Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Models, mechanisms and clinical evidence for cancer dormancy

Key Points

  • In the clinic, tumour dormancy is observed in local recurrences or metastases. It usually refers to the time after treatment that a patient is asymptomatic but still carries local remnant or disseminated tumour cells that do not grow into overt lesions.

  • Tumour dormancy ensues when cancer cell proliferation is counteracted by other mechanisms such as apoptosis because of impaired vascularization or immunosurveillance, and cellular dormancy ensues when the cancer cells enter a growth arrest.

  • Cancer dormancy is a relevant problem because the majority of solid tumours and haematological malignancies undergo a period of dormancy that is characterized by years to decades of minimal residual disease. Because metastases always arise from disseminated tumour cells it is of importance to understand the biology of dormant tumour cells.

  • Several mechanisms can explain cancer dormancy. These include the disruption of crosstalk between growth factor and adhesion signalling, which prevents tumour cells from interpreting their microenvironment, leading to cellular tumour dormancy through a G0–G1 arrest or 'differentiation'; the inability of a tumour cell population to recruit blood vessels despite active proliferation; and immunosurveillance, which can prevent residual tumour cell expansion.

  • The expression of genes that selectively suppress metastases might function by inducing dormancy. In addition, quiescent tumour 'stem' cells might be dormant tumour cells. Finally, dormant tumour cells seem to have active drug resistance mechanisms that might protect them from therapy.

  • The therapeutic opportunities that emerge from understanding dormancy include the possibility of inducing and/or maintaining the dormancy of tumour cells and inducing cell death in residual dormant cells by targeting their survival and drug-resistance mechanisms.

  • Studies of cancer dormancy might help determine whether a patient has dormant disease and what type of mechanism is active. These studies will be instrumental in identifying biomarkers of dormant cancer.

Abstract

Patients with cancer can develop recurrent metastatic disease with latency periods that range from years even to decades. This pause can be explained by cancer dormancy, a stage in cancer progression in which residual disease is present but remains asymptomatic. Cancer dormancy is poorly understood, resulting in major shortcomings in our understanding of the full complexity of the disease. Here, I review experimental and clinical evidence that supports the existence of various mechanisms of cancer dormancy including angiogenic dormancy, cellular dormancy (G0–G1 arrest) and immunosurveillance. The advances in this field provide an emerging picture of how cancer dormancy can ensue and how it could be therapeutically targeted.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Tumour dormancy as a component of cancer progression.
Figure 2: Manifestation of cancer dormancy.
Figure 3: Signals that regulate cellular tumour dormancy.
Figure 4: An integrated view of cancer metastasis dormancy.

Similar content being viewed by others

References

  1. Pantel, K. & Brakenhoff, R. H. Dissecting the metastatic cascade. Nature Rev. Cancer 4, 448–456 (2004).

    Article  CAS  Google Scholar 

  2. Schmidt-Kittler, O. et al. From latent disseminated cells to overt metastasis: genetic analysis of systemic breast cancer progression. Proc. Natl Acad. Sci. USA 100, 7737–7742 (2003). First evidence that breast cancer cells can disseminate in a far less progressed genomic state than previously thought. Genomic aberrations that make them metastatic are acquired after this step.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Karrison, T. G., Ferguson, D. J. & Meier, P. Dormancy of mammary carcinoma after mastectomy. J. Natl Cancer Inst. 91, 80–85 (1999).

    Article  CAS  PubMed  Google Scholar 

  4. Pfitzenmaier, J. et al. Telomerase activity in disseminated prostate cancer cells. BJU Int. 97, 1309–1313 (2006).

    Article  PubMed  Google Scholar 

  5. Weckermann, D. et al. Disseminated cytokeratin positive tumor cells in the bone marrow of patients with prostate cancer: detection and prognostic value. J. Urol. 166, 699–703 (2001).

    Article  CAS  PubMed  Google Scholar 

  6. Hanahan, D. & Weinberg, R. A. The hallmarks of cancer. Cell 100, 57–70 (2000).

    Article  CAS  PubMed  Google Scholar 

  7. Talmadge, J. E., Wolman, S. R. & Fidler, I. J. Evidence for the clonal origin of spontaneous metastases. Science 217, 361–363 (1982). First evidence that spontaneous metastases are clonal in origin and that they probably are derived from different progenitor cells.

    Article  CAS  PubMed  Google Scholar 

  8. Schardt, J. A. et al. Genomic analysis of single cytokeratin-positive cells from bone marrow reveals early mutational events in breast cancer. Cancer Cell 8, 227–239 (2005). This paper genetically characterized disseminated single breast tumour cells and determined that cells with normal karyotypes can disseminate, suggesting that dissemination might occur very early.

    Article  CAS  PubMed  Google Scholar 

  9. Demicheli, R. Tumour dormancy: findings and hypotheses from clinical research on breast cancer. Semin. Cancer Biol. 11, 297–306 (2001).

    Article  CAS  PubMed  Google Scholar 

  10. Chambers, A. F., Groom, A. C. & MacDonald, I. C. Dissemination and growth of cancer cells in metastatic sites. Nature Rev. Cancer 2, 563–572 (2002).

    Article  CAS  Google Scholar 

  11. Heyn, C. et al. In vivo MRI of cancer cell fate at the single-cell level in a mouse model of breast cancer metastasis to the brain. Magn. Reson. Med. 56, 1001–1010 (2006).

    Article  PubMed  Google Scholar 

  12. Klein, C. A. & Hölzel, D. Systemic cancer progression and tumor dormancy: mathematical models meet single cell genomics. Cell Cycle 5, 1788–1798 (2006).

    Article  CAS  PubMed  Google Scholar 

  13. Lacroix, M. Significance, detection and markers of disseminated breast cancer cells. Endocr. Relat. Cancer 13, 1033–1067 (2006).

    Article  CAS  PubMed  Google Scholar 

  14. Kovacs, A. F., Ghahremani, M. T., Stefenelli, U. & Bitter, K. Postoperative chemotherapy with cisplatin and 5-fluorouracil in cancer of the oral cavity and the oropharynx--long-term results. J. Chemother. 15, 495–502 (2003).

    CAS  PubMed  Google Scholar 

  15. Boudreau, N. & Bissell, M. J. Extracellular matrix signaling: integration of form and function in normal and malignant cells. Curr. Opin. Cell Biol. 10, 640–646 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Wicha, M. S. Cancer stem cells and metastasis: lethal seeds. Clin. Cancer Res. 12, 5606–5607 (2006).

    Article  PubMed  Google Scholar 

  17. Kaplan, R. N., Rafii, S. & Lyden, D. Preparing the “soil”: the premetastatic niche. Cancer Res. 66, 11089–11093 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Aguirre-Ghiso, J. A., Ossowski, L. & Rosenbaum, S. K. Green fluorescent protein tagging of extracellular signal-regulated kinase and p38 pathways reveals novel dynamics of pathway activation during primary and metastatic growth. Cancer Res. 64, 7336–7345 (2004). Provides evidence that spontaneous or forced downregulation of uPAR induces a state of tumor cell dormancy through decreased ERK signalling and G0–G1 arrest.

    Article  CAS  PubMed  Google Scholar 

  19. Aguirre Ghiso, J. A., Kovalski, K. & Ossowski, L. Tumor dormancy induced by downregulation of urokinase receptor in human carcinoma involves integrin and MAPK signaling. J. Cell Biol. 147, 89–104 (1999).

    Article  CAS  PubMed  Google Scholar 

  20. White, D. E. et al. Targeted disruption of β1-integrin in a transgenic mouse model of human breast cancer reveals an essential role in mammary tumor induction. Cancer Cell 6, 159–170 (2004). Provides evidence that mouse mammary epithelial cells transformed with an oncogene require β1 integrin for tumour progression. Absence of this integrin results in a state of tumour cell dormancy.

    Article  CAS  PubMed  Google Scholar 

  21. Weaver, V. M. et al. Reversion of the malignant phenotype of human breast cells in three-dimensional culture and in vivo by integrin blocking antibodies. J. Cell Biol. 137, 231–245 (1997). Provides evidence that correcting the crosstalk between the tumour cell and the microenvironment can result in loss of malignancy associated with a more differentiated phenotype.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Liu, D., Aguirre Ghiso, J., Estrada, Y. & Ossowski, L. EGFR is a transducer of the urokinase receptor initiated signal that is required for in vivo growth of a human carcinoma. Cancer Cell 1, 445–457 (2002). Shows that loss of uPAR expression causes tumour cell dormancy by impairing EGFR activation by integrins that transduce mitogenic signals from the extracellular matrix molecule fibronectin.

    Article  CAS  PubMed  Google Scholar 

  23. Aguirre Ghiso, J. A. Inhibition of FAK signaling activated by urokinase receptor induces dormancy in human carcinoma cells in vivo. Oncogene 21, 2513–2524 (2002).

    Article  PubMed  Google Scholar 

  24. Aguirre-Ghiso, J. A., Liu, D., Mignatti, A., Kovalski, K. & Ossowski, L. Urokinase receptor and fibronectin regulate the ERK(MAPK) to p38(MAPK) activity ratios that determine carcinoma cell proliferation or dormancy in vivo. Mol. Biol. Cell 12, 863–879 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Aguirre-Ghiso, J. A., Estrada, Y., Liu, D. & Ossowski, L. ERK(MAPK) activity as a determinant of tumor growth and dormancy; regulation by p38(SAPK). Cancer Res. 63, 1684–1695 (2003).

    CAS  PubMed  Google Scholar 

  26. Ranganathan, A. C., Zhang, L., Adam, A. P. & Aguirre-Ghiso, J. A. Functional coupling of p38-induced up-regulation of BiP and activation of RNA-dependent protein kinase-like endoplasmic reticulum kinase to drug resistance of dormant carcinoma cells. Cancer Res. 66, 1702–1711 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Bulavin, D. V. & Fornace, A. J., Jr. p38 MAP kinase's emerging role as a tumor suppressor. Adv. Cancer Res. 92, 95–118 (2004).

    Article  CAS  PubMed  Google Scholar 

  28. Heiss, M. M. et al. Individual development and uPA-receptor expression of disseminated tumour cells in bone marrow: a reference to early systemic disease in solid cancer. Nature Med. 1, 1035–1039 (1995). Shows that patients with tumour relapse had an increase or higher number of disseminated tumour cells in bone marrow aspirates, whereas patients without recurrence had negative or low tumour cell counts. uPAR expression on disseminated tumour cells was correlated with increasing tumour cell counts and poor prognosis.

    Article  CAS  PubMed  Google Scholar 

  29. Gattelli, A. et al. Progression of pregnancy-dependent mouse mammary tumors after long dormancy periods. Involvement of Wnt pathway activation. Cancer Res. 64, 5193–5199 (2004).

    Article  CAS  PubMed  Google Scholar 

  30. Gattelli, A., Zimberlin, M. N., Meiss, R. P., Castilla, L. H. & Kordon, E. C. Selection of early-occurring mutations dictates hormone-independent progression in mouse mammary tumor lines. J. Virol. 80, 11409–11415 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Naumov, G. N. et al. Cellular expression of green fluorescent protein, coupled with high-resolution in vivo videomicroscopy, to monitor steps in tumor metastasis. J. Cell Sci. 112 (Pt 12), 1835–1842 (1999).

    CAS  PubMed  Google Scholar 

  32. Naumov, G. N. et al. Persistence of solitary mammary carcinoma cells in a secondary site: a possible contributor to dormancy. Cancer Res. 62, 2162–2168 (2002). This paper used an experimental model to show that solitary dormant cells that persist in target organs might be the source of dormancy and recurrence.

    CAS  PubMed  Google Scholar 

  33. Steeg, P. S. Metastasis suppressors alter the signal transduction of cancer cells. Nature Rev. Cancer 3, 55–63 (2003).

    Article  CAS  Google Scholar 

  34. Steeg, P. S., Ouatas, T., Halverson, D., Palmieri, D. & Salerno, M. Metastasis suppressor genes: basic biology and potential clinical use. Clin. Breast Cancer 4, 51–62 (2003).

    Article  CAS  PubMed  Google Scholar 

  35. Mehlen, P. & Puisieux, A. Metastasis: a question of life or death. Nature Rev. Cancer 6, 449–458 (2006).

    Article  CAS  Google Scholar 

  36. Bandyopadhyay, S. et al. Interaction of KAI1 on tumor cells with DARC on vascular endothelium leads to metastasis suppression. Nature Med. 12, 933–938 (2006).

    Article  CAS  PubMed  Google Scholar 

  37. Rinker-Schaeffer, C. W., O'Keefe, J. P., Welch, D. R. & Theodorescu, D. Metastasis suppressor proteins: discovery, molecular mechanisms, and clinical application. Clin. Cancer Res. 12, 3882–3889 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Hickson, J. A. et al. The p38 kinases MKK4 and MKK6 suppress metastatic colonization in human ovarian carcinoma. Cancer Res. 66, 2264–2270 (2006).

    Article  CAS  PubMed  Google Scholar 

  39. Kauffman, E. C., Robinson, V. L., Stadler, W. M., Sokoloff, M. H. & Rinker-Schaeffer, C. W. Metastasis suppression: the evolving role of metastasis suppressor genes for regulating cancer cell growth at the secondary site. J. Urol. 169, 1122–1133 (2003).

    Article  PubMed  Google Scholar 

  40. Nash, K. T. et al. Requirement of KISS1 secretion for multiple organ metastasis suppression and maintenance of tumor dormancy. J. Natl Cancer Inst. 99, 309–321 (2007). First evidence that a metastasis suppressor gene functions though the induction of dormancy.

    Article  CAS  PubMed  Google Scholar 

  41. Vander Griend, D. J. et al. Suppression of metastatic colonization by the context-dependent activation of the c-Jun NH2-terminal kinase kinases JNKK1/MKK4 and MKK7. Cancer Res. 65, 10984–10991 (2005).

    Article  CAS  PubMed  Google Scholar 

  42. Nakayama, K. et al. Homozygous deletion of MKK4 in ovarian serous carcinoma. Cancer Biol. Ther. 5, 630–634 (2006).

    Article  CAS  PubMed  Google Scholar 

  43. Xia, Z., Dickens, M., Raingeaud, J., Davis, R. J. & Greenberg, M. E. Opposing effects of ERK and JNK-p38 MAP kinases on apoptosis. Science 270, 1326–1331 (1995).

    Article  CAS  PubMed  Google Scholar 

  44. Ranganathan, A. C., Adam, A. P., Zhang, L. & Aguirre-Ghiso, J. A. Tumor cell dormancy induced by p38(SAPK) and ER-stress signaling: an adaptive advantage for metastatic cells? Cancer Biol. Ther. 5, 729–735 (2006).

    Article  CAS  PubMed  Google Scholar 

  45. Hunter, K. Host genetics influence tumour metastasis. Nature Rev. Cancer 6, 141–146 (2006).

    Article  CAS  Google Scholar 

  46. Crawford, N. P. et al. Germline polymorphisms in SIPA1 are associated with metastasis and other indicators of poor prognosis in breast cancer. Breast Cancer Res. 8, R16 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Park, Y. G. et al. Sipa1 is a candidate for underlying the metastasis efficiency modifier locus Mtes1. Nature Genet. 37, 1055–1062 (2005). Provides evidence that constitutional genetic polymorphisms in a gene can affect tumour metastasis.

    Article  CAS  PubMed  Google Scholar 

  48. Semenza, G. L. Targeting HIF-1 for cancer therapy. Nature Rev. Cancer 3, 721–732 (2003).

    Article  CAS  Google Scholar 

  49. Folkman, J. Role of angiogenesis in tumor growth and metastasis. Semin. Oncol. 29, 15–18 (2002).

    Article  CAS  PubMed  Google Scholar 

  50. Naumov, G. N., Akslen, L. A. & Folkman, J. Role of angiogenesis in human tumor dormancy: animal models of the angiogenic switch. Cell Cycle 5, 1779–1787 (2006).

    Article  CAS  PubMed  Google Scholar 

  51. Bergers, G. & Benjamin, L. E. Tumorigenesis and the angiogenic switch. Nature Rev. Cancer 3, 401–410 (2003).

    Article  CAS  PubMed  Google Scholar 

  52. Naumov, G. N. et al. A model of human tumor dormancy: an angiogenic switch from the nonangiogenic phenotype. J. Natl Cancer Inst. 98, 316–325 (2006).

    Article  PubMed  Google Scholar 

  53. Watnick, R. S., Cheng, Y. N., Rangarajan, A., Ince, T. A. & Weinberg, R. A. Ras modulates Myc activity to repress thrombospondin-1 expression and increase tumor angiogenesis. Cancer Cell 3, 219–231 (2003).

    Article  CAS  PubMed  Google Scholar 

  54. Volpert, O. V. & Alani, R. M. Wiring the angiogenic switch: Ras, Myc, and Thrombospondin-1. Cancer Cell 3, 199–200 (2003).

    Article  CAS  PubMed  Google Scholar 

  55. Okajima, E. & Thorgeirsson, U. P. Different regulation of vascular endothelial growth factor expression by the ERK and p38 kinase pathways in v-ras, v-raf, and v-myc transformed cells. Biochem. Biophys. Res. Commun. 270, 108–111 (2000).

    Article  CAS  PubMed  Google Scholar 

  56. Guba, M. et al. A primary tumor promotes dormancy of solitary tumor cells before inhibiting angiogenesis. Cancer Res. 61, 5575–5579 (2001).

    CAS  PubMed  Google Scholar 

  57. Giuriato, S. et al. Sustained regression of tumors upon MYC inactivation requires p53 or thrombospondin-1 to reverse the angiogenic switch. Proc. Natl Acad. Sci. USA 103, 16266–16271 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Indraccolo, S. et al. Interruption of tumor dormancy by a transient angiogenic burst within the tumor microenvironment. Proc. Natl Acad. Sci. USA 103, 4216–4221 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Ruegg, C. & Mutter, N. Anti-angiogenic therapies in cancer: achievements and open questions. Bull. Cancer 94, 753–762 (2007).

    CAS  PubMed  Google Scholar 

  60. Holmgren, L., O'Reilly, M. S. & Folkman, J. Dormancy of micrometastases: balanced proliferation and apoptosis in the presence of angiogenesis suppression. Nature Med. 1, 149–153 (1995). Shows in a mouse model that the balance between apoptosis and mitosis caused by lack of vascularization can induce angiogenic dormancy.

    Article  CAS  PubMed  Google Scholar 

  61. Al-Mehdi, A. B. et al. Intravascular origin of metastasis from the proliferation of endothelium-attached tumor cells: a new model for metastasis. Nature Med. 6, 100–102 (2000). Shows in a mouse model that disseminated tumour cells can start growing intravascularly into metastases, bypassing any initial need for blood vessels.

    Article  CAS  PubMed  Google Scholar 

  62. Pantel, K. & Otte, M. Disseminated tumor cells: diagnosis, prognostic relevance, and phenotyping. Recent Results Cancer Res. 158, 14–24 (2001).

    Article  CAS  PubMed  Google Scholar 

  63. Finn, O. J. Human tumor antigens, immunosurveillance, and cancer vaccines. Immunol. Res. 36, 73–82 (2006).

    Article  CAS  PubMed  Google Scholar 

  64. Weinhold, K. J., Miller, D. A. & Wheelock, E. F. The tumor dormant state. Comparison of L5178Y cells used to establish dormancy with those that emerge after its termination. J. Exp. Med. 149, 745–757 (1979).

    Article  CAS  PubMed  Google Scholar 

  65. Zou, W. Immunosuppressive networks in the tumour environment and their therapeutic relevance. Nature Rev. Cancer 5, 263–274 (2005).

    Article  CAS  Google Scholar 

  66. Weinhold, K. J., Goldstein, L. T. & Wheelock, E. F. The tumor dormant state. Quantitation of L5178Y cells and host immune responses during the establishment and course of dormancy in syngeneic DBA/2 mice. J. Exp. Med. 149, 732–744 (1979).

    Article  CAS  PubMed  Google Scholar 

  67. Matsuzawa, A., Takeda, Y., Narita, M. & Ozawa, H. Survival of leukemic cells in a dormant state following cyclophosphamide-induced cure of strongly immunogenic mouse leukemia (DL811). Int. J. Cancer 49, 303–309 (1991).

    Article  CAS  PubMed  Google Scholar 

  68. Rabinovsky, R., Uhr, J. W., Vitetta, E. S. & Yefenof, E. Cancer dormancy: lessons from a B cell lymphoma and adenocarcinoma of the prostate. Adv. Cancer Res. 97, 189–202 (2007).

    Article  CAS  PubMed  Google Scholar 

  69. Farrar, J. D. et al. Cancer dormancy. VII. A regulatory role for CD8+ T cells and IFN-g in establishing and maintaining the tumor-dormant state. J. Immunol. 162, 2842–2849 (1999).

    CAS  PubMed  Google Scholar 

  70. Saudemont, A. & Quesnel, B. In a model of tumor dormancy, long-term persistent leukemic cells have increased B7-H1 and B7.1 expression and resist CTL-mediated lysis. Blood 104, 2124–2133 (2004).

    Article  CAS  PubMed  Google Scholar 

  71. Mahnke, Y. D., Schwendemann, J., Beckhove, P. & Schirrmacher, V. Maintenance of long-term tumour-specific T-cell memory by residual dormant tumour cells. Immunology 115, 325–336 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Feuerer, M. et al. Enrichment of memory T cells and other profound immunological changes in the bone marrow from untreated breast cancer patients. Int. J. Cancer 92, 96–105 (2001).

    Article  CAS  PubMed  Google Scholar 

  73. Muller, M. et al. EblacZ tumor dormancy in bone marrow and lymph nodes: active control of proliferating tumor cells by CD8+ immune T cells. Cancer Res. 58, 5439–5446 (1998).

    CAS  PubMed  Google Scholar 

  74. Willimsky, G. & Blankenstein, T. Sporadic immunogenic tumours avoid destruction by inducing T-cell tolerance. Nature 437, 141–146 (2005).

    Article  CAS  PubMed  Google Scholar 

  75. Marches, R., Scheuermann, R. H. & Uhr, J. Cancer dormancy from mice to man: a review. Cell Cycle 5, 1772–1778 (2006).

    Article  CAS  PubMed  Google Scholar 

  76. Allgayer, H. et al. Urokinase plasminogen activator receptor (uPA-R.): one potential characteristic of metastatic phenotypes in minimal residual tumor disease. Cancer Res. 57, 1394–1399 (1997).

    CAS  PubMed  Google Scholar 

  77. Meng, S. et al. Circulating tumor cells in patients with breast cancer dormancy. Clin. Cancer Res. 10, 8152–8162 (2004). Provides evidence that patients with breast cancer who have been free of disease for 22 years still carry circulating tumour cells in their blood. It is proposed that an occult replicating population is present and sheds cells into the circulation, which eventually die.

    Article  PubMed  Google Scholar 

  78. Balic, M. et al. Most early disseminated cancer cells detected in bone marrow of breast cancer patients have a putative breast cancer stem cell phenotype. Clin. Cancer Res. 12, 5615–5621 (2006).

    Article  CAS  PubMed  Google Scholar 

  79. Riethmuller, G. & Klein, C. A. Early cancer cell dissemination and late metastatic relapse: clinical reflections and biological approaches to the dormancy problem in patients. Semin. Cancer Biol. 11, 307–311 (2001).

    Article  CAS  PubMed  Google Scholar 

  80. Heiss, M. M. et al. Minimal residual disease in gastric cancer: evidence of an independent prognostic relevance of urokinase receptor expression by disseminated tumor cells in the bone marrow. J. Clin. Oncol. 20, 2005–2016 (2002).

    Article  CAS  PubMed  Google Scholar 

  81. Meng, S. et al. uPAR and HER-2 gene status in individual breast cancer cells from blood and tissues. Proc. Natl Acad. Sci. USA 103, 17361–17365 (2006). Provides evidence that circulating tumour cells and tumour tissues from patients with cancer display co-amplification of uPAR and ERBB2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Moody, S. E. et al. Conditional activation of Neu in the mammary epithelium of transgenic mice results in reversible pulmonary metastasis. Cancer Cell 2, 451–461 (2002).

    Article  CAS  PubMed  Google Scholar 

  83. Felsher, D. W. & Bishop, J. M. Reversible tumorigenesis by MYC in hematopoietic lineages. Mol. Cell 4, 199–207 (1999).

    Article  CAS  PubMed  Google Scholar 

  84. Gestl, S. A., Leonard, T. L., Biddle, J. L., Debies, M. T. & Gunther, E. J. Dormant wnt-initiated mammary cancer can participate in reconstituting functional mammary glands. Mol. Cell. Biol. 27, 195–207 (2007).

    Article  CAS  PubMed  Google Scholar 

  85. Chaurasia, P. et al. A region in urokinase plasminogen receptor domain III controlling a functional association with alpha5beta1 integrin and tumor growth. J. Biol. Chem. 281, 14852–14863 (2006).

    Article  CAS  PubMed  Google Scholar 

  86. Hoyer-Hansen, G. et al. Urokinase-catalysed cleavage of the urokinase receptor requires an intact glycolipid anchor. Biochem. J. 358, 673–679 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Shen, Q. et al. Endothelial cells stimulate self-renewal and expand neurogenesis of neural stem cells. Science 304, 1338–1340 (2004).

    Article  CAS  PubMed  Google Scholar 

  88. Tumbar, T. et al. Defining the epithelial stem cell niche in skin. Science 303, 359–363 (2004).

    Article  CAS  PubMed  Google Scholar 

  89. Pelayo, R. et al. Cell cycle quiescence of early lymphoid progenitors in adult bone marrow. Stem Cells 24, 2703–2713 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Talpaz, M. et al. Persistence of dormant leukemic progenitors during interferon-induced remission in chronic myelogenous leukemia. Analysis by polymerase chain reaction of individual colonies. J. Clin. Invest. 94, 1383–1389 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Kitzis, A. et al. Persistence of transcriptionally silent BCR-ABL rearrangements in chronic myeloid leukemia patients in sustained complete cytogenetic remission. Leuk. Lymphoma 42, 933–944 (2001).

    Article  CAS  PubMed  Google Scholar 

  92. Naumov, G. N. et al. Ineffectiveness of doxorubicin treatment on solitary dormant mammary carcinoma cells or late-developing metastases. Breast Cancer Res. Treat. 82, 199–206 (2003). Provides evidence that solitary non-dividing dormant tumour cells are resistant to chemotherapy.

    Article  CAS  PubMed  Google Scholar 

  93. Schmidt, M. et al. Differential roles of p21(Waf1) and p27(Kip1) in modulating chemosensitivity and their possible application in drug discovery studies. Mol. Pharmacol. 60, 900–906 (2001).

    Article  CAS  PubMed  Google Scholar 

  94. Weaver, V. M. et al. beta4 integrin-dependent formation of polarized three-dimensional architecture confers resistance to apoptosis in normal and malignant mammary epithelium. Cancer Cell 2, 205–216 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Fu, Y., Li, J. & Lee, A. S. GRP78/BiP inhibits endoplasmic reticulum BIK and protects human breast cancer cells against estrogen starvation-induced apoptosis. Cancer Res. 67, 3734–3740 (2007).

    Article  CAS  PubMed  Google Scholar 

  96. Lee, E. et al. GRP78 as a novel predictor of responsiveness to chemotherapy in breast cancer. Cancer Res. 66, 7849–7853 (2006).

    Article  CAS  PubMed  Google Scholar 

  97. Pootrakul, L. et al. Expression of stress response protein Grp78 is associated with the development of castration-resistant prostate cancer. Clin. Cancer Res. 12, 5987–5993 (2006).

    Article  CAS  PubMed  Google Scholar 

  98. Scharenberg, C. W., Harkey, M. A. & Torok-Storb, B. The ABCG2 transporter is an efficient Hoechst 33342 efflux pump and is preferentially expressed by immature human hematopoietic progenitors. Blood 99, 507–512 (2002).

    Article  CAS  PubMed  Google Scholar 

  99. Dean, M., Fojo, T. & Bates, S. Tumour stem cells and drug resistance. Nature Rev. Cancer 5, 275–284 (2005).

    Article  CAS  Google Scholar 

  100. Hirschmann-Jax, C. et al. A distinct “side population” of cells with high drug efflux capacity in human tumor cells. Proc. Natl Acad. Sci. USA 101, 14228–14233 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Roepman, P. et al. An expression profile for diagnosis of lymph node metastases from primary head and neck squamous cell carcinomas. Nature Genet. 37, 182–186 (2005).

    Article  CAS  PubMed  Google Scholar 

  102. Weinstein, I. B. Cancer. Addiction to oncogenes — the Achilles heal of cancer. Science 297, 63–64 (2002).

    Article  CAS  PubMed  Google Scholar 

  103. Vessella, R. L., Pantel, K. & Mohla, S. Tumor cell dormancy: an NCI workshop report. Cancer Biol. Ther. 6 (2007).

  104. Beausejour, C. M. et al. Reversal of human cellular senescence: roles of the p53 and p16 pathways. EMBO J. 22, 4212–4222 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Collado, M. & Serrano, M. The power and the promise of oncogene-induced senescence markers. Nature Rev. Cancer 6, 472–476 (2006).

    Article  CAS  Google Scholar 

  106. Xue, W. et al. Senescence and tumour clearance is triggered by p53 restoration in murine liver carcinomas. Nature 445, 656–660 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Sarkisian, C. J. et al. Dose-dependent oncogene-induced senescence in vivo and its evasion during mammary tumorigenesis. Nature Cell Biol. 9, 493–505 (2007).

    Article  CAS  PubMed  Google Scholar 

  108. Roninson, I. B. Tumor cell senescence in cancer treatment. Cancer Res. 63, 2705–2715 (2003).

    CAS  PubMed  Google Scholar 

  109. Zetterberg, A. & Larsson, O. Kinetic analysis of regulatory events in G1 leading to proliferation or quiescence of Swiss 3T3 cells. Proc. Natl Acad. Sci. USA 82, 5365–5369 (1985).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Zhang, J. et al. PTEN maintains haematopoietic stem cells and acts in lineage choice and leukaemia prevention. Nature 441, 518–522 (2006).

    Article  CAS  PubMed  Google Scholar 

  111. Coller, H. A., Sang, L. & Roberts, J. M. A new description of cellular quiescence. PLoS Biol. 4, e83 (2006). A comprehensive gene-profiling analysis of quiescence programmes induced by three different stimuli.

  112. Larsson, O., Zetterberg, A. & Engstrom, W. Cell-cycle-specific induction of quiescence achieved by limited inhibition of protein synthesis: counteractive effect of addition of purified growth factors. J. Cell Sci. 73, 375–387 (1985).

    CAS  PubMed  Google Scholar 

  113. Wang, J. & Kim, S. K. Global analysis of dauer gene expression in Caenorhabditis elegans. Development 130, 1621–1634 (2003).

    Article  CAS  PubMed  Google Scholar 

  114. Koornneef, M., Bentsink, L. & Hilhorst, H. Seed dormancy and germination. Curr. Opin. Plant Biol. 5, 33–36 (2002).

    Article  CAS  PubMed  Google Scholar 

  115. Pinkston, J. M., Garigan, D., Hansen, M. & Kenyon, C. Mutations that increase the life span of C. elegans inhibit tumor growth. Science 313, 971–975 (2006).

    Article  CAS  PubMed  Google Scholar 

  116. Kondo, M. et al. The p38 signal transduction pathway participates in the oxidative stress-mediated translocation of DAF-16 to Caenorhabditis elegans nuclei. Mech. Ageing Dev. 126, 642–647 (2005).

    Article  CAS  PubMed  Google Scholar 

  117. Fukuyama, M., Rougvie, A. E. & Rothman, J. H. C. elegans DAF-18/PTEN mediates nutrient-dependent arrest of cell cycle and growth in the germline. Curr. Biol. 16, 773–779 (2006).

    Article  CAS  PubMed  Google Scholar 

  118. Long, X. et al. TOR deficiency in C. elegans causes developmental arrest and intestinal atrophy by inhibition of mRNA translation. Curr. Biol. 12, 1448–1461 (2002).

    Article  CAS  PubMed  Google Scholar 

  119. Solomon, A. et al. Caenorhabditis elegans OSR-1 regulates behavioral and physiological responses to hyperosmotic environments. Genetics 167, 161–170 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Merlo, L. M., Pepper, J. W., Reid, B. J. & Maley, C. C. Cancer as an evolutionary and ecological process. Nature Rev. Cancer 6, 924–935 (2006).

    Article  CAS  Google Scholar 

  121. Kitano, H. Cancer as a robust system: implications for anticancer therapy. Nature Rev. Cancer 4, 227–235 (2004). Suggests that inducing genuine dormancy (that is, cellular dormancy) is important to prevent the tumour heterogeneity from increasing and limiting robustness of cancer as a system (that is, the ability to maintain stable functioning despite perturbations, such as therapy).

    Article  CAS  Google Scholar 

  122. Viswanathan, M., Kim, S. K., Berdichevsky, A. & Guarente, L. A role for SIR-2.1 regulation of ER stress response genes in determining C. elegans life span. Dev. Cell 9, 605–615 (2005).

    Article  CAS  PubMed  Google Scholar 

  123. Matheu, A. et al. Delayed ageing through damage protection by the Arf/p53 pathway. Nature 448, 375–379 (2007).

    Article  CAS  PubMed  Google Scholar 

  124. Naumov, G. N., MacDonald, I. C., Chambers, A. F. & Groom, A. C. Solitary cancer cells as a possible source of tumour dormancy? Semin. Cancer Biol. 11, 271–276 (2001).

    Article  CAS  PubMed  Google Scholar 

  125. Shachaf, C. M. et al. MYC inactivation uncovers pluripotent differentiation and tumour dormancy in hepatocellular cancer. Nature 431, 1112–1117 (2004).

    Article  CAS  PubMed  Google Scholar 

  126. Dawson, D. W. et al. Pigment epithelium-derived factor: a potent inhibitor of angiogenesis. Science 285, 245–248 (1999).

    Article  CAS  PubMed  Google Scholar 

  127. Kvalheim, G., Naume, B. & Nesland, J. M. Minimal residual disease in breast cancer. Cancer Metastasis Rev. 18, 101–108 (1999).

    Article  CAS  PubMed  Google Scholar 

  128. Merrie, A. E., Yun, K., van Rij, A. M. & McCall, J. L. Detection and significance of minimal residual disease in colorectal cancer. Histol. Histopathol. 14, 561–569 (1999).

    CAS  PubMed  Google Scholar 

  129. Gath, H. J. & Brakenhoff, R. H. Minimal residual disease in head and neck cancer. Cancer Metastasis Rev. 18, 109–126 (1999).

    Article  CAS  PubMed  Google Scholar 

  130. Cheung, I. Y., Feng, Y., Vickers, A., Gerald, W. & Cheung, N. K. Cyclin D1, a novel molecular marker of minimal residual disease, in metastatic neuroblastoma. J. Mol. Diagn. 9, 237–241 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Roberts, W. M. et al. Measurement of residual leukemia during remission in childhood acute lymphoblastic leukemia. N. Engl. J. Med. 336, 317–323 (1997).

    Article  CAS  PubMed  Google Scholar 

  132. Bruggemann, M., Pott, C., Ritgen, M. & Kneba, M. Significance of minimal residual disease in lymphoid malignancies. Acta Haematol. 112, 111–119 (2004).

    Article  PubMed  Google Scholar 

  133. Schwarzenbach, H. et al. Detection of tumor-specific DNA in blood and bone marrow plasma from patients with prostate cancer. Int. J. Cancer 120, 1465–1471 (2007).

    Article  CAS  PubMed  Google Scholar 

  134. Morgan, T. M., Lange, P. H. & Vessella, R. L. Detection and characterization of circulating and disseminated prostate cancer cells. Front. Biosci. 12, 3000–3009 (2007).

    Article  CAS  PubMed  Google Scholar 

  135. Pfitzenmaier, J. et al. The detection and isolation of viable prostate-specific antigen positive epithelial cells by enrichment: a comparison to standard prostate-specific antigen reverse transcriptase polymerase chain reaction and its clinical relevance in prostate cancer. Urol. Oncol. 25, 214–220 (2007).

    Article  CAS  PubMed  Google Scholar 

  136. Kienle, P. & Koch, M. Minimal residual disease in gastrointestinal cancer. Semin. Surg. Oncol. 20, 282–293 (2001).

    Article  CAS  PubMed  Google Scholar 

  137. Max, N. & Keilholz, U. Minimal residual disease in melanoma. Semin. Surg. Oncol. 20, 319–328 (2001).

    Article  CAS  PubMed  Google Scholar 

  138. Blaheta, H. J. et al. Detection of melanoma cells in sentinel lymph nodes, bone marrow and peripheral blood by a reverse transcription-polymerase chain reaction assay in patients with primary cutaneous melanoma: association with Breslow's tumour thickness. Br. J. Dermatol. 145, 195–202 (2001).

    Article  CAS  PubMed  Google Scholar 

  139. Hosch, S. B., Scheunemann, P. & Izbicki, J. R. Minimal residual disease in non-small-cell lung cancer. Semin. Surg. Oncol. 20, 278–281 (2001).

    Article  CAS  PubMed  Google Scholar 

  140. Willeke, F. & Sturm, J. W. Minimal residual disease in soft-tissue sarcomas. Semin. Surg. Oncol. 20, 294–303 (2001).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

I apologize to those authors whose work I could not cite directly because of space constraints. I would like to thank the members of my laboratory and L. Ossowski (Mount Sinai School of Medicine) for stimulating discussions and critical reading of the manuscript. I also thank D. Schewe for discussions and help with the figures. This work is supported by a grant from the Samuel Waxman Cancer Research Foundation Tumour Dormancy Program and the NIH/National Cancer Institute grant CA109182 to J.A.A.G.

Author information

Authors and Affiliations

Authors

Related links

Related links

DATABASES

National Cancer Institute

angiogenesis

colon cancer

gastric cancer

head and neck carcinoma

oral cavity

ovarian cancer

FURTHER INFORMATION

Julio Aguirre-Ghiso's homepage

Metastasis research

Glossary

Disseminated tumour cells

Tumour cells that have physically separated from the primary tumour and spread to other anatomical locations through circulation. In this Review these tumour cells are not yet considered micrometastases as they have not yet expanded to form a small population of cells.

Minimal residual disease

Remnant tumour cells that are left after treatment and that cannot be detected by conventional clinical testing. These cells can persist in the primary site or as disseminated tumour cells in proliferative and/or dormant phases.

Dormant

Applies to cells in a non-dividing state whose physiological functions become paused or quiescent. In several organisms, such as Caenorhabditis elegans, dormant is a synonym for diapause (pause in development). Plant seeds are also dormant during the latency phase before germination.

Tumour mass dormancy

Cancer cell proliferation that is counterbalanced by apoptosis owing to poor vascularization (see angiogenic dormancy) or by an immune response. In this case the cancer cells are never truly inactive, but rather are incapable of expanding beyond a certain number.

Cellular dormancy

When normal cells enter the G0 phase of the cell cycle and have low metabolism. This might apply to cancer cells that enter a G0–G1 arrest. This form of dormancy is clinically asymptomatic, and the tumour cells are truly inactive.

Angiogenic dormancy

Occurs when cancer cell proliferation is counterbalanced by apoptosis owing to poor vascularization. In this case, the cancer cells are incapable of expanding beyond a certain number and although clinically asymptomatic the tumour cells are not truly inactive.

Genetically fit

The concept of evolutionary genetic fitness. Having the appropriate traits and properties to survive and grow in a particular environment.

Immortalization

Cells with genetic alterations that become insensitive to the Hayflick limit (the number of times a normal cell can divide in vitro before dying or entering senescence). Immortalized cells evade senescence and proliferate limitlessly in culture but are unable to form tumours.

Transformation

Cells that have been immortalized but now acquire additional genetic and epigenetic alterations that allow them to form primary tumours.

Micrometastasis

A small group of tumour cells, derived from a disseminated tumour cell, that has grown in secondary organs but is too small to be seen or detected by available methods. These lesions might also be clinically asymptomatic.

Orthotopic

The growth of transplanted cells or tissues in the normal anatomical position and tissue of origin.

Niche

A term borrowed from ecology, it refers to a unique and optimal tissue microenvironment with defined nurturing and positional cues in a given anatomical location that allows a cell or group of cells to survive and function.

Reconstituted basement membrane assays

Assays that take advantage of extracellular matrix gels that are derived from a cancer cell line, or collagen-I gels. Cells embedded in these matrices can recapitulate the tissue organization that is observed in the tissue of origin.

Acinar structures

Sac-like structures that are formed by secretory epithelial cells that have defined apico-basal polarity.

Fibronectin

An extracellular matrix molecule that is a main constituent of normal tissues but is also present in serum. The α5β1 integrin is its most specific receptor (other integrins can also bind it) and it can serve as a survival or mitogenic factor.

CD8+ T lymphocytes

Immune cells from the T-cell lineage specialized in killing target cells (that is, virus-infected cells). These responses are usually mediated by class-I major histocompatibility complexes and cytotoxicity is delivered by a repertoire of molecules that are contained in secretory vesicles.

Neovascularization

The formation of new blood vessels that create new pathways for blood flow during normal tissue development or remodelling, or during pathological conditions such as tumour growth or retinopathy.

Angiogenic switch

When a small tumour mass senses the lack of appropriate blood supply and activates a series of transcriptional programmes that allows them to produce signals that will recruit new blood vessels.

Adaptation

Mechanisms that allow normal or tumour cells to respond to a determined stress with a programme that allows them to correct and survive the imposed stress signals.

Dauer stage

German for 'enduring'. It is an alternative larval stage in which development is arrested in response to environmental or hormonal cues in nematodes such as Caenorhabditis elegans. It allows larvae to survive harsh conditions for long periods until the environment is propitious to resume development.

Unfolded protein response

A cellular response to stress that is unique to the endoplasmic reticulum (ER), and which senses the misfolding of proteins in the ER. It activates a series of pathways that help the cells survive proteotoxicity that is caused by unfolded proteins or activate mechanisms of cell death.

Humoral response

The component of the immure response that is mediated by secreted antibodies.

Anti-idiotypic antibodies

Antibodies that are directed towards the hypervariable regions of an antibody.

Oestrogen starvation

Occurs when cells that are usually dependent on oestrogen for normal cellular functions are deprived of this hormone. This is usually done in cell culture by leaving oestrogen out of the tissue culture medium.

ABC transporters

ATP-dependent protein pumps that extrude numerous compounds from the cell cytoplasm. These can be exogenous molecules such as drugs, or physiological membrane constituents such as cholesterol.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aguirre-Ghiso, J. Models, mechanisms and clinical evidence for cancer dormancy. Nat Rev Cancer 7, 834–846 (2007). https://doi.org/10.1038/nrc2256

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc2256

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing