Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Drug penetration in solid tumours

Key Points

  • Most studies of tumour resistance to anticancer drugs consider only cellular and/or genetic causes operative at the level of a single cell.

  • Many anticancer drugs have limited distribution from blood vessels in solid tumours, which limits their effectiveness.

  • Large distances between blood vessels in solid tumours, the composition of the extracellular matrix, cell–cell adhesion, high interstitial fluid pressure, lack of convection, drug metabolism and binding contribute to limited drug distribution.

  • New in vitro and in vivo techniques enable quantitative assessment of drug penetration.

  • Several strategies have the potential to improve the distribution of anticancer drugs in tumours, and thereby improve their therapeutic index.

  • Drug development strategies where molecules are designed or libraries screened for optimal drug penetration would aid the development of more effective anticancer drugs.

Abstract

To be most effective anticancer drugs must penetrate tissue efficiently, reaching all the cancer cells that comprise the target population in a concentration sufficient to exert a therapeutic effect. Most research into the resistance of cancers to chemotherapy has concentrated on molecular mechanisms of resistance, whereas the role of limited drug distribution within tumours has been neglected. We summarize the evidence that indicates that the distribution of many anticancer drugs in tumour tissue is incomplete, and we suggest strategies that might be used either to improve drug penetration through tumour tissue or to select compounds based on their abilities to penetrate tissue, thereby increasing the therapeutic index.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Potential reasons why cells distant from blood vessels might be resistant to treatment.
Figure 2: Drug distribution in tissue.
Figure 3: Multicellular models and their use to study drug penetration.
Figure 4: Distribution of doxorubicin in vivo
Figure 5: Tissue mapping of a human colorectal cancer xenograft.

Similar content being viewed by others

References

  1. Tannock, I. F. & Hayashi, S. The proliferation of capillary endothelial cells. Cancer Res. 32, 77–82 (1972).

    CAS  PubMed  Google Scholar 

  2. Denekamp, J. & Hobson, B. Endothelial-cell proliferation in experimental tumours. Br. J. Cancer 46, 711–20 (1982).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Thomlinson, R. H. & Gray, L. H. The histological structure of some human lung cancers and the possible implications for radiotherapy. Br. J. Cancer 9, 539–549 (1955). This landmark article suggested that the hypoxic cells within human tumours were resistant to radiation therapy.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Less, J. L., Skalak, E. M., Sevick, E. M. & Jain, R. K. Micrvascular architecture in a mammary carcinoma: branching patterns and vessel dimensions. Cancer Res. 51, 265–273 (1991).

    CAS  PubMed  Google Scholar 

  5. Brown, J. M. & Giaccia, A. J. The unique physiology of solid tumors: opportunities (and problems) for cancer therapy. Cancer Res. 58, 1408–1416 (1998).

    CAS  PubMed  Google Scholar 

  6. Intaglietta, M., Myers, R. R., Gross, J. F. & Reinhold, H. S. Dynamics of microvascular flow in implanted mouse mammary tumours. Bibl. Anat. 15 Pt 1, 273–276 (1977).

    Google Scholar 

  7. Chaplin, D. J., Olive, P. L. & Durand, R. E. Intermittent blood flow in a murine tumour: Radiobiological effects. Cancer Res. 47, 597–601 (1987). Describes intermittent blood flow in an experimental tumour and suggests a second mechanism by which tumour cells can become hypoxic.

    CAS  PubMed  Google Scholar 

  8. Chaplin, D. J., Trotter, M. J., Durand, R. E., Olive, P. L. & Minchinton, A. I. Evidence for intermittent radiobiological hypoxia in experimental tumour systems. Biomed. Biochim. Acta 48, 255–259 (1989).

    Google Scholar 

  9. Dewhirst, M. W., Braun, R. D. & Lanzen, J. L. Temporal changes in PO2 of R3230AC tumors in Fischer-344 rats. Int J Radiat Oncol Biol Phys 42, 723–726 (1998)

    CAS  PubMed  Google Scholar 

  10. Padera, T. P. et al. Pathology: cancer cells compress intratumour vessels. Nature 427, 695 (2004).

    CAS  PubMed  Google Scholar 

  11. Brown, J. M. & Wilson, W. R. Exploiting tumour hypoxia in cancer treatment. Nature Rev. Cancer 4, 437–447 (2004).

    CAS  Google Scholar 

  12. Leu, A. J., Berk, D. A., Lymboussaki, A., Alitalo, K. & Jain, R. K. Absence of functional lymphatics within a murine sarcoma: a molecular and functional evaluation. Cancer Res. 60, 4324–4327 (2000).

    CAS  PubMed  Google Scholar 

  13. Jain, R. K., Munn, L. L. & Fukumura, D. Dissecting tumour pathophysiology using intravital microscopy. Nature Rev. Cancer 2, 266–276 (2002).

    CAS  Google Scholar 

  14. Jain, R. K. Delivery of molecular and cellular medicine to solid yumors. Microcirculation 4, 1–23 (1997).

    CAS  PubMed  Google Scholar 

  15. Milosevic, M. F. et al. Interstitial fluid pressure in cervical carcinoma: within tumor heterogeneity, and relation to oxygen tension. Cancer 82, 2418–2426 (1998).

    CAS  PubMed  Google Scholar 

  16. Heldin, C. H., Rubin, K., Pietras, K. & Ostman, A. High interstitial fluid pressure — an obstacle in cancer therapy. Nature Rev. Cancer 4, 806–813 (2004). An excellent review of IFP in cancer.

    CAS  Google Scholar 

  17. Netti, P. A., Berk, D. A., Swartz, M. A., Grodzinsky, A. J. & Jain, R. K. Role of extracellular matrix assembly in interstitial transport in solid tumors. Cancer Res. 60, 2497–2503 (2000).

    CAS  PubMed  Google Scholar 

  18. Davies Cde, L., Berk, D. A., Pluen, A. & Jain, R. K. Comparison of IgG diffusion and extracellular matrix composition in rhabdomyosarcomas grown in mice versus in vitro as spheroids reveals the role of host stromal cells. Br. J. Cancer 86, 1639–1644 (2002).

    PubMed  Google Scholar 

  19. Brown, E. et al. Dynamic imaging of collagen and its modulation in tumors in vivo using second-harmonic generation. Nature Med. 9, 796–800 (2003).

    CAS  PubMed  Google Scholar 

  20. Jain, R. K. Barriers to drug delivery in solid tumours. Sci. Amer. 271, 59–65 (1994).

    Google Scholar 

  21. Tannock, I. F. & Rotin, D. Acid pH in tumors and its potential for therapeutic exploitation. Cancer Res. 49, 4373–4384 (1989).

    CAS  PubMed  Google Scholar 

  22. Raghunand, N., Gatenby, R. A. & Gillies, R. J. Microenvironmental and cellular consequences of altered blood flow in tumours. Br. J. Radiol. 76 Spec No. 1, S11–S22 (2003).

    PubMed  Google Scholar 

  23. Gatenby, R. A. & Gillies, R. J. Why do cancers have high aerobic glycolysis? Nature Rev. Cancer 4, 891–899 (2004).

    CAS  Google Scholar 

  24. Moulder, J. E. & Rockwell, S. Tumor hypoxia: its impact on cancer therapy. Cancer Metastasis Rev. 5, 313–341 (1987).

    CAS  PubMed  Google Scholar 

  25. Harris, A. L. Hypoxia — a key regulatory factor in tumour growth. Nature Rev. Cancer 2, 38–47 (2002).

    CAS  Google Scholar 

  26. Dean, M., Fojo, T. & Bates, S. Tumour stem cells and drug resistance. Nature Rev. Cancer 5, 275–284 (2005).

    CAS  Google Scholar 

  27. Tannock, I. F. The relation between cell proliferation and vascular system in a transplanted mouse mammary tumour. Br. J. Cancer 22, 258–273 (1968). A pivotal report on the gradient in cell proliferation kinetics as a function of distance from tumour vasculature.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Hirst, D. G. & Denekamp, J. Tumour cell proliferation in relation to the vasculature. Cell Tissue Kinet. 12, 31–42 (1979).

    CAS  PubMed  Google Scholar 

  29. Tannock, I. Cell kinetics and chemotherapy: a critical review. Cancer Treat. Rep. 62, 1117–1133 (1978).

    CAS  PubMed  Google Scholar 

  30. Brown, J. M. NCI's anticancer drug screening program may not be selecting for clinically active compounds. Oncol. Res. 9, 213–215 (1997).

    CAS  PubMed  Google Scholar 

  31. van der Greef, J. & McBurney, R. N. Innovation: Rescuing drug discovery: in vivo systems pathology and systems pharmacology. Nature Rev. Drug Discov. 4, 961–967 (2005).

    CAS  Google Scholar 

  32. Allen, L., Kimura, K., MacKitchan, J. & Ritschel, W. A. Manual of symbols, equations and definitions in pharmacokinetics. J. Clin. Pharmacol. 22, 1S–23S (1982).

    Google Scholar 

  33. Rentsch, K. M. et al. Pharmacokinetic studies of mitoxantrone and one of its metabolites in serum and urine in patients with advanced breast cancer. Eur. J. Clin. Pharmacol. 54, 83–89 (1998).

    CAS  PubMed  Google Scholar 

  34. Hashizume, H. et al. Openings between defective endothelial cells explain tumor vessel leakiness. Am. J. Pathol. 156, 1363–1380 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Hobbs, S. K. et al. Regulation of transport pathways in tumor vessels: role of tumor type and microenvironment. Proc. Natl Acad. Sci. USA 95, 4607–4612 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Yuan, F. et al. Vascular permeability in a human tumor xenograft: molecular size dependence and cutoff size. Cancer Res. 55, 3752–3756 (1995).

    CAS  PubMed  Google Scholar 

  37. Jain, R. K. Transport of molecules in the tumor interstitium: a review. Cancer Res. 47, 3039–3051 (1987).

    CAS  PubMed  Google Scholar 

  38. Crank, J. The Mathematics of Diffusion (Clarendon Press, Oxford, 1975).

  39. Coley, H. M., Amos, W. B., Twentyman, P. R. & Workman, P. Examination by laser scanning confocal fluorescence imaging microscopy of subcellular localisation of anthracyclines in parent and multidrug resistant cell lines. Br. J. Cancer 67, 1316–1323 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Lee, C. M. & Tannock, I. F. Inhibition of endosomal sequestration of basic anticancer drugs: influence on cytotoxicity and tissue penetration. Br. J. Cancer 94, 863–869 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Sutherland, R. M. & Durand, R. E. Radiation response of multicell spheroids — an in vitro tumour model. Curr. Top. Radiat. Res. Q. 11, 87–139 (1976).

    CAS  PubMed  Google Scholar 

  42. Sutherland, R. M. Cell and environment interactions in tumor microregions: the multicell spheroid model. Science 240, 177–184 (1988).

    CAS  PubMed  Google Scholar 

  43. Durand, R. E. Variable radiobiological responses of spheroids. Radiat. Res. 81, 85–99 (1980).

    CAS  PubMed  Google Scholar 

  44. Sutherland, R. M., Eddy, H. A., Bareham, B., Reich, K. & Vanantwerp, D. Resistance to adriamycin in multicellular spheroids. Int. J. Radiat. Oncol. Biol. Phys. 5, 1225–1230 (1979).

    CAS  PubMed  Google Scholar 

  45. Kerr, D. J. & Kaye, S. B. Aspects of cytotoxic drug penetration, with particular reference to anthracyclines. Cancer Chemother. Pharmacol. 19, 1–5 (1987).

    CAS  PubMed  Google Scholar 

  46. Kerr, D. J., Wheldon, T. E., Hydns, S. & Kaye, S. B. Cytotoxic drug penetration studies in multicellular tumour spheroids. Xenobiotica 18, 641–648 (1988).

    CAS  PubMed  Google Scholar 

  47. Durand, R. E. Slow penetration of anthracyclines into spheroids and tumors: a therapeutic advantage? Cancer Chemother. Pharmacol. 26, 198–204 (1990).

    CAS  PubMed  Google Scholar 

  48. West, G. W., Weichselbaum, R. & Little, J. B. Limited penetration of methotrexate into human osteosarcoma spheroids as a proposed model for solid tumor resistance to adjuvant chemotherapy. Cancer Res. 40, 3665–3668 (1980).

    CAS  PubMed  Google Scholar 

  49. Wibe, E. Resistance to vincristine of human cells grown as multicellular spheroids. Br. J. Cancer 42, 937–941 (1980).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Nederman, T., Carlsson, J. & Malmqvist, M. Penetration of substances into tumor tissue — a methodological study on cellular spheroids. In Vitro 17, 290–298 (1981).

    CAS  PubMed  Google Scholar 

  51. Nederman, T. & Carlsson, J. Penetration and binding of vinblastine and 5-fluorouracil in cellular spheroids. Cancer Chemother. Pharmacol. 13, 131–135 (1984).

    CAS  PubMed  Google Scholar 

  52. Sutherland, R., Buchegger, F., Schreyer, M., Vacca, A. & Mach, J. P. Penetration and binding of radiolabeled anti-carcinoembryonic antigen monoclonal antibodies and their antigen binding fragments in human colon multicellular tumor spheroids. Cancer Res. 47, 1627–1633 (1987).

    CAS  PubMed  Google Scholar 

  53. Mairs, R. J., Angerson, W. J., Babich, J. W. & Murray, T. Differential penetration of targeting agents into multicellular spheroids derived from human neuroblastoma. Prog. Clin. Biol. Res. 366, 495–501 (1991).

    CAS  PubMed  Google Scholar 

  54. Erlanson, M., Daniel-Szolgay, E. & Carlsson, J. Relations between the penetration, binding and average concentration of cytostatic drugs in human tumour spheroids. Cancer Chemother. Pharmacol. 29, 343–353 (1992).

    CAS  PubMed  Google Scholar 

  55. Erlichman, C. & Vidgen, D. Cytotoxicity of adriamycin in MGH-U1 cells grown as monolayer cultures, spheroids, and xenografts in immune-deprived mice. Cancer Res. 44, 5369–5375 (1984).

    CAS  PubMed  Google Scholar 

  56. Durand, R. E. Use of Hoechst 33342 for cell selection from multicell systems. J. Histochem. Cytochem. 30, 117–122 (1982). Description of an important flow cytometry method whereby tumour cells can be sorted from tumours on the basis of their proximity to blood vessels.

    CAS  PubMed  Google Scholar 

  57. Durand, R. E. Chemosensitivity testing in V79 spheroids: drug delivery and cellular microenvironment. J. Natl Cancer Inst. 77, 247–252 (1986).

    CAS  PubMed  Google Scholar 

  58. Olive, P. L. & Durand, R. E. Drug and radiation resistance in spheroids: cell contact and kinetics. Cancer Metastasis Rev. 13, 121–138 (1994).

    CAS  PubMed  Google Scholar 

  59. Oloumi, A., Lam, W., Banath, J. P. & Olive, P. L. Identification of genes differentially expressed in V79 cells grown as multicell spheroids. Int. J. Radiat. Biol. 78, 483–492 (2002).

    CAS  PubMed  Google Scholar 

  60. Teicher, B. A. et al. Tumor resistance to alkylating agents conferred by mechanisms operative only in vivo. Science 247, 1457–1461 (1990).

    CAS  PubMed  Google Scholar 

  61. Kobayashi, H. et al. Acquired multicellular-mediated resistance to alkylating agents in cancer. Proc. Natl Acad. Sci. USA 90, 3294–3298 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Hicks, K. O. et al. An experimental and mathematical model for the extravascular transport of a DNA intercalator in tumours. Br. J. Cancer 76, 894–903 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Minchinton, A. I., Wendt, K. R., Clow, K. A. & Fryer, K. H. Multilayers of cells growing on a permeable support: an in vitro tumour model. Acta Oncologica 36, 13–16 (1997).

    CAS  PubMed  Google Scholar 

  64. Cowan, D. S. M., Hicks, K. O. & Wilson, W. R. Multicellular membranes as an in vitro model for extravascular diffusion in tumours. Br. J. Cancer 74, S28–S31 (1996).

    CAS  Google Scholar 

  65. Hicks, K. O., Fleming, Y., Siim, B. G., Koch, C. J. & Wilson, W. R. Extravascular diffusion of tirapazamine: Effect of metabolic consumption assessed using the multicellular layer model. Int. J. Radiat. Oncol. Biol. Phys. 42, 641–649 (1998).

    CAS  PubMed  Google Scholar 

  66. Tannock, I. F., Lee, C. M., Tunggal, J. K., Cowan, D. S. & Egorin, M. J. Limited penetration of anticancer drugs through tumor tissue: a potential cause of resistance of solid tumors to chemotherapy. Clin. Cancer Res. 8, 878–884. (2002).

    CAS  PubMed  Google Scholar 

  67. Phillips, R. M., Loadman, P. M. & Cronin, B. P. Evaluation of a novel in vitro assay for assessing drug penetration into avascular regions of tumours. Br. J. Cancer 77, 2112–2119 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Tunggal, J. K., Cowan, D. S., Shaikh, H. & Tannock, I. F. Penetration of anticancer drugs through solid tissue: a factor that limits the effectiveness of chemotherapy for solid tumors. Clin. Cancer Res. 5, 1583–1586 (1999).

    CAS  PubMed  Google Scholar 

  69. Kyle, A. H., Huxham, L. A., Chiam, A. S., Sim, D. H. & Minchinton, A. I. Direct assessment of drug penetration into tissue using a novel application of three-dimensional cell culture. Cancer Res. 64, 6304–6309 (2004).

    CAS  PubMed  Google Scholar 

  70. Hicks, K. O., Pruijn, F. B., Baguley, B. C. & Wilson, W. R. Extravascular transport of the DNA intercalator and topoisomerase poison N-[2-(Dimethylamino)ethyl]acridine-4-carboxamide (DACA): diffusion and metabolism in multicellular layers of tumor cells. J. Pharmacol. Exp. Ther. 297, 1088–1098 (2001).

    CAS  PubMed  Google Scholar 

  71. Hicks, K. O., Pruijn, F. B., Sturman, J. R., Denny, W. A. & Wilson, W. R. Multicellular resistance to tirapazamine is due to restricted extravascular transport: a pharmacokinetic/pharmacodynamic study in HT29 multicellular layer cultures. Cancer Res. 63, 5970–5977 (2003).

    CAS  PubMed  Google Scholar 

  72. Kyle, A. & Minchinton, A. I. Measurement of delivery and metabolism of tirapazamine through tumour tissue using the multilayered cell culture model. Cancer Chemother. Pharmacol. 43, 213–220 (1999).

    CAS  PubMed  Google Scholar 

  73. Wilson, W. R. & Hicks, K. O. Measurement of extravascular drug diffusion in multicellular layers. Br. J. Cancer 79, 1623–1626 (1999).

    CAS  PubMed  Google Scholar 

  74. Grantab, R., Sivananthan, S. & Tannock, I. F. The penetration of anticancer drugs through tumor tissue as a function of cellular adhesion and packing density of tumor cells. Cancer Res. 66, 1033–1039 (2006).

    CAS  PubMed  Google Scholar 

  75. Goldacre, R. J. & Sylvén, B. A rapid method for studying tumour blood supply using systemic dyes. Nature 184, 63–64 (1959).

    CAS  PubMed  Google Scholar 

  76. Goldacre, R. J. & Sylvén, B. On the access of blood-borne dyes to various tumour regions. Br. J. Cancer 16, 306–322 (1962). Excellent and comprehensive review of early studies (pre 1960) of tumour vasculature and their relevance to drug delivery.

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Egorin, M. J., Hildebrand, R. C., Cimino, E. F. & Bachur, N. R. Cytofluorescence localisation of adriamycin and daunomycin. Cancer Res. 34, 2243–2245 (1974).

    CAS  PubMed  Google Scholar 

  78. Ozols, R. F. et al. Pharmacokinetics of adriamycin and tissue penetration in murine ovarian cancer. Cancer Res. 39, 3209–3214 (1979).

    CAS  PubMed  Google Scholar 

  79. Henneberry, H. P. & Aherne, G. W. Visualisation of doxorubicin in human and animal tissues and in cell cultures by immunogold-silver staining. Br. J. Cancer 65, 82–86 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Henneberry, H. P., Aherene, G. W. & Marks, V. Immunocytochemical localisation of VP16–213 in normal and malignant tissues. Cancer Lett. 37, 225–233 (1987).

    CAS  PubMed  Google Scholar 

  81. Jain, R. K., Weissbrod, J. M. & Wei, J. Mass transport in tumors: characterization and applications to chemotherapy. Adv. Cancer Res. 33, 251–310 (1980).

    CAS  PubMed  Google Scholar 

  82. Simpson-Herren, L., Noker, P. E. & Wagoner, S. D. Variability of tumor response to chemotherapy. II. Contribution of tumor heterogeneity. Cancer Chemother. Pharmacol. 22, 131–136 (1988).

    CAS  PubMed  Google Scholar 

  83. Simpson-Herren, L. & Noker, P. E. Diversity of penetration of anti-cancer agents into solid tumours. Cell Prolif. 24, 355–365 (1991).

    CAS  PubMed  Google Scholar 

  84. Chaplin, D. J., Durand, R. E. & Olive, P. L. Cell selection from a murine tumour using the fluorescent probe Hoechst 33342. Br. J. Cancer 51, 569–572 (1985).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Gerlowski, L. E. & Jain, R. K. Microvascular permeability of normal and neoplastic tissues. Microvasc. Res. 31, 288–305 (1986).

    CAS  PubMed  Google Scholar 

  86. Dewhirst, M. W. et al. Perivascular oxygen tensions in a transplantable mammary tumor growing in a dorsal flap window chamber. Radiat. Res. 130, 171–182 (1992).

    CAS  PubMed  Google Scholar 

  87. Leunig, M. et al. Angiogenesis, microvascular architecture, microhemodynamics, and interstitial fluid pressure during early growth of human adenocarcinoma LS174T in SCID mice. Cancer Res. 52, 6553–6560 (1992).

    CAS  PubMed  Google Scholar 

  88. Wu, N. Z., Klitzman, B., Rosner, G., Needham, D. & Dewhirst, M. W. Measurement of material extravasation in microvascular networks using fluorescence video-microscopy. Microvasc. Res. 46, 231–253 (1993).

    CAS  PubMed  Google Scholar 

  89. Helmlinger, G., Yuan, F., Dellian, M. & Jain, R. K. Interstitial pH and pO2 gradients in solid tumors in vivo: high-resolution measurements reveal a lack of correlation. Nature Med. 3, 177–182 (1997).

    CAS  PubMed  Google Scholar 

  90. Dreher, M. R. et al. Tumor vascular permeability, accumulation, and penetration of macromolecular drug carriers. J. Natl Cancer Inst. 98, 335–344 (2006).

    CAS  PubMed  Google Scholar 

  91. Brown, E. B. et al. In vivo measurement of gene expression, angiogenesis and physiological function in tumors using multiphoton laser scanning microscopy. Nature Med. 7, 864–868 (2001).

    CAS  PubMed  Google Scholar 

  92. Tong, R. T. et al. Vascular normalization by vascular endothelial growth factor receptor 2 blockade induces a pressure gradient across the vasculature and improves drug penetration in tumors. Cancer Res. 64, 3731–3736 (2004).

    CAS  PubMed  Google Scholar 

  93. Winkler, F. et al. Kinetics of vascular normalization by VEGFR2 blockade governs brain tumor response to radiation: role of oxygenation, angiopoietin-1, and matrix metalloproteinases. Cancer Cell 6, 553–563 (2004).

    CAS  PubMed  Google Scholar 

  94. Willett, C. G. et al. Direct evidence that the VEGF-specific antibody bevacizumab has antivascular effects in human rectal cancer. Nature Med. 10, 145–147 (2004).

    CAS  PubMed  Google Scholar 

  95. Kuh, H. J., Jang, S. H., Wientjes, M. G., Weaver, J. R. & Au, J. L. Determinants of paclitaxel penetration and accumulation in human solid tumor. J. Pharmacol. Exp. Ther. 290, 871–880 (1999).

    CAS  PubMed  Google Scholar 

  96. Jang, S. H., Wientjes, M. G., Lu, D. & Au, J. L. Drug delivery and transport to solid tumors. Pharm. Res. 20, 1337–1350 (2003).

    CAS  PubMed  Google Scholar 

  97. Terheggen, P. M. et al. Immunocytochemical detection of interaction products of cis-diamminedichloroplatinum(II) and cis-diammine(1,1-cyclobutanedicarboxylato)platinum(II) with DNA in rodent tissue sections. Cancer Res. 47, 6719–6725 (1987).

    CAS  PubMed  Google Scholar 

  98. Meijer, C. et al. Immunocytochemical analysis of cisplatin-induced platinum-DNA adducts with double-fluorescence video microscopy. Br. J. Cancer 76, 290–298 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Raleigh, J. A. et al. Hypoxia and vascular endothelial growth factor expression in human squamous cell carcinomas using pimonidazole as a hypoxia marker. Cancer Res. 58, 3765–3768 (1998).

    CAS  PubMed  Google Scholar 

  100. Huxham, L. A., Kyle, A. H., Baker, J. H. E., McNicol, K. L. & Minchinton, A. I. Tirapazamine causes vascular dysfunction in HCT-116 tumour xenografts. Radiother. Oncol. 78, 138–145 (2006).

    CAS  PubMed  Google Scholar 

  101. Lankelma, J. et al. Doxorubicin gradients in human breast cancer. Clin. Cancer Res. 5, 1703–1707 (1999).

    CAS  PubMed  Google Scholar 

  102. Primeau, A. J., Rendon, A., Hedley, D., Lilge, L. & Tannock, I. F. The distribution of the anticancer drug Doxorubicin in relation to blood vessels in solid tumors. Clin. Cancer Res. 11, 8782–8788 (2005).

    CAS  PubMed  Google Scholar 

  103. Koch, C. J., Evans, S. M. & Lord, E. M. Oxygen dependence of cellular uptake of EF5 [2-(2-nitro-1H-imidazol-1-yl)-N-(2, 2, 3, 3, 3-pentafluoropropyl)a cet amide]: analysis of drug adducts by fluorescent antibodies vs bound radioactivity. Br. J. Cancer 72, 869–874 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Huxham, L. A., Kyle, A. H., Baker, J. H., Nykilchuk, L. K. & Minchinton, A. I. Microregional effects of gemcitabine in HCT-116 xenografts. Cancer Res. 64, 6537–6541 (2004).

    CAS  PubMed  Google Scholar 

  105. Wu, L. & Tannock, I. F. Effect of the selective estrogen receptor modulator arzoxifene on repopulation of hormone-responsive breast cancer xenografts between courses of chemotherapy. Clin. Cancer Res. 11, 8195–8200 (2005).

    CAS  PubMed  Google Scholar 

  106. Kyle, A. H., Huxham, L. A., Baker, J. H., Burston, H. E. & Minchinton, A. I. Tumor distribution of bromodeoxyuridine-labeled cells is strongly dose dependent. Cancer Res. 63, 5707–5711 (2003).

    CAS  PubMed  Google Scholar 

  107. Sherar, M. D. Imaging in Oncology. in The Basic Science of oncology (eds Tannock, I. F., Hill, R. P., Bristow, R. G. & Harrington, L.) 249–260 (McGrow-Hill, New York, USA, 2005).

  108. Gambhir, S. S. Molecular imaging of cancer with positron emission tomography. Nature Rev. Cancer 2, 683–693 (2002).

    CAS  Google Scholar 

  109. Durand, R. E. Flow cytometry studies of intracellular adriamycin in multicell spheroids in vitro. Cancer Res. 41, 3495–3498 (1981).

    CAS  PubMed  Google Scholar 

  110. Kim, J. J. & Tannock, I. F. Repopulation of cancer cells during therapy: an important cause of treatment failure. Nature Rev. Cancer 5, 516–525 (2005).

    CAS  Google Scholar 

  111. Brown, J. M. SR 4233 (Tirapazamine): a new anticancer drug exploiting hypoxia in solid tumours. Br. J. Cancer 67, 1163–1170 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Rischin, D. et al. Phase I trial of concurrent tirapazamine, cisplatin, and radiotherapy in patients with advanced head and neck cancer. J. Clin. Oncol. 19, 535–542 (2001).

    CAS  PubMed  Google Scholar 

  113. Rischin, D. et al. Tirapazamine, Cisplatin, and Radiation versus Fluorouracil, Cisplatin, and Radiation in patients with locally advanced head and neck cancer: a randomized phase II trial of the Trans-Tasman Radiation Oncology Group (TROG 98. 02). J. Clin. Oncol. 23, 79–87 (2005).

    CAS  PubMed  Google Scholar 

  114. Hicks, K. O., Siim, B. G., Pruijn, F. B. & Wilson, W. R. Oxygen dependence of the metabolic activation and cytotoxicity of tirapazamine: implications for extravascular transport and activity in tumors. Radiat. Res. 161, 656–666 (2004).

    CAS  PubMed  Google Scholar 

  115. Baxter, L. T., Zhu, H., Mackensen, D. G., Butler, W. F. & Jain, R. K. Biodistribution of monoclonal antibodies: scale-up from mouse to human using a physiologically based pharmacokinetic model. Cancer Res. 55, 4611–4622 (1995).

    CAS  PubMed  Google Scholar 

  116. Piccart-Gebhart, M. J. et al. Trastuzumab after adjuvant chemotherapy in HER2-positive breast cancer. N. Engl. J. Med. 353, 1659–1672 (2005).

    CAS  PubMed  Google Scholar 

  117. Romond, E. H. et al. Trastuzumab plus adjuvant chemotherapy for operable HER2-positive breast cancer. N. Engl. J. Med. 353, 1673–1684 (2005).

    CAS  PubMed  Google Scholar 

  118. Vogel, C. L. et al. Efficacy and safety of trastuzumab as a single agent in first-line treatment of HER2-overexpressing metastatic breast cancer. J. Clin. Oncol. 20, 719–726 (2002).

    CAS  PubMed  Google Scholar 

  119. Izumi, Y., Xu, L., di Tomaso, E., Fukumura, D. & Jain, R. K. Tumour biology: herceptin acts as an anti-angiogenic cocktail. Nature 416, 279–280. (2002).

    CAS  PubMed  Google Scholar 

  120. Pruijn, F. B. et al. Extravascular transport of drugs in tumor tissue: effect of lipophilicity on diffusion of tirapazamine analogues in multicellular layer cultures. J. Med. Chem. 48, 1079–1087 (2005).

    CAS  PubMed  Google Scholar 

  121. Siim, B. G. et al. Hypoxia-selective 3-alkyl-1, 2, 4-benzotriazine 1, 4-dioxide bioreductive drugs: Analogues of tirapazamine with improved in vivo activity. Clin. Cancer Res. 11, 8973s (2005).

    Google Scholar 

  122. Hicks, K. O. et al. Penetration of three dimensional tissue culture predicts in vivo activity of hypoxia-targeted anticancer drugs. J. Natl Cancer. Inst. (in the press)

  123. Minchinton, A. I., Durand, R. E. & Chaplin, D. J. Intermittent blood flow in the KHT sarcoma- flow cytometry studies using Hoechst 33342. Br. J. Cancer 62, 195–200 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Kotelnikov, V. M. et al. In vivo labelling with halogenated pyrimidines of squamous cell carcinomas and adjacent non-involved mucosa of head and neck region. Cell Prolif. 28, 497–509 (1995).

    CAS  PubMed  Google Scholar 

  125. Boucher, Y. & Jain, R. K. Microvascular pressure is the principle driving force for interstitial hypertension in solid tumours: Implications for vascular collapse. Cancer Res. 52, 5110–5114 (1992).

    CAS  PubMed  Google Scholar 

  126. Jain, R. K. Molecular regulation of vessel maturation. Nature Med. 9, 685–693 (2003). A review of vascular structure and architecture within tumours, and a discussion of vessel normalization phenomenon.

    CAS  PubMed  Google Scholar 

  127. Hurwitz, H. et al. Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer. N. Engl. J. Med. 350, 2335–2342 (2004).

    CAS  PubMed  Google Scholar 

  128. Jain, R. K. Normalizing tumor vasculature with anti-angiogenic therapy: a new paradigm for combination therapy. Nature Med. 7, 987–989 (2001).

    CAS  PubMed  Google Scholar 

  129. Franco, M. et al. Targeted anti-vascular endothelial growth factor receptor-2 therapy leads to short-term and long-term impairment of vascular function and increase in tumor hypoxia. Cancer Res. 66, 3639–3648 (2006).

    CAS  PubMed  Google Scholar 

  130. Riesterer, O. et al. Ionizing radiation antagonizes tumor hypoxia induced by antiangiogenic treatment. Clin. Cancer Res. 12, 3518–3524 (2006).

    CAS  PubMed  Google Scholar 

  131. Cowan, D. S. & Tannock, I. F. Factors that influence the penetration of methotrexate through solid tissue. Int. J. Cancer 91, 120–125 (2001).

    CAS  PubMed  Google Scholar 

  132. Tunggal, J. K., Melo, T., Ballinger, J. R. & Tannock, I. F. The influence of expression of P-glycoprotein on the penetration of anticancer drugs through multicellular layers. Int. J. Cancer 86, 101–107 (2000).

    CAS  PubMed  Google Scholar 

  133. Milroy, R. A randomised clinical study of verapamil in addition to combination chemotherapy in small cell lung cancer. West of Scotland Lung Cancer Research Group, and the Aberdeen Oncology Group. Br. J. Cancer 68, 813–818 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Wishart, G. C. et al. Quinidine as a resistance modulator of epirubicin in advanced breast cancer: mature results of a placebo-controlled randomized trial. J. Clin. Oncol. 12, 1771–1777 (1994).

    CAS  PubMed  Google Scholar 

  135. Kerbel, R. S., St Croix, B., Florenes, V. A. & Rak, J. Induction and reversal of cell adhesion-dependent multicellular drug resistance in solid breast tumors. Hum. Cell 9, 257–264 (1996).

    CAS  PubMed  Google Scholar 

  136. St Croix, B., Man, S. & Kerbel, R. S. Reversal of intrinsic and acquired forms of drug resistance by hyaluronidase treatment of solid tumors. Cancer Lett. 131, 35–44 (1998).

    CAS  PubMed  Google Scholar 

  137. Jang, S. H., Wientjes, M. G. & Au, J. L. Enhancement of paclitaxel delivery to solid tumors by apoptosis-inducing pretreatment: effect of treatment schedule. J. Pharmacol. Exp. Ther. 296, 1035–1042 (2001).

    CAS  PubMed  Google Scholar 

  138. Griffon-Etienne, G., Boucher, Y., Brekken, C., Suit, H. D. & Jain, R. K. Taxane-induced apoptosis decompresses blood vessels and lowers interstitial fluid pressure in solid tumors: clinical implications. Cancer Res. 59, 3776–3782 (1999).

    CAS  PubMed  Google Scholar 

  139. McKee, T. D. et al. Degradation of fibrillar collagen in a human melanoma xenograft improves the efficacy of an oncolytic herpes simplex virus vector. Cancer Res. 66, 2509–2513 (2006).

    CAS  PubMed  Google Scholar 

  140. Mayer, L. D., Bally, M. B. & Cullis, P. R. Uptake of adriamycin into large unilamellar vesicles in response to a pH gradient. Biochim. Biophys. Acta 857, 123–126 (1986).

    CAS  PubMed  Google Scholar 

  141. Millot, C., Millot, J. M., Morjani, H., Desplaces, A. & Manfait, M. Characterization of acidic vesicles in multidrug-resistant and sensitive cancer cells by acridine orange staining and confocal microspectrofluorometry. J. Histochem. Cytochem. 45, 1255–1264 (1997).

    CAS  PubMed  Google Scholar 

  142. Poole, B. & Ohkuma, S. Effect of weak bases on the intralysosomal pH in mouse peritoneal macrophages. J. Cell. Biol. 90, 665–669 (1981).

    CAS  PubMed  Google Scholar 

  143. Mattsson, J. P., Vaananen, K., Wallmark, B. & Lorentzon, P. Omeprazole and bafilomycin, two proton pump inhibitors: differentiation of their effects on gastric, kidney and bone H(+)-translocating ATPases. Biochim. Biophys. Acta 1065, 261–268 (1991).

    CAS  PubMed  Google Scholar 

  144. Vail, D. M. et al. Pegylated liposomal doxorubicin: proof of principle using preclinical animal models and pharmacokinetic studies. Semin. Oncol. 31, 16–35 (2004).

    CAS  PubMed  Google Scholar 

  145. Nyman, D. W. et al. Phase I and pharmacokinetics trial of ABI-007, a novel nanoparticle formulation of paclitaxel in patients with advanced nonhematologic malignancies. J. Clin. Oncol. 23, 7785–7793 (2005).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank R. K. Jain and W. R. Wilson for their constructive review of an earlier version of this paper.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Andrew I. Minchinton or Ian F. Tannock.

Ethics declarations

Competing interests

Andrew Minchinton holds a patent, and has a patent pending, for techniques that measure extravascular drug penetration. And holds equity in Cabenda Pharmaceutical Research Ltd, a drug development and research company that measures the tissue penetration of drugs.

Ian Tannock receives research funding from Novacea, for studies of their experimental drug AQ4N.

Related links

Related links

DATABASES

National Cancer Institute

breast cancer

colon cancer

FURTHER INFORMATION

Andrew Minchinton's homepage

Ian Tannock's homepage

Glossary

Interstitial fluid pressure

The hydrostatic pressure within the interstitial fluid of solid tissue. In tumours, disordered vasculature and the absence of functioning lymphatics is associated with increased interstitial fluid pressure compared with normal tissues.

Extracellular matrix

The complex group of molecules that exist in tissue outside cells.

Clonogenic cell

A cell with the ability to generate progeny that will form a colony of a predetermined minimum size when placed under appropriate conditions. Such cells might represent tumour stem cells, which can regenerate a tumour after treatment.

Tumour stem cell

A tumour cell that has the capacity to regenerate the tumour after treatment. Such cells must be eradicated if tumour therapy is to be curative. Stem cells in some tumours can have surface markers that facilitate their identification.

Pharmacokinetics

The time course of drug absorption, distribution, metabolism and excretion within the body.

Volume of distribution

A hypothetical volume calculated by extrapolating the plasma concentration–time curve back to time zero, which represents the volume at which the administered drug seems to have been distributed. Large volumes of distribution imply efficient extravasation, but not necessarily complete distribution in tumour tissue.

Spheroids

Spherical aggregates of tumour cells, grown in tissue culture, which reflect many of the properties of solid tumours. Spheroids have been used for studying the penetration of anticancer drugs into tumour tissue.

Cell contact effect

The growth of tumour cells that are in contact with each other leads to changes in the expression of some genes, and has been shown to influence cellular properties, including response to therapeutic agents, compared with single cells in culture.

Multilayered cell culture

Also called a multicellular layer or a multicellular membrane,anMCC contains tumour cells that grow on a permeable plastic support membrane to form a disc of tissue.MCCsreflect many of the properties of solid tumours, and are used to study the penetration of anticancer drugs through tumour tissue.

Pharmacodynamics

The effects of a drug on the cells and tissues of the body.

Partition coefficient

The ratio of the solubility of a drug in two solvents, usually octanol and water. The logarithm of this number (logP) is commonly used to describe relative hydrophobicity or hydrophilicity.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Minchinton, A., Tannock, I. Drug penetration in solid tumours. Nat Rev Cancer 6, 583–592 (2006). https://doi.org/10.1038/nrc1893

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc1893

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing