Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Exploring the role of cancer stem cells in radioresistance

Abstract

Radiobiological research over the past decades has provided evidence that cancer stem cell content and the intrinsic radiosensitivity of cancer stem cells varies between tumours, thereby affecting their radiocurability. Translation of this knowledge into predictive tests for the clinic has so far been hampered by the lack of methods to discriminate between stem cells and non-stem cells. New technologies allow isolation of cells expressing specific surface markers that are differentially expressed in tumour cell subpopulations that are enriched for cancer stem cells. Combining these techniques with functional radiobiological assays holds the potential to elucidate the role of cancer stem cells in radioresistance in individual tumours, and to use this knowledge for the development of predictive markers for optimization of radiotherapy.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Importance of cancer stem cell survival for local tumour control after irradiation.
Figure 2: Correlation of transplantability and curability by irradiation of 13 different experimental tumour models.
Figure 3: The potential importance of stem cell niches for radiotherapy treatment planning.
Figure 4: Example for the disassociation of volume-dependent experimental endpoints and local tumour control after treatments combining radiation with drugs.

Similar content being viewed by others

References

  1. Clarke, M. F. et al. Cancer stem cells — perspectives on current status and future directions: AACR Workshop on Cancer Stem Cells. Cancer Res. 66, 9339–9344 (2006).

    Article  CAS  PubMed  Google Scholar 

  2. Dingli, D. & Michor, F. Successful therapy must eradicate cancer stem cells. Stem Cells 24, 2603–2610 (2006).

    Article  CAS  PubMed  Google Scholar 

  3. Baumann, M., Dubois, W. & Suit, H. D. Response of human squamous cell carcinoma xenografts of different sizes to irradiation: relationship of clonogenic cells, cellular radiation sensitivity in vivo, and tumor rescuing units. Radiation Res. 123, 325–330 (1990).

    Article  CAS  PubMed  Google Scholar 

  4. Kummermehr, J. & Trott, K. R. in Stem cells (ed. Potten, C. S.) 363–400 (Academic Press Limited, London, 1997).

    Book  Google Scholar 

  5. Hill, R. P. & Milas, L. The proportion of stem cells in murine tumors. Int. J. Radiat. Oncol. Biol. Phys. 16, 513–518 (1989).

    Article  CAS  PubMed  Google Scholar 

  6. Trott, K. R. Tumour stem cells: the biological concept and its application in cancer treatment. Radiother. Oncol. 30, 1–5 (1994).

    Article  CAS  PubMed  Google Scholar 

  7. Al-Hajj, M., Wicha, M. S., Benito-Hernandez, A., Morrison, S. J. & Clarke, M. F. Prospective identification of tumorigenic breast cancer cells. Proc. Natl Acad. Sci. USA 100, 3983–3988 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. O'Brien, C. A., Pollett, A., Gallinger, S. & Dick, J. E. A human colon cancer cell capable of initiating tumour growth in immunodeficient mice. Nature 445, 106–110 (2007).

    Article  CAS  PubMed  Google Scholar 

  9. Aoyama, H. et al. Hypofractionated stereotactic radiotherapy alone without whole-brain irradiation for patients with solitary and oligo brain metastasis using noninvasive fixation of the skull. Int. J. Radiat. Oncol. Biol. Phys. 56, 793–800 (2003).

    Article  PubMed  Google Scholar 

  10. Hof, H. et al. Stereotactic single-dose radiotherapy of stage I non-small-cell lung cancer (NSCLC). Int. J. Radiat. Oncol. Biol. Phys. 56, 335–341 (2003).

    Article  PubMed  Google Scholar 

  11. Onimaru, R. et al. Steep dose–response relationship for stage I non-small-cell lung cancer using hypofractionated high-dose irradiation by real-time tumor-tracking radiotherapy. Int. J. Radiat. Oncol. Biol. Phys. (2007).

  12. Onishi, H. et al. Hypofractionated stereotactic radiotherapy (HypoFXSRT) for stage I non-small cell lung cancer: updated results of 257 patients in a Japanese multi-institutional study. J. Thorac. Oncol. 2, S94–S100 (2007).

    Article  PubMed  Google Scholar 

  13. Madsen, B. L. et al. Stereotactic hypofractionated accurate radiotherapy of the prostate (SHARP), 33.5 Gy in five fractions for localized disease: first clinical trial results. Int. J. Radiat. Oncol. Biol. Phys. 67, 1099–1105 (2007).

    Article  PubMed  Google Scholar 

  14. Bernier, J., Hall, E. J. & Giaccia, A. Radiation oncology: a century of achievements. Nature Rev. Cancer 4, 737–747 (2004).

    Article  CAS  Google Scholar 

  15. Thames, H. D. & Hendry, J. H. Fractionation in Radiotherapy (Taylor and Francis, Philadelphia, 1987).

  16. Pusey, W. A. IX. The use of X-rays in carcinoma. Ann. Surg. 42, 910–917 (1905).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Walstam, R. in 1895-1995 Radiation Oncology, a Century of Progress and Achievements p17–46 (ESTRO, Leuven, 1995).

    Google Scholar 

  18. Holthusen, H. Erfahrungen über die Verträglichkeitsgrenze für Röntgenstrahlen und deren Nutzanwendung zur Verhütung von Schäden. Strahlenther. 57, 254–269 (1936) (in German).

    Google Scholar 

  19. Yaromina, A. et al. Pre-treatment number of clonogenic cells and their radiosensitivity are major determinants of local tumour control after fractionated irradiation. Radiother. Oncol. (2007).

  20. Gerweck, L. E., Zaidi, S. T. & Zietman, A. Multivariate determinants of radiocurability. I: Prediction of single fraction tumor control doses. Int. J. Radiat. Oncol. Biol. Phys. 29, 57–66 (1994).

    Article  CAS  PubMed  Google Scholar 

  21. Taghian, A. et al. In vivo radiation sensitivity of glioblastoma multiforme. Int. J. Radiat. Oncol. Biol. Phys. 32, 99–104 (1995).

    Article  CAS  PubMed  Google Scholar 

  22. Suit, H. D. et al. Radiation response of xenografts of a human squamous cell carcinoma and a glioblastoma multiforme: a progress report. Int. J. Radiat. Oncol. Biol. Phys. 18, 365–373 (1990).

    Article  CAS  PubMed  Google Scholar 

  23. Yaromina, A. et al. Pimonidazole labelling and response to fractionated irradiation of five human squamous cell carcinoma (hSCC) lines in nude mice: The need for a multivariate approach in biomarker studies. Radiother. Oncol. 81, 122–129 (2006).

    Article  CAS  PubMed  Google Scholar 

  24. Schreiber, A. et al. Effect of the hypoxic cell sensitizer isometronidazole on local control of two human squamous cell carcinomas after fractionated irradiation. Strahlenther. Onkol. 180, 375–382 (2004).

    Article  PubMed  Google Scholar 

  25. Kaanders, J. H. et al. Pimonidazole binding and tumor vascularity predict for treatment outcome in head and neck cancer. Cancer Res. 62, 7066–7074 (2002).

    CAS  PubMed  Google Scholar 

  26. Overgaard, J., Eriksen, J. G., Nordsmark, M., Alsner, J. & Horsman, M. R. Plasma osteopontin, hypoxia, and response to the hypoxia sensitiser nimorazole in radiotherapy of head and neck cancer: results from the DAHANCA 5 randomised double-blind placebo-controlled trial. Lancet Oncol. 6, 757–764 (2005).

    Article  CAS  PubMed  Google Scholar 

  27. Thames, H. D. Jr, Withers, H. R., Peters, L. J. & Fletcher, G. H. Changes in early and late radiation responses with altered dose fractionation: implications for dose–survival relationships. Int. J. Radiat. Oncol. Biol. Phys. 8, 219–226 (1982).

    Article  PubMed  Google Scholar 

  28. Petersen, C. et al. Repopulation of FaDu human squamous cell carcinoma during fractionated radiotherapy correlates with reoxygenation. Int. J. Radiat. Oncol. Biol. Phys. 51, 483–493 (2001).

    Article  CAS  PubMed  Google Scholar 

  29. Williams, M. V., Denekamp, J. & Fowler, J. F. A review of alpha/beta ratios for experimental tumors: implications for clinical studies of altered fractionation. Int. J. Radiat. Oncol. Biol. Phys. 11, 87–96 (1985).

    Article  CAS  PubMed  Google Scholar 

  30. Petersen, C. et al. Recovery from sublethal damage during fractionated irradiation of human FaDu SCC. Radiother. Oncol. 74, 331–336 (2005).

    Article  PubMed  Google Scholar 

  31. Beck-Bornholdt, H. P., Omniczynski, M., Theis, E., Vogler, H. & Wurschmidt, F. Influence of treatment time on the response of rat rhabdomyosarcoma R1H to fractionated irradiation. Acta Oncol. 30, 57–63 (1991).

    Article  CAS  PubMed  Google Scholar 

  32. Collins, A. T., Berry, P. A., Hyde, C., Stower, M. J. & Maitland, N. J. Prospective identification of tumorigenic prostate cancer stem cells. Cancer Res. 65, 10946–10951 (2005).

    Article  CAS  PubMed  Google Scholar 

  33. Singh, S. K. et al. Identification of human brain tumour initiating cells. Nature 432, 396–401 (2004).

    CAS  PubMed  Google Scholar 

  34. Fang, D. et al. A tumorigenic subpopulation with stem cell properties in melanomas. Cancer Res. 65, 9328–9337 (2005).

    Article  CAS  PubMed  Google Scholar 

  35. Prince, M. E. et al. Identification of a subpopulation of cells with cancer stem cell properties in head and neck squamous cell carcinoma. Proc. Natl Acad. Sci. USA 104, 973–978 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Ricci-Vitiani, L. et al. Identification and expansion of human colon-cancer-initiating cells. Nature 445, 111–115 (2007).

    CAS  PubMed  Google Scholar 

  37. Kelly, P. N., Dakic, A., Adams, J. M., Nutt, S. L. & Strasser, A. Tumor growth need not be driven by rare cancer stem cells. Science 317, 337 (2007).

    Article  CAS  PubMed  Google Scholar 

  38. Hill, R. P. Identifying cancer stem cells in solid tumors: case not proven. Cancer Res. 66, 1891–1895; discussion 1890 (2006).

    Article  CAS  PubMed  Google Scholar 

  39. Zheng, X., Shen, G., Yang, X. & Liu, W. Most C6 cells are cancer stem cells: evidence from clonal and population analyses. Cancer Res. 67, 3691–3697 (2007).

    Article  CAS  PubMed  Google Scholar 

  40. Calabrese, C. et al. A perivascular niche for brain tumor stem cells. Cancer Cell 11, 69–82 (2007).

    Article  CAS  PubMed  Google Scholar 

  41. Wang, J. et al. CD133 negative glioma cells form tumors in nude rats and give rise to CD133 positive cells. Int. J. Cancer 122, 761–768 (2008).

    Article  CAS  PubMed  Google Scholar 

  42. Jamieson, C. H. et al. Granulocyte–macrophage progenitors as candidate leukemic stem cells in blast-crisis CML. N. Engl. J. Med. 351, 657–667 (2004).

    Article  CAS  PubMed  Google Scholar 

  43. Maeda, S. et al. CD133 expression is correlated with lymph node metastasis and vascular endothelial growth factor-C expression in pancreatic cancer. Br. J. Cancer 98, 1389–1397 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Florek, M. et al. Prominin-1/CD133, a neural and hematopoietic stem cell marker, is expressed in adult human differentiated cells and certain types of kidney cancer. Cell Tissue Res. 319, 15–26 (2005).

    Article  CAS  PubMed  Google Scholar 

  45. Kennedy, J. A., Barabe, F., Poeppl, A. G., Wang, J. C. & Dick, J. E. Comment on “Tumor growth need not be driven by rare cancer stem cells”. Science 318, 1722; author reply 1722 (2007).

    Article  CAS  PubMed  Google Scholar 

  46. Barabe, F., Kennedy, J. A., Hope, K. J. & Dick, J. E. Modeling the initiation and progression of human acute leukemia in mice. Science 316, 600–604 (2007).

    Article  CAS  PubMed  Google Scholar 

  47. Hill, R. P. & Perris, R. “Destemming” cancer stem cells. J. Natl Cancer Inst. 99, 1435–1440 (2007).

    Article  CAS  PubMed  Google Scholar 

  48. Munro, T. R. & Gilbert, C. W. The relation between tumour lethal doses and the radiosensitivity of tumour cells. Br. J. Radiol. 34, 246–251 (1961).

    Article  CAS  PubMed  Google Scholar 

  49. Krause, M., Zips, D., Thames, H. D., Kummermehr, J. & Baumann, M. Preclinical evaluation of molecular-targeted anticancer agents for radiotherapy. Radiother. Oncol. 80, 112–122 (2006).

    Article  CAS  PubMed  Google Scholar 

  50. Hermans, A. F. & Barendsen, G. W. Changes of cell proliferation characteristics in a rat rhabdomyosarcoma before and after x-irradiation. Eur. J. Cancer 5, 173–189 (1969).

    Article  Google Scholar 

  51. Hill, R. P., Bush, R. S. & Yeung, P. The effect of anaemia on the fraction of hypoxic cells in an experimental tumor. Br. J. Radiol. 44, 299–304 (1971).

    Article  CAS  PubMed  Google Scholar 

  52. Hewitt, H. B. & Wilson, C. W. Survival curves for tumor cells irradiated in vivo. Ann. NY Acad. Sci. 95, 818–827 (1961).

    Article  CAS  PubMed  Google Scholar 

  53. Stephens, T. C., Currie, G. A. & Peacock, J. H. Repopulation of γ-irradiated Lewis lung carcinoma by malignant cells and host macrophage progenitors. Br. J. Cancer 38, 573–582 (1978).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Suit, H., Shalek, R. & Wette, R. in Cellular Radiation Biology 514–530 (Williams and Wilkins, Baltimore, 1965).

  55. Dubben, H. H., Thames, H. D. & Beck-Bornholdt, H. P. Tumor volume: a basic and specific response predictor in radiotherapy [see comments]. Radiother. Oncol. 47, 167–174 (1998).

    Article  CAS  PubMed  Google Scholar 

  56. Bentzen, S. M. & Thames, H. D. Tumor volume and local control probability: clinical data and radiobiological interpretations [comment]. Int. J. Radiat. Oncol. Biol. Phys. 36, 247–251 (1996).

    Article  CAS  PubMed  Google Scholar 

  57. Johnson, C. R., Thames, H. D., Huang, D. T. & Schmidt-Ullrich, R. K. The tumor volume and clonogen number relationship: tumor control predictions based upon tumor volume estimates derived from computed tomography. Int. J. Radiat. Oncol. Biol. Phys. 33, 281–287 (1995).

    Article  CAS  PubMed  Google Scholar 

  58. Malaise, E. P., Fertil, B., Chavaudra, N. & Guichard, M. Distribution of radiation sensitivities for human tumor cells of specific histological types: comparison of in vitro to in vivo data. Int. J. Radiat. Oncol. Biol. Phys. 12, 617–624 (1986).

    Article  CAS  PubMed  Google Scholar 

  59. Deacon, J., Peckham, M. J. & Steel, G. G. The radioresponsiveness of human tumours and the initial slope of the cell survival curve. Radiother. Oncol. 2, 317–323 (1984).

    Article  CAS  PubMed  Google Scholar 

  60. Buffa, F. M., Davidson, S. E., Hunter, R. D., Nahum, A. E. & West, C. M. Incorporating biologic measurements (SF(2), CFE) into a tumor control probability model increases their prognostic significance: a study in cervical carcinoma treated with radiation therapy. Int. J. Radiat. Oncol. Biol. Phys. 50, 1113–1122 (2001).

    Article  CAS  PubMed  Google Scholar 

  61. West, C. M., Davidson, S. E., Roberts, S. A. & Hunter, R. D. The independence of intrinsic radiosensitivity as a prognostic factor for patient response to radiotherapy of carcinoma of the cervix. Br. J. Cancer 76, 1184–1190 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Budach, W. et al. Tumors arising in SCID mice share enhanced radiation sensitivity of SCID normal tissues. Cancer Res. 52, 6292–6296 (1992).

    CAS  PubMed  Google Scholar 

  63. Gerweck, L. E., Vijayappa, S., Kurimasa, A., Ogawa, K. & Chen, D. J. Tumor cell radiosensitivity is a major determinant of tumor response to radiation. Cancer Res. 66, 8352–8355 (2006).

    Article  CAS  PubMed  Google Scholar 

  64. Ogawa, K. et al. Influence of tumor cell and stroma sensitivity on tumor response to radiation. Cancer Res. 67, 4016–4021 (2007).

    Article  CAS  PubMed  Google Scholar 

  65. Kasten-Pisula, U. et al. The extreme radiosensitivity of the squamous cell carcinoma SKX is due to a defect in double-strand break repair. Radiother. Oncol. (in the press).

  66. Withers, H. R. in Advances in radiation biology (eds. Lett, J. T. & Adler, H.) 241–247 (Academic Press, New York, 1975).

    Google Scholar 

  67. Steel, G. G., McMillan, T. J. & Peacock, J. H. The 5Rs of radiobiology. Int. J. Radiat. Biol. 56, 1045–8 (1989).

    Article  CAS  PubMed  Google Scholar 

  68. Beck-Bornholdt, H. P., Schmidt, R., Schwarz, R. C. & Hubener, K. H. Biological isoeffect distributions: consideration of the influence of dose per fraction and overall treatment time. A possible tool in future treatment planning. Strahlenther. Onkol. 167, 708–715 (1991).

    CAS  PubMed  Google Scholar 

  69. Eramo, A. et al. Chemotherapy resistance of glioblastoma stem cells. Cell Death Differ. 13, 1238–1241 (2006).

    Article  CAS  PubMed  Google Scholar 

  70. Ghods, A. J. et al. Spheres isolated from 9L gliosarcoma rat cell line possess chemoresistant and aggressive cancer stem-like cells. Stem Cells 25, 1645–53 (2007).

    Article  CAS  PubMed  Google Scholar 

  71. Kang, M. K. & Kang, S. K. Tumorigenesis of chemotherapeutic drug-resistant cancer stem-like cells in brain glioma. Stem Cells Dev. 16, 837–847 (2007).

    Article  CAS  PubMed  Google Scholar 

  72. Liu, G. et al. Analysis of gene expression and chemoresistance of CD133+ cancer stem cells in glioblastoma. Mol. Cancer 5, 67 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Ma, S., Lee, T. K., Zheng, B. J., Chan, K. W. & Guan, X. Y. CD133+ HCC cancer stem cells confer chemoresistance by preferential expression of the Akt/PKB survival pathway. Oncogene 27, 1749–1758 (2008).

    Article  CAS  PubMed  Google Scholar 

  74. Mimeault, M., Hauke, R., Mehta, P. P. & Batra, S. K. Recent advances in cancer stem/progenitor cell research: therapeutic implications for overcoming resistance to the most aggressive cancers. J. Cell. Mol. Med. 11, 981–1011 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Denekamp, J. Tumour stem cells: facts, interpretation and consequences. Radiother. Oncol. 30, 6–10 (1994).

    Article  CAS  PubMed  Google Scholar 

  76. Hendry, J. H., West, C. M., Moore, J. V. & Potten, C. S. Tumour stem cells: the relevance of predictive assays for tumour control after radiotherapy. Radiother. Oncol. 30, 11–16 (1994).

    Article  CAS  PubMed  Google Scholar 

  77. Lobrich, M. & Kiefer, J. Assessing the likelihood of severe side effects in radiotherapy. Int. J. Cancer 118, 2652–2656 (2006).

    Article  CAS  PubMed  Google Scholar 

  78. Akervall, J. Gene profiling in squamous cell carcinoma of the head and neck. Cancer Metastasis Rev. 24, 87–94 (2005).

    Article  CAS  PubMed  Google Scholar 

  79. Andreassen, C. N. Can risk of radiotherapy-induced normal tissue complications be predicted from genetic profiles? Acta Oncol. 44, 801–815 (2005).

    Article  PubMed  Google Scholar 

  80. Eriksen, J. G. et al. Molecular profiles as predictive marker for the effect of overall treatment time of radiotherapy in supraglottic larynx squamous cell carcinomas. Radiother. Oncol. 72, 275–282 (2004).

    Article  CAS  PubMed  Google Scholar 

  81. Buffa, F. M. et al. Molecular marker profiles predict locoregional control of head and neck squamous cell carcinoma in a randomized trial of continuous hyperfractionated accelerated radiotherapy. Clin. Cancer Res. 10, 3745–3754 (2004).

    Article  CAS  PubMed  Google Scholar 

  82. Bentzen, S. M. Theragnostic imaging for radiation oncology: dose-painting by numbers. Lancet Oncol. 6, 112–117 (2005).

    Article  PubMed  Google Scholar 

  83. Chao, K. S. et al. A novel approach to overcome hypoxic tumor resistance: Cu-ATSM-guided intensity-modulated radiation therapy. Int. J. Radiat. Oncol. Biol. Phys. 49, 1171–1182 (2001).

    Article  CAS  PubMed  Google Scholar 

  84. Nordsmark, M. et al. Prognostic value of tumor oxygenation in 397 head and neck tumors after primary radiation therapy. An international multi-center study. Radiother. Oncol. (2005).

  85. Kaanders, J. H. et al. Pimonidazole binding and tumor vascularity predict for treatment outcome in head and neck cancer. Cancer Res. 62, 7066–7074 (2002).

    CAS  PubMed  Google Scholar 

  86. Eriksen, J. G., Alsner, J., Steiniche, T. & Overgaard, J. The possible role of TP53 mutation status in the treatment of squamous cell carcinomas of the head and neck (HNSCC) with radiotherapy with different overall treatment times. Radiother. Oncol. 76, 135–142 (2005).

    Article  CAS  PubMed  Google Scholar 

  87. Eriksen, J. G., Steiniche, T. & Overgaard, J. The influence of epidermal growth factor receptor and tumor differentiation on the response to accelerated radiotherapy of squamous cell carcinomas of the head and neck in the randomized DAHANCA 6 and 7 study. Radiother. Oncol. 74, 93–100 (2005).

    Article  CAS  PubMed  Google Scholar 

  88. Begg, A. C. et al. The value of pretreatment cell kinetic parameters as predictors for radiotherapy outcome in head and neck cancer: a multicenter analysis. Radiother. Oncol. 50, 13–23 (1999).

    Article  CAS  PubMed  Google Scholar 

  89. Lee, C. M. et al. Correlation between human epidermal growth factor receptor family (EGFR, HER2, HER3, HER4), phosphorylated Akt (P-Akt), and clinical outcomes after radiation therapy in carcinoma of the cervix. Gynecol. Oncol. 99, 415–421 (2005).

    Article  CAS  PubMed  Google Scholar 

  90. Eriksen, J. G. & Overgaard, J. Lack of prognostic and predictive value of CA IX in radiotherapy of squamous cell carcinoma of the head and neck with known modifiable hypoxia: an evaluation of the DAHANCA 5 study. Radiother. Oncol. 83, 383–388 (2007).

    Article  CAS  PubMed  Google Scholar 

  91. Hemmati, H. D. et al. Cancerous stem cells can arise from pediatric brain tumors. Proc. Natl Acad. Sci. USA 100, 15178–15183 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Bao, S. et al. Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature 444, 756–760 (2006).

    Article  CAS  PubMed  Google Scholar 

  93. Bao, S. et al. Stem cell-like glioma cells promote tumor angiogenesis through vascular endothelial growth factor. Cancer Res. 66, 7843–7848 (2006).

    Article  CAS  PubMed  Google Scholar 

  94. Rich, J. N. Cancer stem cells in radiation resistance. Cancer Res. 67, 8980–8984 (2007).

    Article  CAS  PubMed  Google Scholar 

  95. Blazek, E. R., Foutch, J. L. & Maki, G. Daoy medulloblastoma cells that express CD133 are radioresistant relative to CD133- cells, and the CD133+ sector is enlarged by hypoxia. Int. J. Radiat. Oncol. Biol. Phys. 67, 1–5 (2007).

    Article  CAS  PubMed  Google Scholar 

  96. Phillips, T. M., McBride, W. H. & Pajonk, F. The response of CD24−/low/CD44+ breast cancer-initiating cells to radiation. J. Natl Cancer Inst. 98, 1777–1785 (2006).

    Article  PubMed  Google Scholar 

  97. Woodward, W. A. et al. WNT/β-catenin mediates radiation resistance of mouse mammary progenitor cells. Proc. Natl Acad. Sci. USA 104, 618–623 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Chen, M. S. et al. Wnt/ β-catenin mediates radiation resistance of Sca1+ progenitors in an immortalized mammary gland cell line. J. Cell Sci. 120, 468–477 (2007).

    Article  CAS  PubMed  Google Scholar 

  99. Tannock, I. F. & Lee, C. Evidence against apoptosis as a major mechanism for reproductive cell death following treatment of cell lines with anti-cancer drugs. Br. J. Cancer 84, 100–105 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Brown, J. M. & Attardi, L. D. The role of apoptosis in cancer development and treatment response. Nature Rev. Cancer 5, 231–237 (2005).

    Article  Google Scholar 

  101. Hambardzumyan, D., Squatrito, M. & Holland, E. C. Radiation resistance and stem-like cells in brain tumors. Cancer Cell 10, 454–456 (2006).

    Article  CAS  PubMed  Google Scholar 

  102. Ciampi, A., Kates, L., Buick, R., Kriukov, Y. & Till, J. E. Multi-type Galton–Watson process as a model for proliferating human tumour cell populations derived from stem cells: estimation of stem cell self-renewal probabilities in human ovarian carcinomas. Cell Tissue Kinet. 19, 129–140 (1986).

    CAS  PubMed  Google Scholar 

  103. Diehn, M. & Clarke, M. F. Cancer stem cells and radiotherapy: new insights into tumor radioresistance. J. Natl Cancer Inst. 98, 1755–1757 (2006).

    Article  PubMed  Google Scholar 

  104. Wright, E. A. & Howard-Flanders, P. The influence of oxygen on the radiosensitivity of mammalian tissues. Acta Radiologica 48, 26–32 (1957).

    Article  CAS  PubMed  Google Scholar 

  105. Gray, L. H., Conger, A. D., Ebert, M., Hornsay, S. & Scott, O. C. A. The concentration of oxygen dissolved in tissues at the time of irradiation as a factor in radiotherapy. Br. J. Radiol. 26, 638–648 (1953).

    Article  CAS  PubMed  Google Scholar 

  106. Vaupel, P. & Mayer, A. Hypoxia in cancer: significance and impact on clinical outcome. Cancer Metastasis Rev. 26, 225–239 (2007).

    Article  CAS  PubMed  Google Scholar 

  107. Overgaard, J. Hypoxic radiosensitization: adored and ignored. J. Clin. Oncol. 25, 4066–4074 (2007).

    Article  PubMed  Google Scholar 

  108. Hu, C. J., Wang, L. Y., Chodosh, L. A., Keith, B. & Simon, M. C. Differential roles of hypoxia-inducible factor 1α (HIF-1α) and HIF-2α in hypoxic gene regulation. Mol. Cell. Biol. 23, 9361–9374 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Covello, K. L. et al. HIF-2α regulates Oct-4: effects of hypoxia on stem cell function, embryonic development, and tumor growth. Genes Dev. 20, 557–570 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Gordan, J. D., Bertout, J. A., Hu, C. J., Diehl, J. A. & Simon, M. C. HIF-2α promotes hypoxic cell proliferation by enhancing c-myc transcriptional activity. Cancer Cell 11, 335–347 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Gustafsson, M. V. et al. Hypoxia requires notch signaling to maintain the undifferentiated cell state. Dev. Cell 9, 617–628 (2005).

    Article  CAS  PubMed  Google Scholar 

  112. Platet, N. et al. Influence of oxygen tension on CD133 phenotype in human glioma cell cultures. Cancer Lett. 258, 286–290 (2007).

    Article  CAS  PubMed  Google Scholar 

  113. Quennet, V. et al. Tumor lactate content predicts for response to fractionated irradiation of human squamous cell carcinomas in nude mice. Radiother. Oncol. 81, 130–135 (2006).

    Article  CAS  PubMed  Google Scholar 

  114. Ling, C. C. et al. Towards multidimensional radiotherapy (MD-CRT): biological imaging and biological conformality. Int. J. Radiat. Oncol. Biol. Phys. 47, 551–560 (2000).

    Article  CAS  PubMed  Google Scholar 

  115. Cordes, N., Seidler, J., Durzok, R., Geinitz, H. & Brakebusch, C. β1-integrin-mediated signaling essentially contributes to cell survival after radiation-induced genotoxic injury. Oncogene 25, 1378–1390 (2006).

    Article  CAS  PubMed  Google Scholar 

  116. Moore, K. A. & Lemischka, I. R. Stem cells and their niches. Science 311, 1880–1885 (2006).

    Article  CAS  PubMed  Google Scholar 

  117. Scadden, D. T. The stem-cell niche as an entity of action. Nature 441, 1075–1079 (2006).

    Article  CAS  PubMed  Google Scholar 

  118. Gilbertson, R. J. & Rich, J. N. Making a tumour's bed: glioblastoma stem cells and the vascular niche. Nature Rev. Cancer 7, 733–736 (2007).

    Article  CAS  Google Scholar 

  119. Hambardzumyan, D. et al. PI3K pathway regulates survival of cancer stem cells residing in the perivascular niche following radiation in medulloblastoma in vivo. Genes Dev. 22, 436–48 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Bonner, J. A. et al. Radiotherapy plus cetuximab for squamous-cell carcinoma of the head and neck. N. Engl. J. Med. 354, 567–578 (2006).

    Article  CAS  PubMed  Google Scholar 

  121. Pignon, J. P., Bourhis, J., Domenge, C. & Designe, L. Chemotherapy added to locoregional treatment for head and neck squamous-cell carcinoma: three meta-analyses of updated individual data. MACH-NC Collaborative Group. Meta-Analysis of Chemotherapy on Head and Neck Cancer. Lancet 355, 949–955 (2000).

    Article  CAS  PubMed  Google Scholar 

  122. Krause, M. et al. EGFR-TK inhibition before radiotherapy reduces tumour volume but does not improve local control: Differential response of cancer stem cells and nontumourigenic cells? Radiother. Oncol. 83, 316–325 (2007).

    Article  CAS  PubMed  Google Scholar 

  123. Baumann, M. et al. Selective inhibition of the epidermal growth factor tyrosine kinase by BIBX1382BS improves growth delay but not local control after fractionated irradiation in human FaDu squamous cell carcinoma in nude mice. Int. J. Radiat. Biol. 79, 1547–559 (2003).

    Google Scholar 

  124. Zips, D. et al. Experimental study on different combination schedules of VEGF-receptor inhibitor PTK787/ZK222584 and fractionated irradiation. Anticancer Res. 23, 3869–3876 (2003).

    CAS  PubMed  Google Scholar 

  125. Zips, D. et al. Impact of adjuvant inhibition of vascular endothelial growth factor receptor tyrosine kinases on tumor growth delay and local tumor control after fractionated irradiation in human squamous cell carcinomas in nude mice. Int. J. Radiat. Oncol. Biol. Phys. 61, 908–914 (2005).

    Article  CAS  PubMed  Google Scholar 

  126. Weppler, S. A. et al. Response of U87 glioma xenografts treated with concurrent rapamycin and fractionated radiotherapy: Possible role for thrombosis. Radiother. Oncol. 82, 96–104 (2007).

    Article  CAS  PubMed  Google Scholar 

  127. Milas, L. et al. In vivo enhancement of tumor radioresponse by C225 antiepidermal growth factor receptor antibody. Clin. Cancer Res. 6, 701–708 (2000).

    CAS  PubMed  Google Scholar 

  128. Nasu, S., Ang, K. K., Fan, Z. & Milas, L. C225 antiepidermal growth factor receptor antibody enhances tumor radiocurability. Int. J. Radiat. Oncol. Biol. Phys. 51, 474–477 (2001).

    Article  CAS  PubMed  Google Scholar 

  129. Krause, M. et al. Different classes of EGFR inhibitors may have different potential to improve local tumour control after fractionated irradiation: a study on C225 in FaDu hSCC. Radiother. Oncol. 74, 109–115 (2005).

    Article  CAS  PubMed  Google Scholar 

  130. Kozin, S. V. et al. Vascular endothelial growth factor receptor-2-blocking antibody potentiates radiation-induced long-term control of human tumor xenografts. Cancer Res. 61, 39–44 (2001).

    CAS  PubMed  Google Scholar 

  131. Bayer, C. et al. PAI-1 levels predict response to fractionated irradiation in 10 human squamous cell carcinoma lines of the head and neck. Radiother. Oncol. 86, 361–368 (2008).

    Article  CAS  PubMed  Google Scholar 

  132. Schutze, C. et al. Effect of increase of radiation dose on local control relates to pre-treatment FDG uptake in FaDu tumours in nude mice. Radiother. Oncol. 83, 311–315 (2007).

    Article  CAS  PubMed  Google Scholar 

  133. Suit, H. D., Sedlacek, R. & Thames, H. D. in Rodent tumor models in experimental cancer therapy (ed. Kallman, R. F.) 138–148 (Pergamon Press, New York, 1987).

    Google Scholar 

Download references

Acknowledgements

This work was supported in part by the Deutsche Forschungsgemeinschaft (Ba 1433) and by the National Cancer Institute of Canada with funds raised by the Tery Fox Run (15004). The authors wish to thank H.D. Thames, Houston, Texas, USA for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Baumann.

Related links

Related links

DATABASES

National Cancer Institute

breast cancer

chronic myeloid leukaemia

glioblastoma

FURTHER INFORMATION

M. Baumann's homepage

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baumann, M., Krause, M. & Hill, R. Exploring the role of cancer stem cells in radioresistance. Nat Rev Cancer 8, 545–554 (2008). https://doi.org/10.1038/nrc2419

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc2419

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing