W. et al. Nuclear interaction of EGFR and STAT3 in the activation of the iNOS/NO pathway. Cancer Cell 7, 575–589 (2005).

    Article  CAS  PubMed  Google Scholar 

  79. Goessel, G. et al. Creating oral squamous cancer cells: a cellular model of oral–esophageal carcinogenesis. Proc. Natl Acad. Sci. USA 102, 15599–15604 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Ozanne, B., Richards, C. S., Hendler, F., Burns, D. & Gusterson, B. Over-expression of the EGF receptor is a hallmark of squamous cell carcinomas. J. Pathol. 149, 9–14 (1986).

    Article  CAS  PubMed  Google Scholar 

  81. Grandis, J. R. & Tweardy, D. J. Elevated levels of transforming growth factor α and epidermal growth factor receptor messenger RNA are early markers of carcinogenesis in head and neck cancer. Cancer Res. 53, 3579–3584 (1993).

    CAS  PubMed  Google Scholar 

  82. Hama, T. et al. Prognostic significance of epidermal growth factor receptor phosphorylation and mutation in head and neck squamous cell carcinoma. Oncologist 14, 900–908 (2009).

    Article  CAS  PubMed  Google Scholar 

  83. Bonner, J. A. et al. Radiotherapy plus cetuximab for squamous-cell carcinoma of the head and neck. N. Engl. J. Med. 354, 567–578 (2006). This study shows that the addition of erbitux, an inhibitor of the EGFR pathway, to radiotherapy leads to clinical benefit for patients with HNSCC.

    Article  CAS  PubMed  Google Scholar 

  84. Morandell, S. et al. Phosphoproteomics strategies for the functional analysis of signal transduction. Proteomics 6, 4047–4056 (2006).

    Article  CAS  PubMed  Google Scholar 

  85. Lee, J. W. et al. Somatic mutations of EGFR gene in squamous cell carcinoma of the head and neck. Clin. Cancer Res. 11, 2879–2882 (2005).

    Article  CAS  PubMed  Google Scholar 

  86. Loeffler-Ragg, J. et al. Low incidence of mutations in EGFR kinase domain in Caucasian patients with head and neck squamous cell carcinoma. Eur. J. Cancer 42, 109–111 (2006).

    Article  CAS  PubMed  Google Scholar 

  87. Ekstrand, A. J., Sugawa, N., James, C. D. & Collins, V. P. Amplified and rearranged epidermal growth factor receptor genes in human glioblastomas reveal deletions of sequences encoding portions of the N- and/or C-terminal tails. Proc. Natl Acad. Sci. USA 89, 4309–4313 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Sok, J. C. et al. Mutant epidermal growth factor receptor (EGFRvIII) contributes to head and neck cancer growth and resistance to EGFR targeting. Clin. Cancer Res. 12, 5064–5073 (2006).

    Article  CAS  PubMed  Google Scholar 

  89. Ishitoya, J. et al. Gene amplification and overexpression of EGF receptor in squamous cell carcinomas of the head and neck. Brit. J. Cancer 59, 559–562 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Temam, S. et al. Epidermal growth factor receptor copy number alterations correlate with poor clinical outcome in patients with head and neck squamous cancer. J. Clin. Oncol. 25, 2164–2170 (2007).

    Article  CAS  PubMed  Google Scholar 

  91. Sheu, J. J. C. et al. Functional genomic analysis identified epidermal growth factor receptor activation as the most common genetic event in oral squamous cell carcinoma. Cancer Res. 69, 2568–2576 (2009). This study shows that EGFR amplification is found in 30% of HNSCCs, and coincides with overexpression.

    Article  CAS  PubMed  Google Scholar 

  92. Knudsen, B. S. & Vande Woude, G. Showering c-MET-dependent cancers with drugs. Curr. Opin. Genet. Dev. 18, 87–96 (2008).

    Article  CAS  PubMed  Google Scholar 

  93. Seiwert, T. Y. et al. The MET receptor tyrosine kinase is a potential novel therapeutic target for head and neck squamous cell carcinoma. Cancer Res. 69, 3021–3031 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Knowles, L. M. et al. HGF and c-Met participate in paracrine tumorigenic pathways in head and neck squamous cell cancer. Clin. Cancer Res. 15, 3740–3750 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Wang, D. et al. Mutation and downregulation of the transforming growth factor beta type II receptor gene in primary squamous cell carcinomas of the head and neck. Carcinogenesis 18, 2285–2290 (1997).

    Article  CAS  PubMed  Google Scholar 

  96. Huntley, S. P. et al. Attenuated type II TGF-B receptor signalling in human malignant oral keratinocytes induces a less differentiated and more aggressive phenotype that is associated with metastatic dissemination. Int. J. Cancer 110, 170–176 (2004).

    Article  CAS  PubMed  Google Scholar 

  97. Qiu, W., Schonleben, F., Li, X. & Su, G. H. Disruption of transforming growth factor β–Smad signaling pathway in head and neck squamous cell carcinoma as evidenced by mutations of SMAD2 and SMAD4. Cancer Lett. 245, 163–170 (2007).

    Article  CAS  PubMed  Google Scholar 

  98. Bornstein, S. et al. Smad4 loss in mice causes spontaneous head and neck cancer with increased genomic instability and inflammation. J. Clin. Invest. 119, 3408–3419 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Mishra, A., Bharti, A. C., Varghese, P., Saluja, D. & Das, B. C. Differential expression and activation of NF-κB family proteins during oral carcinogenesis: role of high risk human papillomavirus infection. Int. J. Cancer 119, 2840–2850 (2006).

    Article  CAS  PubMed  Google Scholar 

  100. Karin, M. Nuclear factor-κB in cancer development and progression. Nature 441, 431–436 (2006).

    Article  CAS  PubMed  Google Scholar 

  101. Perkins, N. D. Integrating cell-signalling pathways with NF-κB and IKK function. Nature Rev. Mol. Cell Biol. 8, 49–62 (2007).

    Article  CAS  Google Scholar 

  102. Cohen, J. et al. Attenuated transforming growth factor β signaling promotes nuclear factor-κB activation in head and neck cancer. Cancer Res. 69, 3415–3424 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Engelman, J. A. Targeting PI3K signalling in cancer: opportunities, challenges and limitations. Nature Rev. Cancer 9, 550–562 (2009).

    Article  CAS  Google Scholar 

  104. Kozaki, K. et al. PIK3CA mutation is an oncogenic aberration at advanced stages of oral squamous cell carcinoma. Cancer Sci. 97, 1351–1358 (2006).

    Article  CAS  PubMed  Google Scholar 

  105. Qiu, W. L. et al. PIK3CA mutations in head and neck squamous cell carcinoma. Clin. Cancer Res. 12, 1441–1446 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Murugan, A. K., Hong, N. T., Fukui, Y., Munirajan, A. K. & Tsuchida, N. Oncogenic mutations of the PIK3CA gene in head and neck squamous cell carcinomas. Int. J. Oncol. 32, 101–111 (2008).

    CAS  PubMed  Google Scholar 

  107. Okami, K. et al. Analysis of PTEN/MMAC1 alterations in aerodigestive tract tumors. Cancer Res. 58, 509–511 (1998).

    CAS  PubMed  Google Scholar 

  108. Redon, R. et al. A simple specific pattern of chromosomal aberrations at early stages of head and neck squamous cell carcinomas: PIK3CA but not p63 gene as a likely target of 3q26-qter gains. Cancer Res. 61, 4122–4129 (2001).

    CAS  PubMed  Google Scholar 

  109. Woenckhaus, J. et al. Genomic gain of PIK3CA and increased expression of p110alpha are associated with progression of dysplasia into invasive squamous cell carcinoma. J. Pathol. 198, 335–342 (2002).

    Article  CAS  PubMed  Google Scholar 

  110. Pantel, K. & Brakenhoff, R. H. Dissecting the metastatic cascade. Nature Rev. Cancer 4, 448–456 (2004).

    Article  CAS  Google Scholar 

  111. Rosenthal, E. L. & Matrisian, L. M. Matrix metalloproteases in head and neck cancer. Head Neck 28, 639–648 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  112. Sun, P. C. et al. Transcript map of the 8p23 putative tumor suppressor region. Genomics 75, 17–25 (2001).

    Article  CAS  PubMed  Google Scholar 

  113. Scholnick, S. B. et al. Chromosome 8 allelic loss and the outcome of patients with squamous cell carcinoma of the supraglottic larynx. J. Natl Cancer Inst. 88, 1676–1682 (1996).

    Article  CAS  PubMed  Google Scholar 

  114. Sunwoo, J. B. et al. Localization of a putative tumor suppressor gene in the sub-telomeric region of chromosome 8p. Oncogene 18, 2651–2655 (1999).

    Article  CAS  PubMed  Google Scholar 

  115. Kraus, D. M. et al. CSMD1 is a novel multiple domain complement-regulatory protein highly expressed in the central nervous system and epithelial tissues. J. Immunol. 176, 4419–4430 (2006).

    Article  CAS  PubMed  Google Scholar 

  116. Roepman, P. et al. An expression profile for diagnosis of lymph node metastases from primary head and neck squamous cell carcinomas. Nature Genet. 37, 182–186 (2005). This study identifies an expression-array profile with predictive value for the development of lymph node metastases.

    Article  CAS  PubMed  Google Scholar 

  117. Thiery, J. P. Epithelial–mesenchymal transitions in tumour progression. Nature Rev. Cancer 2, 442–454 (2002).

    Article  CAS  Google Scholar 

  118. Ikushima, H. & Miyazono, K. TGFβ signalling: a complex web in cancer progression. Nature Rev. Cancer 10, 415–424 (2010).

    Article  CAS  Google Scholar 

  119. Folkman, J. Role of angiogenesis in tumor growth and metastasis. Semin. Oncol. 29, 15–18 (2002).

    Article  CAS  PubMed  Google Scholar 

  120. Kerbel, R. S. Tumor angiogenesis. N. Engl. J. Med. 358, 2039–2049 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Kyzas, P. A., Cunha, I. W. & Ioannidis, J. P. A. Prognostic significance of vascular endothelial growth factor immunohistochemical expression in head and neck squamous cell carcinoma: a meta-analysis. Clin. Cancer Res. 11, 1434–1440 (2005).

    Article  CAS  PubMed  Google Scholar 

  122. Fei, J. et al. Prognostic significance of vascular endothelial growth factor in squamous cell carcinomas of the tonsil in relation to human papillomavirus status and epidermal growth factor receptor. Ann. Surg. Oncol. 16, 2908–2917 (2009).

    Article  PubMed  Google Scholar 

  123. Virgilio, L. et al. FHIT gene alterations in head and neck squamous cell carcinomas. Proc. Natl Acad. Sci. USA 93, 9770–9775 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Hibi, K. et al. AIS is an oncogene amplified in squamous cell carcinoma. Proc. Natl Acad. Sci. USA 97, 5462–5467 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Rocco, J. W., Leong, C. O., Kuperwasser, N., DeYoung, M. P. & Ellisen, L. W. p63 mediates survival in squamous cell carcinoma by suppression of p73-dependent apoptosis. Cancer Cell 9, 45–56 (2006).

    Article  CAS  PubMed  Google Scholar 

  126. Rodrigo, J. P., Lazo, P. S., Ramos, S., Alvarez, I. & Suarez, C. MYC amplification in squamous cell carcinomas of the head and neck. Arch. Otolaryngol. Head Neck Surg. 122, 504–507 (1996).

    Article  CAS  PubMed  Google Scholar 

  127. Carvalho, A. L. et al. Deleted in colorectal cancer is a putative conditional tumor-suppressor gene inactivated by promoter hypermethylation in head and neck squamous cell carcinoma. Cancer Res. 66, 9401–9407 (2006).

    Article  CAS  PubMed  Google Scholar 

  128. Avissar, M., Christensen, B. C., Kelsey, K. T. & Marsit, C. J. MicroRNA expression ratio is predictive of head and neck squamous cell carcinoma. Clin. Cancer Res. 15, 2850–2855 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Childs, G. et al. Low-level expression of microRNAs let-7d and miR-205 are prognostic markers of head and neck squamous cell carcinoma. Am. J. Pathol. 174, 736–745 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Cervigne, N. K. et al. Identification of a microRNA signature associated with progression of leukoplakia to oral carcinoma. Hum. Mol. Genet. 18, 4818–4829 (2009).

    Article  CAS  PubMed  Google Scholar 

  131. Kies, M. S. et al. Induction chemotherapy and cetuximab for locally advanced squamous cell carcinoma of the head and neck: results from a phase II prospective trial. J. Clin. Oncol. 28, 8–14 (2010).

    Article  CAS  PubMed  Google Scholar 

  132. Almadori, G. et al. Multistep laryngeal carcinogenesis helps our understanding of the field cancerisation phenomenon: a review. Eur. J. Cancer 40, 2383–2388 (2004).

    Article  PubMed  Google Scholar 

  133. Poh, C. F. et al. Fluorescence visualization detection of field alterations in tumor margins of oral cancer patients. Clin. Cancer Res. 12, 6716–6722 (2006).

    Article  CAS  PubMed  Google Scholar 

  134. Roblyer, D. et al. Objective detection and delineation of oral neoplasia using autofluorescence imaging. Cancer Prev. Res. 2, 423–431 (2009). References 133 and 134 show that fluorescence visualization can identify subclinical high-risk fields with cancerous and precancerous changes.

    Article  Google Scholar 

  135. Braakhuis, B. J. M. et al. Second primary tumors and field cancerization in oral and oropharyngeal cancer: molecular techniques provide new insights and definitions. Head Neck 24, 198–206 (2002).

    Article  PubMed  Google Scholar 

  136. Graveland, A. P. et al. Loss of heterozygosity at 9p and p53 immunopositivity in surgical margins predict local relapse in head and neck squamous cell carcinoma. Int. J. Cancer (in the press).

  137. Derynck, R., Akhurst, R. J. & Balmain, A. TGF-β signaling in tumor suppression and cancer progression. Nature Genet. 29, 117–129 (2001).

    Article  CAS  PubMed  Google Scholar 

  138. Chaturvedi, A. K., Engels, E. A., Anderson, W. F. & Gillison, M. L. Incidence trends for human papillomavirus-related and -unrelated oral squamous cell carcinomas in the United States. J. Clin. Oncol. 26, 612–619 (2008).

    Article  PubMed  Google Scholar 

  139. Nasman, A. et al. Incidence of human papilloma virus positive tonsillar carcinoma in Stockholm, Sweden: an epidemic of viral-induced carcinoma? Int. J. Cancer 125, 362–366 (2009).

    Article  PubMed  CAS  Google Scholar 

  140. Jung, A. C. et al. Biological and clinical relevance of transcriptionally active human papillomavirus (HPV) infection in oropharynx squamous cell carcinoma. Int. J. Cancer 126, 1882–1894 (2010).

    Article  CAS  PubMed  Google Scholar 

  141. Herrero, R. et al. Human papillomavirus and oral cancer: the International Agency for Research on Cancer multicenter study. J. Natl Cancer Inst. 95, 1772–1783 (2003).

    Article  PubMed  Google Scholar 

  142. Hafkamp, H. C. et al. Marked differences in survival rate between smokers and nonsmokers with HPV 16-associated tonsillar carcinomas. Int. J. Cancer 122, 2656–2664 (2008).

    Article  CAS  PubMed  Google Scholar 

  143. Hogg, R. P. et al. Frequent 3p allele loss and epigenetic inactivation of the RASSF1A tumour suppressor gene from region 3p21.3 in head and neck squamous cell carcinoma. Eur. J. Cancer 38, 1585–1592 (2002).

    Article  CAS  PubMed  Google Scholar 

  144. Veeriah, S. et al. The tyrosine phosphatase PTPRD is a tumor suppressor that is frequently inactivated and mutated in glioblastoma and other human cancers. Proc. Natl Acad. Sci. USA 106, 9435–9440 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Somers, K. D. et al. Frequent p53 mutations in head and neck cancer. Cancer Res. 52, 5997–6000 (1992).

    CAS  PubMed  Google Scholar 

  146. Brennan, J. A. et al. Molecular assessment of histopathological staging in squamous-cell carcinoma of the head and neck. N. Engl. J. Med. 332, 429–435 (1995).

    Article  CAS  PubMed  Google Scholar 

  147. Katoh, M. & Katoh, M. Identification and characterization of human TIPARP gene within the CCNL amplicon at human chromosome 3q25.31. Int. J. Oncol. 23, 541–547 (2003).

    CAS  PubMed  Google Scholar 

  148. Sarkaria, I. et al. Squamous cell carcinoma related oncogene/DCUN1D1 is highly conserved and activated by amplification in squamous cell carcinomas. Cancer Res. 66, 9437–9444 (2006).

    Article  CAS  PubMed  Google Scholar 

  149. Bockmuhl, U. et al. Patterns of chromosomal alterations in metastasizing and nonmetastasizing primary head and neck carcinomas. Cancer Res. 57, 5213–5216 (1997).

    CAS  PubMed  Google Scholar 

  150. Agochiya, M. et al. Increased dosage and amplification of the focal adhesion kinase gene in human cancer cells. Oncogene 18, 5646–5653 (1999).

    Article  CAS  PubMed  Google Scholar 

  151. Inaba, T. et al. Genomic organization, chromosomal localization, and independent expression of human cyclin D genes. Genomics 13, 565–574 (1992).

    Article  CAS  PubMed  Google Scholar 

  152. Schuuring, E., Verhoeven, E., Mooi, W. J. & Michalides, R. J. Identification and cloning of two overexpressed genes, U21B31/PRAD1 and EMS1, within the amplified chromosome 11q13 region in human carcinomas. Oncogene 7, 355–361 (1992).

    CAS  PubMed  Google Scholar 

  153. Snijders, A. M. et al. Rare amplicons implicate frequent deregulation of cell fate specification pathways in oral squamous cell carcinoma. Oncogene 24, 4232–4242 (2005).

    Article  CAS  PubMed  Google Scholar 

  154. Beder, L. B. et al. Genome-wide analyses on loss of heterozygosity in head and neck squamous cell carcinomas. Lab. Invest. 83, 99–105 (2003).

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors' research summarized here is supported by the Cancer Center Amsterdam/VU Research Institute on Cancer and Immunology, the Dutch Cancer Society, the European Commission (6th framework program), The Netherlands Organization for Scientific Research (NWO), The Fanconi Anaemia Research Fund, The German Fanconi Support Group, the Dutch Children Cancer-free Foundation, and the Center for Translational Molecular Medicine (AIRFORCE project). The authors would like to apologize to those authors whose work could not be cited directly owing to space constraints.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. René Leemans.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

DATABASES

National Cancer Institute Drug Dictionary 

cetuximab

Pathway Interaction Database 

EGFR

p53

RB

FURTHER INFORMATION

C. René Leemans's homepage

VU Medical Center

Glossary

Chemoradiation

Combined treatment with chemotherapy (usually cisplatin) and radiation.

Ploidy

The number of chromosomes in a cell. Normal human cells are diploid, having a DNA index of 2c, a state also referred to as euploid. Cancer cells are often tetraploid, with a DNA index of 4c, or aneuploid, with a DNA index somewhere between 2c and 4c. The DNA index reflects the number of numerical genetic changes: the losses and gains of chromosomes or parts of chromosomes.

Comparative genomic hybridization

(CGH). A method to visualize the presence or absence of chromosomes or parts of chromosomes in a tumour sample by fluorescence microscopy. Array CGH is comparable to CGH, except that the labelled DNAs are not hybridized to metaphase spreads but to DNA molecules on a glass slide, which increases the resolution.

Oral leukoplakia

The most common premalignant lesion of HNSCC, defined as a white plaque in the mucosal linings that indicates questionable risk after the exclusion of other known diseases or disorders that carry no increased risk of cancer.

Squamous epithelium

Multilayered epithelium covering the linings of the upper aerodigestive tract.

Loss of heterozygosity

(LOH). A genetic change that describes the loss of one allele of a gene for which the other allele is already inactivated.

Telomere

The linear end of a chromosome. The telomere is shortened with each round of DNA replication.

MicroRNA

(miRNA). Small RNA (of 22–24 oligonucleotides) generated from larger transcripts that bind target sequences in messenger RNAs in a large complex called the RNA-induced silencing complex (RISC). Binding of miRNAs to their (usually multiple) target transcripts causes transcript degradation or inhibition of protein translation.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Leemans, C., Braakhuis, B. & Brakenhoff, R. The molecular biology of head and neck cancer. Nat Rev Cancer 11, 9–22 (2011). https://doi.org/10.1038/nrc2982

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc2982

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer