Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Gastrin — active participant or bystander in gastric carcinogenesis?

Key Points

  • Coordinated activity between somatostatin and gastrin-releasing peptide (GRP) regulates secretion of gastrin from G cells in a negative and positive manner, respectively, to facilitate the release of gastric acid from parietal cells.

  • In transgenic mouse models, hypergastrinaemia contributes to the development of atrophy in the proximal gastric mucosa through the induction of parietal cell apoptosis, leading to the development of gastric adenocarcinoma. This phenomenon has not been confirmed in human gastric cancer.

  • Infection with Helicobacter pylori is associated with increased gastrin levels in serum and components of the bacterium might activate the gastrin promoter directly and indirectly. Conversely, infection with H. pylori reduces somatostatin activity. Furthermore, GRP, somatostatin and gastrin seem to modulate the inflammatory response to the bacterium.

  • Gastrin and GRP have well-documented pro-carcinogenic roles, particularly in animal models, that affect proliferation, angiogenesis and apoptosis, whereas the potential pro-apoptotic signal of somatostatin is lost during carcinogenesis owing to weak expression of somatostatin receptor isoforms.

  • Clinical agonists and antagonists of the three hormones have shown modest activity in patients with gastrointestinal cancer, and rational combinations of these agents might prove to be more clinically beneficial.

Abstract

Gastrin is a pro-proliferative, anti-apoptotic hormone with a central role in acid secretion in the gastric mucosa and a long-standing association with malignant progression in transgenic mouse models. However, its exact role in human gastric malignancy requires further validation. Gastrin expression is tightly regulated by two closely associated hormones, somatostatin and gastrin-releasing peptide, and aspects of their interaction may be deregulated during progression to gastric adenocarcinoma. Furthermore, agonists and antagonists of the receptors for all three hormones have shown modest clinical efficacy against gastric adenocarcinoma, which might provide useful information on the future combined use of these agents.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The macroscopic and microscopic cellular interactions of the human gastric antro-pyloric and corpic/fundic mucosa.
Figure 2: Gastrin-mediated carcinogenic pathways.

Similar content being viewed by others

References

  1. Wiborg, O. et al. Structure of a human gastrin gene. Proc. Natl Acad. Sci. USA 81, 1067–1069 (1984).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Dickinson, C. J., Sawada, M., Guo, Y. J., Finniss, S. & Yamada, T. Specificity of prohormone convertase endoproteolysis of progastrin in AtT-20 cells. J. Clin. Invest. 96, 1425–1431 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Marino, L. R., Takeuchi, T., Dickinson, C. J. & Yamada, T. Expression and post-translational processing of gastrin in heterologous endocrine cells. J. Biol. Chem. 266, 6133–6136 (1991).

    CAS  PubMed  Google Scholar 

  4. Lloyd, K. C. Gut hormones in gastric function. Baillieres Clin. Endocrinol. Metab. 8, 111–136 (1994). This review provides a detailed overview of the interactions between gastrin, somatostatin and GRP on the maintenance of stomach homeostasis.

    Article  CAS  PubMed  Google Scholar 

  5. Soll, A. H. & Grossman, M. I. The interaction of stimulants on the function of isolated canine parietal cells. Philos. Trans. R. Soc. Lond. B 296, 5–15 (1981).

    Article  CAS  Google Scholar 

  6. Obrink, K. J. Histamine and gastric acid secretion. A review. Scand. J. Gastroenterol. Suppl. 180, 4–8 (1991).

    Article  CAS  PubMed  Google Scholar 

  7. Walsh, J. H. Physiology and pathophysiology of gastrin. Mt Sinai J. Med. 59, 117–124 (1992).

    CAS  PubMed  Google Scholar 

  8. Chuang, C. N., Tanner, M., Chen, M. C., Davidson, S. & Soll, A. H. Gastrin induction of histamine release from primary cultures of canine oxyntic mucosal cells. Am. J. Physiol. 263, G460–G465 (1992).

    CAS  PubMed  Google Scholar 

  9. Waldum, H. L. et al. The cellular localization of the cholecystokinin 2 (gastrin) receptor in the stomach. Pharmacol. Toxicol. 91, 359–362 (2002).

    Article  CAS  PubMed  Google Scholar 

  10. Lindstrom, E., Chen, D., Norlen, P., Andersson, K. & Hakanson, R. Control of gastric acid secretion:the gastrin–ECL cell-parietal cell axis. Comp. Biochem. Physiol. 128, 505–514 (2001).

    Article  CAS  Google Scholar 

  11. Komazawa, Y. et al. Tolerance to famotidine and ranitidine treatment after 14 days of administration in healthy subjects without Helicobacter pylori infection. J. Gastroenterol. Hepatol. 18, 678–682 (2003).

    Article  CAS  PubMed  Google Scholar 

  12. Soll, A. H., Amirian, D. A., Thomas, L. P., Reedy, T. J. & Elashoff, J. D. Gastrin receptors on isolated canine parietal cells. J. Clin. Invest. 73, 1434–1447 (1984).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Helander, H. F., Wong, H., Poorkhalkali, N. & Walsh, J. H. Immunohistochemical localization of gastrin/CCK-B receptors in the dog and guinea-pig stomach. Acta Physiol. Scand. 159, 313–320 (1997).

    Article  CAS  PubMed  Google Scholar 

  14. Kopin, A. S. et al. Expression cloning and characterization of the canine parietal cell gastrin receptor. Proc. Natl Acad. Sci. USA 89, 3605–3609 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Cabero, J. L., Li, Z. Q. & Mardh, S. Gastrin potentiates histamine-stimulated aminopyrine accumulation in isolated rat parietal cells. Am. J. Physiol. 261, G621–G627 (1991).

    CAS  PubMed  Google Scholar 

  16. Brenna, E. & Waldum, H. L. Studies of isolated parietal and enterochromaffin-like cells from the rat. Scand. J. Gastroenterol. 26, 1295–1306 (1991).

    Article  CAS  PubMed  Google Scholar 

  17. Kobayashi, T. et al. Abnormal functional and morphological regulation of the gastric mucosa in histamine H2 receptor-deficient mice. J. Clin. Invest. 105, 1741–1749 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Karnik, P. S. & Wolfe, M. M. Somatostatin stimulates gastrin mRNA turnover in dog antral mucosa. J. Biol. Chem. 265, 2550–2555 (1990).

    CAS  PubMed  Google Scholar 

  19. Godley, J. M. & Brand, S. J. Regulation of the gastrin promoter by epidermal growth factor and neuropeptides. Proc. Natl Acad. Sci. USA 86, 3036–3040 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Park, J., Chiba, T. & Yamada, T. Mechanisms for direct inhibition of canine gastric parietal cells by somatostatin. J. Biol. Chem. 262, 14190–14196 (1987).

    CAS  PubMed  Google Scholar 

  21. Prinz, C., Sachs, G., Walsh, J. H., Coy, D. H. & Wu, S. V. The somatostatin receptor subtype on rat enterochromaffinlike cells. Gastroenterology 107, 1067–1074 (1994).

    Article  CAS  PubMed  Google Scholar 

  22. Allen, J. P. et al. Identification of cells expressing somatostatin receptor 2 in the gastrointestinal tract of Sstr2 knockout/lacZ knockin mice. J. Comp. Neurol. 454, 329–340 (2002).

    Article  CAS  PubMed  Google Scholar 

  23. Reeve, J. R. Jr et al. Amino acid sequences of three bombesin-like peptides from canine intestine extracts. J. Biol. Chem. 258, 5582–5588 (1983).

    CAS  PubMed  Google Scholar 

  24. Sugano, K., Park, J., Soll, A. H. & Yamada, T. Stimulation of gastrin release by bombesin and canine gastrin-releasing peptides. Studies with isolated canine G cells in primary culture. J. Clin. Invest. 79, 935–942 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Schubert, M. L., Hightower, J., Coy, D. H. & Makhlouf, G. M. Regulation of acid secretion by bombesin/GRP neurons of the gastric fundus. Am. J. Physiol. 260, G156–G160 (1991).

    CAS  PubMed  Google Scholar 

  26. Hohenberger, P. & Gretschel, S. Gastric cancer. Lancet 362, 305–315 (2003).

    Article  PubMed  Google Scholar 

  27. La Vecchia, C., Negri, E., Franceschi, S. & Gentile, A. Family history and the risk of stomach and colorectal cancer. Cancer 70, 50–55 (1992).

    Article  CAS  PubMed  Google Scholar 

  28. Lauren, P. The two histological main types of gastric carcinoma: diffuse and so-called intestinal-type carcinoma. An attempt at a histo-clinical classification. Acta Pathol. Microbiol. Scand. 64, 31–49 (1965).

    Article  CAS  PubMed  Google Scholar 

  29. Miyaji, H. et al. Helicobacter pylori infection occurs via close contact with infected individuals in early childhood. J. Gastroenterol. Hepatol. 15, 257–262 (2000).

    Article  CAS  PubMed  Google Scholar 

  30. Wang, L. D. et al. Changes in p53 and cyclin D1 protein levels and cell proliferation in different stages of human esophageal and gastric-cardia carcinogenesis. Int. J. Cancer 59, 514–519 (1994).

    Article  CAS  PubMed  Google Scholar 

  31. Takaishi, S. et al. Synergistic inhibitory effects of gastrin and histamine receptor antagonists on Helicobacter-induced gastric cancer. Gastroenterology 128, 1965–1983 (2005).

    Article  CAS  PubMed  Google Scholar 

  32. Delle Fave, G., Capurso, G., Milione, M. & Panzuto, F. Endocrine tumours of the stomach. Best Pract. Res. Clin. Gastroenterol. 19, 659–673 (2005).

    Article  CAS  PubMed  Google Scholar 

  33. Sekikawa, A. et al. REG Iα protein may function as a trophic and/or anti-apoptotic factor in the development of gastric cancer. Gastroenterology 128, 642–653 (2005).

    Article  CAS  PubMed  Google Scholar 

  34. Kazumori, H., Ishihara, S., Fukuda, R. & Kinoshita, Y. Localization of REG receptor in rat fundic mucosa. J. Lab. Clin. Med. 139, 101–108 (2002).

    Article  CAS  PubMed  Google Scholar 

  35. Fukui, H. et al. Regenerating gene protein may mediate gastric mucosal proliferation induced by hypergastrinemia in rats. Gastroenterology 115, 1483–1493 (1998).

    Article  CAS  PubMed  Google Scholar 

  36. Miyaoka, Y. et al. Transgenic overexpression of REG protein caused gastric cell proliferation and differentiation along parietal cell and chief cell lineages. Oncogene 23, 3572–3579 (2004).

    Article  CAS  PubMed  Google Scholar 

  37. Berman, D. M. et al. Widespread requirement for hedgehog ligand stimulation in growth of digestive tract tumours. Nature 425, 846–851 (2003). This study confirmed that the hedgehog pathway is essential for tumour growth through the induction of ligand expression and that this proliferation could be suppressed by the hedgehog pathway antagonist cyclopamine.

    Article  CAS  PubMed  Google Scholar 

  38. Osawa, H. et al. Sonic hedgehog stimulates the proliferation of rat gastric mucosal cells through ERK activation by elevating intracellular calcium concentration. Biochem. Biophys. Res. Commun. 344, 680–687 (2006).

    Article  CAS  PubMed  Google Scholar 

  39. Ma, X. et al. Frequent activation of the hedgehog pathway in advanced gastric adenocarcinomas. Carcinogenesis 26, 1698–1705 (2005).

    Article  CAS  PubMed  Google Scholar 

  40. Zavros, Y. et al. Gastrin-induced pepsinogen regulates sonic hedgehog processing and prevents gastric atrophy. Gastroenterology 130, A17 (2006).

    Article  Google Scholar 

  41. Todisco, A. et al. Molecular mechanisms for the antiapoptotic action of gastrin. Am. J. Physiol. Gastrointest. Liver Physiol. 280, G298–G307 (2001). This paper overviews the signalling pathways through which gastrin can mediate anti-apoptotic activity in cancer.

    Article  CAS  PubMed  Google Scholar 

  42. Todisco, A. et al. Functional role of protein kinase B/AKT in gastric acid secretion. J. Biol. Chem. 276, 46436–46444 (2001).

    Article  CAS  PubMed  Google Scholar 

  43. Riobo, N. A., Lu, K., Ai, X., Haines, G. M. & Emerson, C. P. Jr. Phosphoinositide 3-kinase and AKT are essential for sonic hedgehog signaling. Proc. Natl Acad. Sci. USA 103, 4505–4510 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Stepan, V. et al. Regulation and function of the sonic hedgehog signal transduction pathway in isolated gastric parietal cells. J. Biol. Chem. 280, 15700–15708 (2005).

    Article  CAS  PubMed  Google Scholar 

  45. Dimmler, A. et al. Transcription of sonic hedgehog, a potential factor for gastric morphogenesis and gastric mucosa maintenance, is up-regulated in acidic conditions. Lab. Invest. 83, 1829–1837 (2003).

    Article  CAS  PubMed  Google Scholar 

  46. Wang, T. C. et al. Synergistic interaction between hypergastrinemia and Helicobacter infection in a mouse model of gastric cancer. Gastroenterology 118, 36–47 (2000). This is a milestone publication highlighting that Helicobacter infection and hypergastrinaemia interact during the development of gastric cancer.

    Article  CAS  PubMed  Google Scholar 

  47. Zavros, Y. et al. Chronic gastritis in the hypochlorhydric gastrin-deficient mouse progresses to adenocarcinoma. Oncogene 24, 2354–2366 (2005).

    Article  CAS  PubMed  Google Scholar 

  48. Helicobacter & Cancer Group. Gastric cancer and Helicobacter pylori: a combined analysis of 12 case control studies nested within prospective cohorts. Gut 49, 347–353 (2001).

  49. Beales, I. et al. Effect of Helicobacter pylori products and recombinant cytokines on gastrin release from cultured canine G cells. Gastroenterology 113, 465–471 (1997). This study was the first to show that H. pylori products might contribute indirectly to hypergastri-naemia through the induction of cytokines that go on to potentiate gastrin release from the G cell.

    Article  CAS  PubMed  Google Scholar 

  50. Suzuki, T. et al. TNF-α and interleukin 1 activate gastrin gene expression via MAPK- and PKC-dependent mechanisms. Am. J. Physiol. Gastrointest. Liver Physiol. 281, G1405–G1412 (2001).

    Article  CAS  PubMed  Google Scholar 

  51. Beales, I. L. Gastrin and interleukin-1β stimulate growth factor secretion from cultured rabbit gastric parietal cells. Life Sci. 75, 2983–2995 (2004).

    Article  CAS  PubMed  Google Scholar 

  52. Dockray, G. J., Varro, A., Dimaline, R. & Wang, T. The gastrins: their production and biological activities. Annu. Rev. Physiol. 63, 119–139 (2001).

    Article  CAS  PubMed  Google Scholar 

  53. Kinoshita, Y. & Ishihara, S. Mechanism of gastric mucosal proliferation induced by gastrin. J. Gastroenterol. Hepatol. 15, D7–D11 (2000).

    Article  CAS  PubMed  Google Scholar 

  54. Zavros, Y. et al. Treatment of Helicobacter gastritis with IL-4 requires somatostatin. Proc. Natl Acad. Sci. USA 100, 12944–12949 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Kao, J. Y. et al. Somatostatin inhibits dendritic cell responsiveness to Helicobacter pylori. Regul. Pept. 134, 23–29 (2006).

    Article  CAS  PubMed  Google Scholar 

  56. Takhar, A., Eremin, O. & Watson, S. A. The role of gastrin in dendritic cell function. Br. J. Surg. 93 (Suppl. 3), A15 (2006).

    Google Scholar 

  57. Makarenkova, V. P. et al. Lung cancer-derived bombesin-like peptides down-regulate the generation and function of human dendritic cells. J. Neuroimmunol. 145, 55–67 (2003).

    Article  CAS  PubMed  Google Scholar 

  58. Rieder, G., Merchant, J. L. & Haas, R. Helicobacter pylori cag-type IV secretion system facilitates corpus colonization to induce precancerous conditions in Mongolian gerbils. Gastroenterology 128, 1229–12242 (2005). This is a milestone paper defining a potential mechanism through which H. pylori can directly activate gastrin gene transcription by the G cell and also might indicate a way through which non-endocrine malignant cells could gain an activated gastrin gene.

    Article  CAS  PubMed  Google Scholar 

  59. Walter, P., Gilmore, R. & Blobel, G. Protein translocation across the endoplasmic reticulum. Cell 38, 5–8 (1984).

    Article  CAS  PubMed  Google Scholar 

  60. Burgess, T. L. & Kelly, R. B. Constitutive and regulated secretion of proteins. Annu. Rev. Cell Biol. 3, 243–293 (1987).

    Article  CAS  PubMed  Google Scholar 

  61. Calam, J., Dockray, G. J., Walker, R., Tracy, H. J. & Owens, D. Molecular forms of gastrin in peptic ulcer: comparison of serum and tissue concentrations of G17 and G34 in gastric and duodenal ulcer subjects. Eur. J. Clin. Invest. 10, 241–247 (1980).

    Article  CAS  PubMed  Google Scholar 

  62. Dickinson, C. J., Daugherty, D., Guo, Y. J., Hughes, P. & Yamada, T. Molecular analysis of dibasic endoproteolytic cleavage signals. J. Biol. Chem. 267, 21795–21801 (1992).

    CAS  PubMed  Google Scholar 

  63. Dickson, J., Grabowska, A., Atherton, J. & Watson, S. A. Role of gastrin in Helicobacter pylori induced HB-EGF gene up-regulation and ectodomain shedding. Gastroenterology 126, A59 (2004).

    Article  Google Scholar 

  64. Dickson, J. H., Atherton, J. & Watson, S. A. Helicobacter pylori may up-regulate gastrin/CCK-2 receptor expression in exposed cells and human gastric mucosa. Gastroenterology 128, W1341 (2005).

    Google Scholar 

  65. Brzozowski, T. et al. Effect of probiotics and triple eradication therapy on the cyclooxygenase (COX)-2 expression, apoptosis, and functional gastric mucosal impairment in Helicobacter pylori-infected Mongolian gerbils. Helicobacter 11, 10–20 (2006).

    Article  CAS  PubMed  Google Scholar 

  66. Piotrowski, J., Skrodzka, D., Slomiany, A. & Slomiany, B. L. Reversal of gastric somatostatin receptor inhibition by Helicobacter pylori lipopolysaccharide with ebrotidine and sulglycotide. Gen. Pharmacol. 28, 705–708 (1997).

    Article  CAS  PubMed  Google Scholar 

  67. Guillermet, J. et al. Somatostatin receptor subtype 2 sensitizes human pancreatic cancer cells to death ligand-induced apoptosis. Proc. Natl Acad. Sci. USA 100, 155–160 (2003).

    Article  CAS  PubMed  Google Scholar 

  68. Beales, I. L. Effect of platelet-activating factor on gastrin release from cultured rabbit G-cells. Dig. Dis. Sci. 46, 301–306 (2001).

    Article  CAS  PubMed  Google Scholar 

  69. Li, H. C., Stoicov, C., Rogers, A. B. & Houghton, J. Stem cells and cancer: evidence for bone marrow stem cells in epithelial cancers. World J. Gastroenterol. 12, 363–371 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Kanda, N. et al. Involvement of cyclooxygenase-2 in gastric mucosal hypertrophy in gastrin transgenic mice. Am. J. Physiol. Gastrointest. Liver Physiol. 290, G519–G527 (2006).

    Article  CAS  PubMed  Google Scholar 

  71. Jensen, R. T. Consequences of long-term proton pump blockade: insights from studies of patients with gastri-nomas. Basic Clin. Pharmacol. Toxicol. 98, 4–19 (2006).

    Article  CAS  PubMed  Google Scholar 

  72. Laine, L., Ahnen, D., McClain, C., Solcia, E. & Walsh, J. H. Review article: potential gastrointestinal effects of long-term acid suppression with proton pump inhibi-tors. Aliment. Pharmacol. Ther. 14, 651–668 (2000).

    Article  CAS  PubMed  Google Scholar 

  73. Mattsson, H. et al. Partial gastric corpectomy results in hypergastrinemia and development of gastric enterochromaffinlike-cell carcinoids in the rat. Gastroenterology 100, 311–319 (1991).

    Article  CAS  PubMed  Google Scholar 

  74. Havu, N. Enterochromaffin-like cell carcinoids of gastric mucosa in rats after life-long inhibition of gastric secretion. Digestion 35, 42–55 (1986).

    Article  PubMed  Google Scholar 

  75. Havu, N., Mattsson, H., Ekman, L. & Carlsson, E. Enterochromaffin-like cell carcinoids in the rat gastric mucosa following long-term administration of ranitidine. Digestion 45, 189–195 (1990).

    Article  CAS  PubMed  Google Scholar 

  76. Hakanson, R. et al. Effects of antrectomy or portacaval shunting on the histamine-storing endocrine-like cells in oxyntic mucosa of rat stomach. A fluorescence histochemical, electron microscopic and chemical study. J. Physiol. 259, 785–800 (1976).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Simonsson, M. et al. Endocrine cells in the human oxyntic mucosa. A histochemical study. Scand. J. Gastroenterol. 23, 1089–1099 (1988).

    Article  CAS  PubMed  Google Scholar 

  78. Varro, A. et al. Processing of the gastrin precursor. Modulation of phosphorylated, sulfated, and amidated products. J. Biol. Chem. 265, 21476–21481 (1990).

    CAS  PubMed  Google Scholar 

  79. Azuma, T., Taggart, R. T. & Walsh, J. H. Effects of bombesin on the release of glycine-extended progastrin (gastrin G) in rat antral tissue culture. Gastroenterology 93, 322–329 (1987).

    Article  CAS  PubMed  Google Scholar 

  80. Huebner, V. D. et al. Purification and structural characterization of progastrin-derived peptides from a human gastrinoma. J. Biol. Chem. 266, 12223–12227 (1991).

    CAS  PubMed  Google Scholar 

  81. Azuma, T. et al. Carboxyl terminal glycine extended progastrin (gastrin-G) in gastric antral mucosa of patients with gastric or duodenal ulcer and in gastrinomas. J. Gastroenterol. Hepatol. 5, 525–529 (1990).

    Article  CAS  PubMed  Google Scholar 

  82. Chen, D. et al. Glycine-extended gastrin synergizes with gastrin-17 to stimulate acid secretion in gastrin deficient mice. Gastroenterology 116, 756–765 (1999).

    Google Scholar 

  83. Kuipers, E. J. et al. Cure of Helicobacter pylori infection in patients with reflux oesophagitis treated with long term omeprazole reverses gastritis without exacerbation of reflux disease: results of a randomised controlled trial. Gut 53, 12–20 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Eissele, R., Brunner, G., Simon, B., Solcia, E. & Arnold, R. Gastric mucosa during treatment with lansoprazole: Helicobacter pylori is a risk factor for argyrophil cell hyperplasia. Gastroenterology 112, 707–717 (1997).

    Article  CAS  PubMed  Google Scholar 

  85. Uemura, N. et al. Helicobacter pylori infection and the development of gastric cancer. N. Engl. J. Med. 345, 784–789 (2001).

    Article  CAS  PubMed  Google Scholar 

  86. Gillen, D. & McColl, K. E. Problems associated with the clinical use of proton pump inhibitors. Pharmacol. Toxicol. 89, 281–286 (2001).

    Article  CAS  PubMed  Google Scholar 

  87. Borch, K., Renvall, H., Liedberg, G. & Andersen, B. N. Relations between circulating gastrin and endocrine cell proliferation in the atrophic gastric fundic mucosa. Scand. J. Gastroenterol. 21, 357–363 (1986).

    Article  CAS  PubMed  Google Scholar 

  88. Solcia, E., Fiocca, R., Villani, L., Luinetti, O. & Capella, C. Hyperplastic, dysplastic, and neoplastic enterochromaffin-like-cell proliferations of the gastric mucosa. Classification and histogenesis. Am. J. Surg. Pathol. 19, S1–S7 (1995).

    Article  PubMed  Google Scholar 

  89. Delle Fave, G. et al. Hypergastrinemia and enterochromaffin-like cell hyperplasia. Yale J. Biol. Med. 71, 291–301 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Fich, A., Talley, N. J., Shorter, R. G. & Phillips, S. F. Zollinger–Ellison syndrome. Relation to Helicobacter pylori-associated chronic gastritis and gastric acid secretion. Dig. Dis. Sci. 36, 10–14 (1991).

    Article  CAS  PubMed  Google Scholar 

  91. Saeed, Z. A. et al. Helicobacter pylori and Zollinger–Ellison syndrome. Dig. Dis. Sci. 36, 15–18 (1991).

    Article  CAS  PubMed  Google Scholar 

  92. Weber, H. C., Venzon, D. J., Jensen, R. T. & Metz, D. C. Studies on the interrelation between Zollinger–Ellison syndrome, Helicobacter pylori, and proton pump inhibitor therapy. Gastroenterology 112, 84–91 (1997).

    Article  CAS  PubMed  Google Scholar 

  93. Hirschowitz, B. I. & Haber, M. M. Helicobacter pylori effects on gastritis, gastrin and enterochromaffin-like cells in Zollinger–Ellison syndrome and non-Zollinger–Ellison syndrome acid hypersecretors treated long-term with lansoprazole. Aliment. Pharmacol. Ther. 15, 87–103 (2001).

    Article  CAS  PubMed  Google Scholar 

  94. Peghini, P. L. et al. Effect of chronic hypergastrinemia on human enterochromaffin-like cells: insights from patients with sporadic gastrinomas. Gastroenterology 123, 68–85 (2002).

    Article  PubMed  Google Scholar 

  95. El-Zimaity, H. M., Ota, H., Graham, D. Y., Akamatsu, T. & Katsuyama, T. Patterns of gastric atrophy in intestinal type gastric carcinoma. Cancer 94, 1428–1436 (2002).

    Article  PubMed  Google Scholar 

  96. Otsuka, T. et al. Coexistence of gastric- and intestinal-type endocrine cells in gastric and intestinal mixed intestinal metaplasia of the human stomach. Pathol. Int. 55, 170–179 (2005).

    Article  PubMed  Google Scholar 

  97. Correa, P. Chronic gastritis: a clinico-pathological classification. Am. J. Gastroenterol. 83, 504–509 (1988).

    CAS  PubMed  Google Scholar 

  98. Henwood, M., Clarke, P. A., Smith, A. M. & Watson, S. A. Expression of gastrin in developing gastric adenocarcinoma. Br. J. Surg. 88, 564–568 (2001).

    Article  CAS  PubMed  Google Scholar 

  99. Watson, S. A., Morris, T. M., Varro, A., Michaeli, D. & Smith, A. M. A comparison of the therapeutic effectiveness of gastrin neutralisation in two human gastric cancer models: relation to endocrine and autocrine/paracrine gastrin mediated growth. Gut 45, 812–817 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Koh, T. J. & Chen, D. Gastrin as a growth factor in the gastrointestinal tract. Regul. Pept. 93, 37–44 (2000).

    Article  CAS  PubMed  Google Scholar 

  101. Hur, K. et al. Expression of gastrin and its receptor in human gastric cancer tissues. J. Cancer Res. Clin. Oncol. 132, 85–91 (2006). This is the most comprehensive study to date examining co-expression of gastrin and the CCK2 receptor on human gastric cancer tissues, including evaluation of their relationship to grade, sex and prognosis.

    Article  CAS  PubMed  Google Scholar 

  102. Merchant, J. L., Du, M. & Todisco, A. SP1 phosphorylation by ERK 2 stimulates DNA binding. Biochem. Biophys. Res. Commun. 254, 454–461 (1999).

    Article  CAS  PubMed  Google Scholar 

  103. Murayama, Y. et al. Localization of heparin-binding epidermal growth factor-like growth factor in human gastric mucosa. Gastroenterology 109, 1051–1059 (1995).

    Article  CAS  PubMed  Google Scholar 

  104. Madtes, D. K., Malden, L. T., Raines, E. W. & Ross, R. Induction of transcription and secretion of TGF-α by activated human monocytes. Chest 99, S79 (1991).

    Article  Google Scholar 

  105. Mortensen, E. R., Marks, P. A., Shiotani, A. & Merchant, J. L. Epidermal growth factor and okadaic acid stimulate SP1 proteolysis. J. Biol. Chem. 272, 16540–16547 (1997).

    Article  CAS  PubMed  Google Scholar 

  106. Todisco, A., Seva, C., Takeuchi, Y., Dickinson, C. J. & Yamada, T. Somatostatin inhibits AP-1 function via multiple protein phosphatases. Am. J. Physiol. 269, G160–G166 (1995).

    CAS  PubMed  Google Scholar 

  107. Bachwich, D., Merchant, J. & Brand, S. J. Identification of a cis-regulatory element mediating somatostatin inhibition of epidermal growth factor-stimulated gastrin gene transcription. Mol. Endocrinol. 6, 1175–1184 (1992).

    CAS  PubMed  Google Scholar 

  108. Merchant, J. L. et al. ZBP-89, a Kruppel-like zinc finger protein, inhibits epidermal growth factor induction of the gastrin promoter. Mol. Cell. Biol. 16, 6644–6653 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Law, G. L. et al. Transcription factor ZBP-89 regulates the activity of the ornithine decarboxylase promoter. J. Biol. Chem. 273, 19955–19964 (1998).

    Article  CAS  PubMed  Google Scholar 

  110. Merchant, J. L., Tucker, T. P. & Zavros, Y. in Gastrin in the New Millennium (eds Merchant, J. L., Buchan, A. M. J. & Wang, T. C.) 55–70 (CURE Foundation, 2004).

    Google Scholar 

  111. Bai, L. & Merchant, J. L. ZBP-89 promotes growth arrest through stabilization of p53. Mol. Cell. Biol. 21, 4670–4683 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Koh, T. J. et al. Gastrin is a target of the β-catenin/TCF-4 growth-signaling pathway in a model of intestinal polyposis. J. Clin. Invest. 106, 533–539 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Zhang, Q. X., Dou, Y. L., Shi, X. Y. & Ding, Y. Expression of somatostatin mRNA in various differentiated types of gastric carcinoma. World J. Gastroenterol. 4, 48–51 (1998).

    Article  PubMed  PubMed Central  Google Scholar 

  114. Patel, O., Shulkes, A. & Baldwin, G. S. Gastrin-releasing peptide and cancer. Biochim. Biophys. Acta 1766, 23–41 (2006).

    CAS  PubMed  Google Scholar 

  115. Hu, C. et al. The effect of somatostatin and SSTR3 on proliferation and apoptosis of gastric cancer cells. Cancer Biol. Ther. 3, 726–730 (2004).

    Article  CAS  PubMed  Google Scholar 

  116. Preston, S. R., Woodhouse, L. F., Jones-Blackett, S., Wyatt, J. I. & Primrose, J. N. High affinity binding sites for gastrin releasing peptide on human gastric cancer and Menetrier's mucosa. Cancer Res. 53, 5090–5092 (1993).

    CAS  PubMed  Google Scholar 

  117. Carroll, R. E., Carroll, R. & Benya, R. V. Characterization of gastrin-releasing peptide receptors aberrantly expressed by non-antral gastric adenocarcinomas. Peptides 20, 229–237 (1999). This paper shows that mutated isoforms of the GRP receptor are expressed by non-antral gastric adenocarcinoma.

    Article  CAS  PubMed  Google Scholar 

  118. Ramamoorthy, S., Stepan, V. & Todisco, A. Intracellular mechanisms mediating the anti-apoptotic action of gastrin. Biochem. Biophys. Res. Commun. 323, 44–48 (2004).

    Article  CAS  PubMed  Google Scholar 

  119. Ogasa, M. et al. Gastrin activates nuclear factor κB (NFκB) through a protein kinase C dependent pathway involving NFκB inducing kinase, inhibitor κB (IκB) kinase, and tumour necrosis factor receptor associated factor 6 (TRAF6) in MKN-28 cells transfected with gastrin receptor. Gut 52, 813–819 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Harris, J. C., Clarke, P. A., Awan, A., Jankowski, J. & Watson, S. A. An antiapoptotic role for gastrin and the gastrin/CCK-2 receptor in Barrett's esophagus. Cancer Res. 64, 1915–1919 (2004).

    Article  CAS  PubMed  Google Scholar 

  121. Harris, J. C., Clarke, P. & Watson, S. A. Gastrin mediated XIAP up-regulation and associated cisplatin resistance in the pre-malignant and malignant oesophagus. Gastroenterology 128 (Suppl. 3), A42 (2005).

    Google Scholar 

  122. Mao, J. D. et al. Correlation between expression of gastrin, somatostatin and cell apoptosis regulation gene BCL-2/BAX in large intestine carcinoma. World J. Gastroenterol. 11, 721–725 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Ferjoux, G. et al. Signal transduction of somatostatin receptors negatively controlling cell proliferation. J. Physiol. Paris 94, 205–210 (2000). This study defines how somatostatin receptor subtypes can mediate distinct signal-transduction pathways that inhibit proliferation, induce cell-cycle arrest and promote angiogenesis.

    Article  CAS  PubMed  Google Scholar 

  124. Sharma, K., Patel, Y. C. & Srikant, C. B. Subtype-selective induction of wild-type p53 and apoptosis, but not cell cycle arrest, by human somatostatin receptor 3. Mol. Endocrinol. 10, 1688–1696 (1996).

    CAS  PubMed  Google Scholar 

  125. Theodoropoulou, M. et al. Octreotide, a somatostatin analogue, mediates its antiproliferative action in pituitary tumor cells by altering phosphatidylinositol 3-kinase signaling and inducing Zac1 expression. Cancer Res. 66, 1576–1582 (2006).

    Article  CAS  PubMed  Google Scholar 

  126. Qiao, J., Kang, J., Cree, J., Evers, B. M. & Chung, D. H. Gastrin-releasing peptide-induced down-regulation of tumor suppressor protein PTEN (phosphatase and tensin homolog deleted on chromosome ten) in neuro-blastomas. Ann. Surg. 241, 684–691; discussion 691–692 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  127. Kinoshita, Y., Ishihara, S., Kadowaki, Y., Fukui, H. & Chiba, T. REG protein is a unique growth factor of gastric mucosal cells. J. Gastroenterol. 39, 507–513 (2004).

    Article  CAS  PubMed  Google Scholar 

  128. Fukui, H. et al. Effects of Helicobacter pylori infection on the link between regenerating gene expression and serum gastrin levels in Mongolian gerbils. Lab. Invest. 83, 1777–1786 (2003).

    Article  CAS  PubMed  Google Scholar 

  129. Pradeep, A. et al. Gastrin-mediated activation of cyclin D1 transcription involves β-catenin and CREB pathways in gastric cancer cells. Oncogene 23, 3689–3699 (2004).

    Article  CAS  PubMed  Google Scholar 

  130. Song, D. H. et al. Gastrin stabilises β-catenin protein in mouse colorectal cancer cells. Br. J. Cancer 92, 1581–1587 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Franco, A. T. et al. Activation of β-catenin by carcino-genic Helicobacter pylori. Proc. Natl Acad. Sci. USA 102, 10646–10651 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Wu, P. et al. Correlation between the expressions of gastrin, somatostatin and cyclin and cyclin-depend kinase in colorectal cancer. World J. Gastroenterol. 11, 7211–7217 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Xiao, D., Chinnappan, D., Pestell, R., Albanese, C. & Weber, H. C. Bombesin regulates cyclin D1 expression through the early growth response protein EGR-1 in prostate cancer cells. Cancer Res. 65, 9934–9942 (2005).

    Article  CAS  PubMed  Google Scholar 

  134. Tsutsui, S. et al. Induction of heparin binding epidermal growth factor-like growth factor and amphiregulin mRNAs by gastrin in the rat stomach. Biochem. Biophys. Res. Commun. 235, 520–523 (1997).

    Article  CAS  PubMed  Google Scholar 

  135. Miyazaki, Y. et al. Gastrin induces heparin-binding epidermal growth factor-like growth factor in rat gastric epithelial cells transfected with gastrin receptor. Gastroenterology 116, 78–89 (1999).

    Article  CAS  PubMed  Google Scholar 

  136. Tokunaga, A. et al. Clinical significance of epidermal growth factor (EGF), EGF receptor, and c-erbB-2 in human gastric cancer. Cancer 75, 1418–1425 (1995).

    Article  CAS  PubMed  Google Scholar 

  137. Thomas, S. M. et al. Gastrin-releasing peptide receptor mediates activation of the epidermal growth factor receptor in lung cancer cells. Neoplasia 7, 426–431 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Clarke, P. A., Dickson, J. H., Harris, J. C., Grabowska, A. & Watson, S. A. Gastrin enhances the angiogenic potential of endothelial cells via modulation of heparin binding epidermal-like growth factor. Cancer Res. 66, 3504–3512 (2006).

    Article  CAS  PubMed  Google Scholar 

  139. Guo, Y. S. et al. Gastrin stimulates cyclooxygenase-2 expression in intestinal epithelial cells through multiple signaling pathways. Evidence for involvement of ERK5 kinase and transactivation of the epidermal growth factor receptor. J. Biol. Chem. 277, 48755–48763 (2002).

    Article  CAS  PubMed  Google Scholar 

  140. Abdalla, S. I. et al. Gastrin-induced cyclooxygenase-2 expression in Barrett's carcinogenesis. Clin. Cancer Res. 10, 4784–4792 (2004).

    Article  CAS  PubMed  Google Scholar 

  141. Colucci, R. et al. Gastrin promotes human colon cancer cell growth via CCK-2 receptor-mediated cyclooxygenase-2 induction and prostaglandin E2 production. Br. J. Pharmacol. 144, 338–348 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Sun, W. H. et al. Expression of cyclooxygenase-2 and matrix metalloproteinase-9 in gastric carcinoma and its correlation with angiogenesis. Jpn J. Clin. Oncol. 35, 707–713 (2005).

    Article  PubMed  Google Scholar 

  143. Woltering, E. A. Development of targeted somatostatin-based antiangiogenic therapy: a review and future perspectives. Cancer Biother. Radiopharm. 18, 601–609 (2003).

    Article  CAS  PubMed  Google Scholar 

  144. Florio, T. et al. Somatostatin inhibits tumor angiogenesis and growth via somatostatin receptor-3-mediated regulation of endothelial nitric oxide synthase and mitogen-activated protein kinase activities. Endocrinology 144, 1574–1584 (2003).

    Article  CAS  PubMed  Google Scholar 

  145. Reubi, J. C. Peptide receptors as molecular targets for cancer diagnosis and therapy. Endocr. Rev. 24, 389–427 (2003).

    Article  CAS  PubMed  Google Scholar 

  146. Levine, L. et al. Bombesin stimulates nuclear factor κB activation and expression of proangiogenic factors in prostate cancer cells. Cancer Res. 63, 3495–3502 (2003).

    CAS  PubMed  Google Scholar 

  147. Ferrand, A. et al. Involvement of JAK2 upstream of the PI 3-kinase in cell-cell adhesion regulation by gastrin. Exp. Cell Res. 301, 128–138 (2004).

    Article  CAS  PubMed  Google Scholar 

  148. He, H., Pannequin, J., Tantiongco, J. P., Shulkes, A. & Baldwin, G. S. Glycine-extended gastrin stimulates cell proliferation and migration through a Rho- and ROCK-dependent pathway, not a Rac/Cdc42-dependent pathway. Am. J. Physiol. Gastrointest. Liver Physiol. 289, G478–G488 (2005).

    Article  CAS  PubMed  Google Scholar 

  149. Pagliocca, A. et al. Stimulation of the gastrin-cholecystokininB receptor promotes branching morphogenesis in gastric AGS cells. Am. J. Physiol. Gastrointest. Liver Physiol. 283, G292–G299 (2002).

    Article  CAS  PubMed  Google Scholar 

  150. Wroblewski, L. E., Pritchard, D. M., Carter, S. & Varro, A. Gastrin-stimulated gastric epithelial cell invasion: the role and mechanism of increased matrix metalloproteinase 9 expression. Biochem. J. 365, 873–879 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Chau, I. et al. Gastrazole (JB95008), a novel CCK2/gastrin receptor antagonist, in the treatment of advanced pancreatic cancer: results from two randomised controlled trials. Br. J. Cancer 94, 1107–11015 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Watson, S. A. et al. Gastrimmune raises antibodies that neutralize amidated and glycine-extended gastrin-17 and inhibit the growth of colon cancer. Cancer Res. 56, 880–885 (1996).

    CAS  PubMed  Google Scholar 

  153. Gilliam, A. D. et al. A phase II study of G17DT in gastric carcinoma. Eur. J. Sur. Oncol. 30, 536–543 (2004).

    Article  CAS  Google Scholar 

  154. Ajani, J. A. et al. An open-label, multinational, multicenter study of G17DT vaccination combined with cisplatin and 5-fluorouracil in patients with untreated, advanced gastric or gastroesophageal cancer: the GC4 study. Cancer 106, 1908–1916 (2006).

    Article  CAS  PubMed  Google Scholar 

  155. Schwartsmann, G. et al. A phase I trial of the bombesin/gastrin-releasing peptide (BN/GRP) antagonist RC3095 in patients with advanced solid malignancies. Invest. New Drugs 24, 403–412 (2006).

    Article  CAS  PubMed  Google Scholar 

  156. Reubi, J. C., Waser, B., Schaer, J. C. & Laissue, J. A. Somatostatin receptor sst1–sst5 expression in normal and neoplastic human tissues using receptor autoradiography with subtype-selective ligands. Eur. J. Nucl. Med. 28, 836–846 (2001). This remains the most comprehensive assessment of 'functional' somatostatin isoforms expressed by human gastric adenocarcinoma specimens.

    Article  CAS  PubMed  Google Scholar 

  157. Ferrand, A. & Wang, T. C. Gastrin and cancer: a review. Cancer Lett. 238, 15–29 (2005).

    Article  CAS  PubMed  Google Scholar 

  158. Asaka, M., Kudo, M., Kato, M., Sugiyama, T. & Takeda, H. Review article: long-term Helicobacter pylori infection--from gastritis to gastric cancer. Aliment. Pharmacol. Ther. 12, 9–15 (1998).

    Article  PubMed  Google Scholar 

  159. Dimaline, R. & Sandvik, A. K. Histidine decarboxylase gene expression in rat fundus is regulated by gastrin. FEBS Lett. 281, 20–22 (1991).

    Article  CAS  PubMed  Google Scholar 

  160. Fykse, V., Coy, D. H., Waldum, H. L. & Sandvik, A. K. Somatostatin-receptor 2 (sst2)-mediated effects of endogenous somatostatin on exocrine and endocrine secretion of the rat stomach. Br. J. Pharmacol. 144, 416–421 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Bakke, I., Qvigstad, G., Sandvik, A. K. & Waldrum, H. L. The CCK-2 receptor is located on the ECL cell, but not on the parietal cell. Scand. J. Gastroenterol. 11, 1128–1133 (2001).

    Article  Google Scholar 

  162. Nakajima, T. et al. Gastrin stimulates the growth of gastric pit cell precursors by inducing its own receptors. Am. J. Physiol. Gastrointest. Liver Physiol. 282, G359–G366 (2002).

    Article  CAS  PubMed  Google Scholar 

  163. Schmidt, W. E. & Schmitz, F. Cellular localization of cholecystokinin receptors as the molecular basis of the periperal regulation of acid secretion. Pharmacol. Toxicol. 91, 351–358 (2002).

    Article  CAS  PubMed  Google Scholar 

  164. Schmitz, F. et al. CCK-B/gastrin receptors in human colo-rectal cancer. Eur. J. Clin. Invest. 31, 812–820 (2001).

    Article  CAS  PubMed  Google Scholar 

  165. Ito, M. et al. Functional characterization of two cholecystokinin-B/gastrin receptor isoforms: a preferential splice donor site in the human receptor gene. Cell Growth Differ. 5, 1127–1135 (1994).

    CAS  PubMed  Google Scholar 

  166. Zhou, J. et al. Human gastric tissues coexpress two different splicing cholecystokinin-B/gastrin receptors. Sheng Wu Yi Xue Gong Cheng Xue Za Zhi 21, 440–443 (2004).

    CAS  PubMed  Google Scholar 

  167. Miyake, A. A truncated isoform of human CCK-B/gastrin receptor generated by alternative usage of a novel exon. Biochem. Biophys. Res. Commun. 208, 230–237 (1995).

    Article  CAS  PubMed  Google Scholar 

  168. Laghi, L. et al. Frameshift mutations of human gastrin receptor gene (hGARE) in gastrointestinal cancers with microsatellite instability. Lab. Invest. 82, 265–271 (2002).

    Article  CAS  PubMed  Google Scholar 

  169. Gugger, M., Waser, B., Kappeler, A., Schonbrunn, A. & Reubi, J. C. Cellular detection of sst2A receptors in human gastrointestinal tissue. Gut 53, 1431–1436 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. van der Hoek, J., Hofland, L. J. & Lamberts, S. W. Novel subtype specific and universal somatostatin analogues: clinical potential and pitfalls. Curr. Pharm. Des. 11, 1573–1592 (2005).

    Article  CAS  PubMed  Google Scholar 

  171. Panteris, V. & Karamanolis, D. G. The puzzle of somatostatin: action, receptors, analogues and therapy. Hepatogastroenterology 52, 1771–1781 (2005).

    CAS  PubMed  Google Scholar 

  172. Alderton, F., Fan, T. P., Schindler, M. & Humphrey, P. P. Rat somatostatin sst2(a) and sst2(b) receptor isoforms mediate opposite effects on cell proliferation. Br. J. Pharmacol. 125, 1630–1633 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Ohki-Hamazaki, H., Iwabuchi, M. & Maekawa, F. Development and function of bombesin-like peptides and their receptors. Int. J. Dev. Biol. 49, 293–300 (2005).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge J. McClelland from the Academic Unit of Cancer Studies for her input into the diagrams within this article and E. Royal for the personal communication regarding her ongoing studies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susan A. Watson.

Ethics declarations

Competing interests

Susan A. Watson is on the Scientific Advisory Board of Receptor Biologix, who have just purchased the rights to the drug G17DT.

Related links

Related links

DATABASES

Entrez Protein

gastrin

GRP

somatostatin

FURTHER INFORMATION

Wolfson Digestive Diseases Centre

Glossary

Proton pump inhibitors

Agents that block acid secretion in the stomach and are used for the treatment of stomach ulcers.

Enterochromaffin-like cell

A neuroendocrine cell, found in the gastric mucosa, that secretes histamine following hormonal stimulation.

Antro-pyloric mucosa

The lower region of the stomach spanning the antrum and pylorus.

Oxyntic mucosa

The region within the gastric mucosa that contains acid-secreting glands.

Parietal cells

Cells of the gastric mucosa that produce gastric acid in response to histamine, gastrin or stimulation by the vagal nerve.

Fundus

The dome-shaped upper part of the stomach.

Secretagogue

A molecule that stimulates the secretion of gastric or pancreatic peptides.

Lauren classification

A histological method for classifying gastric tumours into intestinal or diffuse type. The intestinal type is characterized by the formation of cohesive gland-like tubular structures, whereas the diffuse type involves infiltration and thickening of the stomach wall by individual cells.

Signet ring

A poorly differentiated diffuse type of gastric cancer in which the nuclei of glandular cells are pushed aside by mucin vacuoles within the cell, giving them the appearance of a signet ring.

Isthmus

The region of the gastric gland between the pit and neck that contains immature progenitor cells.

Corpus

The main body of the stomach.

Zymogenic cell

Also known as chief cells, these secrete pepsinogen and are characterized by spherical zymogen granules. They differentiate as they migrate downwards from the isthmus to the base of the gastric gland.

Explosive exocytosis

The rapid release of the contents of cellular vesicles at the cell surface.

Corpus atrophy

Loss of glandular structure within the corpus mucosa which is possibly accompanied by fibrosis, thinning of the lamina propria and replacement of gastric epithelium by intestinal metaplastic epithelium.

Helicobacter felis

A strain of Helicobacter that was originally isolated from a cat and is also able to colonize mice and dogs.

Pseudo-pyloric gland metaplasia

Gastric metaplasia in which gastric glands disappear and are replaced by tubules that closely resemble normal pyloric glands.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Watson, S., Grabowska, A., El-Zaatari, M. et al. Gastrin — active participant or bystander in gastric carcinogenesis?. Nat Rev Cancer 6, 936–946 (2006). https://doi.org/10.1038/nrc2014

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc2014

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing