Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Timeline
  • Published:

Gefitinib — a novel targeted approach to treating cancer

Abstract

Twenty years after the epidermal growth factor receptor (EGFR) was identified as a potential anticancer target, the EGFR inhibitor gefitinib (Iressa; AstraZeneca) has been approved for the treatment of patients with advanced non-small-cell lung cancer in many countries. Studies have indicated its potential for treating patients with other types of solid tumours. Investigation of gefitinib has not only increased our knowledge about the biology of EGFR signalling, but is contributing to our evolving understanding of which tumours are EGFR dependent.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The epidermal growth factor receptor signalling pathway.
Figure 2: The epidermal growth factor receptor.

References

  1. Hanahan, D. & Weinberg, R. A. The hallmarks of cancer. Cell 100, 57–70 (2000).

    Article  CAS  PubMed  Google Scholar 

  2. Mendelsohn, J. & Baselga, J. Status of epidermal growth factor receptor antagonists in the biology and treatment of cancer J. Clin. Oncol. 21, 2787–2799 (2003).

    Article  CAS  PubMed  Google Scholar 

  3. Cohen, S. Isolation of a mouse submaxillary gland protein accelerating incisor eruption and eyelid opening in the new-born animal. J. Biol. Chem. 237, 1555–1562 (1962).

    CAS  PubMed  Google Scholar 

  4. Cohen, S. & Carpenter, G. Human epidermal growth factor: isolation and chemical and biological properties. Proc. Natl Acad. Sci. USA 72, 1317–1321 (1975).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Gregory, H. Isolation and structure of urogastrone and its relationship to epidermal growth factor. Nature 257, 325–327 (1975).

    Article  CAS  PubMed  Google Scholar 

  6. Cohen, S., Carpenter, G. & King, L. Jr. Epidermal growth factor receptor-kinase interactions: co-purification of receptor and epidermal growth factor-enhanced phosphorylation activity. J. Biol. Chem. 255, 4834–4842 (1980).

    CAS  PubMed  Google Scholar 

  7. Sporn, M. B. & Todaro, G. J. Autocrine secretion and malignant transformation of cells. N. Engl. J. Med. 303, 878–880 (1980).

    Article  CAS  PubMed  Google Scholar 

  8. Cohen, S., Carpenter, G. & King, L. Jr. Epidermal growth factor-receptor-protein kinase interactions. Prog. Clin. Biol. Res. 66, 557–567 (1981).

    PubMed  Google Scholar 

  9. Ozanne, B., Richards, C. S., Hendler, F., Burns, D. & Gusterson, B. Over-expression of the EGF receptor is a hallmark of squamous cell carcinomas. J. Pathol. 149, 9–14 (1986).

    Article  CAS  PubMed  Google Scholar 

  10. Umekita, Y., Ohi, Y., Sagara, Y. & Yoshida, H. Co-expression of epidermal growth factor receptor and transforming growth factor-α predicts worse prognosis in breast-cancer patients. Int. J. Cancer 89, 484–487 (2000).

    Article  CAS  PubMed  Google Scholar 

  11. Mendelsohn, J. Blockade of receptors for growth factors: an anticancer therapy: The Fourth Annual Joseph H. Burchenal American Association for Cancer Research Clinical Research Award Lecture. Clin. Cancer Res. 6, 747–753 (2000).

    CAS  PubMed  Google Scholar 

  12. Gill, G. N. et al. Monoclonal anti-epidermal growth factor receptor antibodies which are inhibitors of epidermal growth factor binding and antagonists of epidermal growth factor-stimulated tyrosine protein kinase activity. J. Biol. Chem. 259, 7755–7760 (1984).

    CAS  PubMed  Google Scholar 

  13. Fan, Z., Masui, H., Atlas, I. & Mendelsohn, J. Blockade of epidermal growth factor receptor function by bivalent and monovalent fragments of 225 anti-epidermal growth factor receptor monoclonal antibodies. Cancer Res. 53, 4322–4328 (1993).

    CAS  PubMed  Google Scholar 

  14. Kawamoto, T. et al. Growth stimulation of A431 cells by epidermal growth factor: identification of high-affinity receptors for epidermal growth factor by an anti-receptor monoclonal antibody. Proc. Natl Acad. Sci. USA 80, 1337–1341 (1983).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Sato, J. D. et al. Biological effects in vitro of monoclonal antibodies to human epidermal growth factor receptors. Mol. Biol. Med. 1, 511–529 (1983).

    CAS  PubMed  Google Scholar 

  16. Goldstein, N. I., Prewett, M., Zuklys, K., Rockwell, P. & Mendelsohn, J. Biological efficacy of a chimeric antibody to the epidermal growth factor receptor in a human tumor xenograft model. Clin. Cancer Res. 1, 1311–1318 (1995).

    CAS  PubMed  Google Scholar 

  17. Divgi, C. R. et al. Phase I and imaging trial of indium 111-labeled anti-epidermal growth factor receptor monoclonal antibody 225 in patients with squamous cell lung carcinoma. J. Natl Cancer Inst. 83, 97–104 (1991).

    Article  CAS  PubMed  Google Scholar 

  18. Baselga, J. et al. Comparative pharmacology in phase I and imaging trails utilising anti-epidermal growth factor receptor (EGFR) monoclonal antibodies (MAbs) labeled with 1311 or 111n. Proc. Am. Soc. Clin. Oncol. 12, 142 (1993).

    Google Scholar 

  19. Brady, L. W. et al. Malignant astrocytomas treated with iodine-125 labeled monoclonal antibody 425 against epidermal growth factor receptor: a phase II trial. Int. J. Radiat. Oncol. Biol. Phys. 22, 225–230 (1992).

    Article  CAS  PubMed  Google Scholar 

  20. Perez-Soler, R. et al. Tumor epidermal growth factor receptor studies in patients with non-small-cell lung cancer or head and neck cancer treated with monoclonal antibody RG 83852. J. Clin. Oncol. 12, 730–739 (1994).

    Article  CAS  PubMed  Google Scholar 

  21. Lynch, T. J. et al. Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. N. Engl. J. Med. 350, 2129–2139 (2004).

    Article  CAS  PubMed  Google Scholar 

  22. Paez, J. G. et al. EGFR mutations in lung cancer: correlation with clinical response to gefitinib therapy. Science 304, 1497–1500 (2004).

    Article  CAS  PubMed  Google Scholar 

  23. Pao, W. et al. EGF receptor gene mutations are common in lung cancers from 'never smokers' and are associated with sensitivity of tumors to gefitinib and erlotinib. Proc. Natl Acad. Sci. USA 101, 13306–13311 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Barker, A. J. et al. Studies leading to the identification of ZD1839 (Iressa™): an orally active, selective epidermal growth factor receptor tyrosine kinase inhibitor targeted to the treatment of cancer. Bioorg. Med. Chem. Lett. 11, 1911–1914 (2001).

    Article  CAS  PubMed  Google Scholar 

  25. Ward, W. H. et al. Epidermal growth factor receptor tyrosine kinase. Investigation of catalytic mechanism, structure-based searching and discovery of a potent inhibitor. Biochem. Pharmacol. 48, 659–666 (1994).

    Article  CAS  PubMed  Google Scholar 

  26. Wakeling, A. E. et al. ZD1839 (Iressa); an orally active inhibitor of epidermal growth factor signalling with potential for cancer therapy. Cancer Res. 62, 5749–5754 (2002).

    CAS  PubMed  Google Scholar 

  27. Ciardiello, F. et al. Antitumor effect and potentiation of cytotoxic drugs activity in human cancer cells by ZD-1839 (Iressa), an epidermal growth factor receptor-selective tyrosine kinase inhibitor. Clin. Cancer Res. 6, 2053–2063 (2000).

    CAS  PubMed  Google Scholar 

  28. Sirotnak, F. M., Zakowski, M. F., Miller, V. A., Scher, H. I. & Kris, M. G. Efficacy of cytotoxic agents against human tumor xenografts is markedly enhanced by coadministration of ZD1839 (Iressa), an inhibitor of EGFR tyrosine kinase. Clin. Cancer Res. 6, 4885–4892 (2000).

    CAS  PubMed  Google Scholar 

  29. Swaisland, H. et al. Pharmacokinetics and tolerability of the orally active selective epidermal growth factor receptor tyrosine kinase inhibitor ZD1839 in healthy volunteers. Clin. Pharmacokinet. 40, 297–306 (2001).

    Article  CAS  PubMed  Google Scholar 

  30. Herbst, R. S. et al. Selective oral epidermal growth factor receptor tyrosine kinase inhibitor ZD1839 is generally well-tolerated and has activity in non-small-cell lung cancer and other solid tumors: results of a phase I trial. J. Clin. Oncol. 20, 3815–3825 (2002).

    Article  CAS  PubMed  Google Scholar 

  31. Ranson, M. et al. ZD1839, a selective oral epidermal growth factor receptor-tyrosine kinase inhibitor, is well tolerated and active in patients with solid, malignant tumors: results of a phase I trial. J. Clin. Oncol. 20, 2240–2250 (2002).

    Article  CAS  PubMed  Google Scholar 

  32. Baselga, J. et al. Phase I safety, pharmacokinetic, and pharmacodynamic trial of ZD1839, a selective oral epidermal growth factor receptor tyrosine kinase inhibitor, in patients with five selected solid tumor types. J. Clin. Oncol. 20, 4292–4302 (2002).

    Article  CAS  PubMed  Google Scholar 

  33. Nakagawa, K. et al. Phase I pharmacokinetic trial of the selective oral epidermal growth factor receptor tyrosine kinase inhibitor gefitinib ('Iressa', ZD1839) in Japanese patients with solid malignant tumours. Ann. Oncol. 14, 922–930 (2003).

    Article  CAS  PubMed  Google Scholar 

  34. Tolcher, A. W., Takimoto, C. H. & Rowinsky, E. K. The multifunctional, multi-institutional, and sometimes even global phase I study: a better life for phase I evaluations or just 'living large'? J. Clin. Oncol. 20, 4276–4278 (2002).

    Article  PubMed  Google Scholar 

  35. Albanell, J. et al. Pharmacodynamic studies of the epidermal growth factor receptor inhibitor ZD1839 in skin from cancer patients: histopathologic and molecular consequences of receptor inhibition. J. Clin. Oncol. 20, 110–124 (2002).

    Article  CAS  PubMed  Google Scholar 

  36. Kris, M. G. et al. Objective regressions in non-small cell lung cancer patients treated in phase I trials of oral ZD1839 ('Iressa'), a selective tyrosine kinase inhibitor that blocks the epidermal growth factor receptor (EGFR). Lung Cancer 29 (Suppl. 1), 72 (2000).

    Article  Google Scholar 

  37. National Cancer Institute. National Cancer Institute Cancer Therapy Evaluation Program: Common Toxicity Criteria Manual: Common Toxicity Criteria version 2 [online], <http://ctep.cancer.gov/forms/CTCManual_v4_10-4-99.pdf> (1999).

  38. Wolf, M., Swaisland, H. & Averbuch, S. Development of the novel biologically targeted anticancer agent gefitinib: determining the optimum dose for clinical efficacy. Clin. Cancer Res. 10, 4607–4613 (2004).

    Article  CAS  PubMed  Google Scholar 

  39. Fukuoka, M. et al. Multi-institutional randomized phase II trial of gefitinib for previously treated patients with advanced non-small-cell lung cancer. J. Clin. Oncol. 21, 2237–2246 (2003).

    Article  CAS  PubMed  Google Scholar 

  40. Kris, M. G. et al. Efficacy of gefitinib, an inhibitor of the epidermal growth factor receptor tyrosine kinase, in symptomatic patients with non-small cell lung cancer. A randomized trial. JAMA 290, 2149–2158 (2003).

    Article  CAS  PubMed  Google Scholar 

  41. Fukuoka, M. et al. Phase II trials of gefitinib ('Iressa', ZD1839): rapid and durable objective responses in patients with advanced non-small-cell lung cancer (IDEAL 1 and IDEAL 2). Lung Cancer 41 (Suppl. 2), 247 (2003).

    Article  Google Scholar 

  42. Cortes-Funes, H. & Soto Parra, H. Extensive experience of disease control with gefitinib and the role of prognostic markers. Br. J. Cancer 89 (Suppl. 2), 3–8 (2003).

    Article  CAS  Google Scholar 

  43. Shepherd, F. A. et al. A randomized placebo-controlled trial of erlotinib in patients with advanced non-small cell lung cancer (NSCLC) following failure of 1st line or 2nd line chemotherapy. A National Cancer Institute of Canada Clinical Trials Group (NCIC CTG) trial. J. Clin. Oncol. 22 (Suppl. 14S), 7022 (2004).

    Article  Google Scholar 

  44. Ochs, J., Grous, J. & Warner, K. Final survival and safety results for 21,064 non-small cell lung cancer (NSCLC) patients who received compassionate use gefitinib (IRESSA®) in a United States Expanded Access Program (EAP). J. Clin. Oncol. 22 (Suppl. 14S), 7060 (2004).

    Article  Google Scholar 

  45. Massarelli, E. et al. A retrospective analysis of the outcome of patients who have received two prior chemotherapy regimens including platinum and docetaxel for recurrent non-small-cell lung cancer. Lung Cancer 39, 55–61 (2003).

    Article  CAS  PubMed  Google Scholar 

  46. van Zandwijk, N. Tolerability of gefitinib in patients receiving treatment in everyday clinical practice. Br. J. Cancer 89 (Suppl. 2), 9–14 (2003).

    Article  CAS  Google Scholar 

  47. Tan, A. R. et al. Evaluation of epidermal growth factor receptor signaling in tumor and skin biopsies after treatment with OSI-774 in patients with metastatic breast cancer. Proc. Am. Soc. Clin. Oncol. 22, 196 (2003).

    Google Scholar 

  48. Yamamoto, N. et al. A phase I study of erlotinib HCI in Japanese patients with various types of solid tumors. Proc. Am. Soc. Clin. Oncol. 22, 225 (2003).

    Google Scholar 

  49. Seto, T. & Yamamoto, N. Interstitial lung diseases (ILD) induced by gefitinib in patients with advanced non-small cell lung cancer (NSCLC): Results of a West Japan Thoracic Oncology Group (WJTOG) epidemiological survey. Proc. Am. Soc. Clin. Oncol. 23, 629 (2004).

    Google Scholar 

  50. Health Canada. Health Canada Endorsed Important Safety Information on ARAVA (leflunomide) <http://www.hc-sc.gc.ca/hpfb-dgpsa/tpd-dpt/arava_hpc_e.html> (2004).

  51. Koo, L. et al. National differences in reporting 'pneumonia' and 'pneumonia interstitial': An analysis of the WHO adverse events database on 15 drugs in 9 countries for 7 pulmonary conditions. Pharmacoepidemiol. Drug Saf. 13, S31–S32 (2004).

    Google Scholar 

  52. Abid, S. H., Malhotra, V. & Perry, M. C. Radiation-induced and chemotherapy-induced pulmonary injury. Curr. Opin. Oncol. 13, 242–248 (2001).

    Article  CAS  PubMed  Google Scholar 

  53. Miller, V. A. et al. Bronchioloalveolar pathologic subtype and smoking history predict sensitivity to gefitinib in advanced non-small-cell lung cancer. J. Clin. Oncol. 22, 1103–1109 (2004).

    Article  CAS  PubMed  Google Scholar 

  54. Shepherd, F. A. et al. A randomized placebo-controlled trial of erlotinib in patients with advanced non-small cell lung cancer (NSCLC) following failure of 1st line or 2nd line chemotherapy. A National Cancer Institute of Canada Clinical Trials Group (NCIC CTG) trial. Proc. Am. Soc. Clin. Oncol. Late-Breaking Abstracts Booklet 23, 18 (2004).

    Google Scholar 

  55. Bailey, L. R. et al. Tumor EGFR membrane staining is not clinically relevant for predicting response in patients receiving gefitinib ('Iressa', ZD1839) monotherapy for pretreated advanced non-small–cell lung cancer: IDEAL 1 and 2. Proc. Am. Assoc. Cancer Res. 44, 1362 (2003).

    Google Scholar 

  56. Lynch, T., Ranson, M., Herbst, R. & Fukuoka, M. Skin toxicity is not a clinically meaningful prognostic marker for tumor response to gefitinib ('Iressa', ZD1839) in pretreated patients with advanced non-small–cell lung cancer. Clin. Cancer Res. 9 (Suppl.), 6086 (2003).

    Google Scholar 

  57. Jänne, P. A. EGFR Mutations Predict Response to Gefitinib — Now What? (Education Program). Mutations in EGFR and response to gefitinib and erlotinib [online], <http://www.asco.org/ac/1,1003,_12-002511-00_18-0026-00_19-0011694,00.asp> (2004).

    Google Scholar 

  58. Sordella, R., Bell, D. W., Haber, D. A. & Settleman, J. Gefitinib-sensitizing EGFR mutations in lung cancer activate anti-apoptotic pathways. Science 305, 1163–1167 (2004).

    Article  CAS  PubMed  Google Scholar 

  59. Hirsch, F. R. Lung Cancer II (Scientific Program). EGF receptor inhibition in lung cancer: where do we go? [online], <http://www.asco.org/ac/1,1003,_12-002511-00_18-0026-00_19-0010977,00.asp> (2004).

    Google Scholar 

  60. Natale, R. B. et al. Quantitative gene expression in non-small cell lung cancer from paraffin-embedded tissue specimens: predicting response to gefitinib, and EGFR kinase inhibitor. Proc. Am. Soc. Clin. Oncol. 22, 190 (2003).

    Google Scholar 

  61. Douillard, J. -Y. et al. ZD1839 ('Iressa') provides clinically significant antitumor activity and improves disease-related symptoms in pretreated patients with advanced non-small-cell lung cancer (NSCLC): results of two phase II trials (IDEAL 1 and IDEAL 2). Eur. J. Cancer 38 (Suppl. 7), 56–57 (2002).

    Google Scholar 

  62. Giaccone, G. et al. Gefitinib in combination with gemcitabine and cisplatin in advanced non-small-cell lung cancer: a phase III trial — INTACT 1. J. Clin. Oncol. 22, 777–784 (2004).

    Article  CAS  PubMed  Google Scholar 

  63. Herbst, R. S. et al. Gefitinib in combination with paclitaxel and carboplatin in advanced non-small-cell lung cancer: a phase III trial — INTACT 2. J. Clin. Oncol. 22, 785–794 (2004).

    Article  CAS  PubMed  Google Scholar 

  64. Gonzalez–Larriba, J. L. et al. ZD1839 ('Iressa') in combination with gemcitabine and cisplatin in chemonaive patients with advanced solid tumours: final results of a phase I trial. Proc. Am. Soc. Clin. Oncol. 21, 95a (2002).

    Google Scholar 

  65. Miller, V. A. et al. Pilot trial of the epidermal growth factor receptor tyrosine kinase inhibitor gefitinib plus carboplatin and paclitaxel in patients with stage IIIB or IV non-small-cell lung cancer. J. Clin. Oncol. 21, 2094–2100 (2003).

    Article  CAS  PubMed  Google Scholar 

  66. Gatzemeier, U. et al. Results of a phase III trial of erlotinib (OSI-774) combined with cisplatin and gemcitabine (GC) chemotherapy in advanced non-small cell lung cancer (NSCLC). Proc. Am. Soc. Clin. Oncol. 23, 617 (2004).

    Google Scholar 

  67. Herbst, R. S. et al. TRIBUTE- A phase III trial of erlotinib HCl (OSI-774) combined with carboplatin and paclitaxel (CP) chemotherapy in advanced non-small cell lung cancer (NSCLC). Proc. Am. Soc. Clin. Oncol. 23, 617 (2004).

    Google Scholar 

  68. Baselga, J. Combining the anti-egfr agent gefitinib with chemotherapy in non-small-cell lung cancer: how do we go from INTACT to impact? J. Clin. Oncol. 22, 759–761 (2004).

    Article  CAS  PubMed  Google Scholar 

  69. Albain, K. S. et al. Adjuvant chemohormonal therapy for primary breast cancer should be sequential instead of concurrent: initial results from intergroup trial 0100 (SWOG–8814). Proc. Am. Soc. Clin. Oncol. 21, 37a (2002).

    Google Scholar 

  70. Solit, D. B. et al. Pulsatile administration of the EGF receptor inhibitor gefitinib ('Iressa', ZD1839) is significantly more effective than continuous dosing sensitizing tumors to Taxol. Clin. Cancer Res. 9 (Suppl.), A83 (2003).

    Google Scholar 

  71. Sandler, A. B. et al. Phase I/II trial evaluating the anti-VEGF MAb bevacizumab in combination with erlotinib, a HER1/EGFR-TK inhibitor, for patients with recurrent non-small cell lung cancer. Proc. Am. Soc. Clin. Oncol. 23, 127 (2004).

    Google Scholar 

  72. Heymach, J. V. et al. ZD6474, a novel antiangiogenic agent, in combination with docetaxel in patients with NSCLC: Results of the run-in phase of a two-part, randomized phase II study. Proc. Am. Soc. Clin. Oncol. 22, 207 (2004).

    Google Scholar 

  73. Niho, S. et al. First-line single agent of gefitinib in patients (pts) with advanced non-small cell lung cancer (NSCLC): A phase II study. Proc. Am. Soc. Clin. Oncol. 23, 628 (2004).

    Google Scholar 

  74. Dickson, N. R. et al. Single agent gefitinib in poor performance status patients with previously untreated advanced non-small cell lung cancer: A Minnie Pearl Cancer Research Network phase II trial. Proc. Am. Soc. Clin. Oncol. 23, 634 (2004).

    Google Scholar 

  75. Cohen, E. E. W. et al. Phase II trial of ZD1839 in recurrent or metastatic squamous cell carcinoma of the head and neck. J. Clin. Oncol. 21, 1980–1987 (2003).

    Article  CAS  PubMed  Google Scholar 

  76. Wirth, L. J. et al. Phase I study of gefitinib plus celecoxib in patients with metastatic and/or locally recurrent squamous cell carcinoma of the head and neck (SCCHN). Proc. Am. Soc. Clin. Oncol. 23, 496 (2004).

    Google Scholar 

  77. Albain, K. et al. Open-label, phase II, multicenter trial of ZD1839 ('Iressa') in patients with advanced breast cancer. Breast Cancer Res.Treat. 76 (Suppl. 1), 33 (2002).

    Google Scholar 

  78. Baselga, J. et al. Phase II and tumor pharmacodynamic study of gefitinib (ZD1839) in patients with advanced breast cancer. Proc. Am. Soc. Clin. Oncol. 22, 7 (2003).

    Google Scholar 

  79. Gee, J. M. W. et al. The antiepidermal growth factor receptor agent gefitinib (ZD1839/Iressa) improves antihormone response and prevents development of resistance in breast cancer in vitro. Endocrinology 144, 5105–5117 (2003).

    Article  CAS  PubMed  Google Scholar 

  80. Okubo, S. et al. Additive antitumour effect of the epidermal growth factor receptor tyrosine kinase inhibitor gefitinib (Iressa, ZD1839) and the antioestrogen fulvestrant (Faslodex, ICI 182,780) in breast cancer cells. Br. J. Cancer 90, 236–244 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Shou, J. et al. Mechanisms of tamoxifen resistance: increased estrogen receptor-HER2/neu cross-talk in ER/HER2-positive breast cancer. J. Natl. Cancer Inst. 96, 926–935 (2004).

    Article  CAS  PubMed  Google Scholar 

  82. McKillop, D. et al. Intratumoral and plasma concentrations of gefitinib ('Iressa') in breast cancer patients: preliminary results from a presurgical investigatory study (BCIRG 103). J. Clin. Oncol. 22, (Suppl. 14S) 581 (2004).

    Article  Google Scholar 

  83. Fisher, G. A. et al. A phase II study of gefitinib in combination with FOLFOX-4 (IFOX) in patients with metastatic colorectal cancer. Proc. Am. Soc. Clin. Oncol. 23, 249 (2004).

    Google Scholar 

  84. Doi, T. et al. Efficacy, tolerability, and pharmacokinetics of gefitinib ('Iressa', ZD1839) in pretreated patients with metastatic gastric cancer. Proc. Am. Soc. Clin. Oncol. 22, 258 (2003).

    Google Scholar 

  85. Prenzel, N., Fischer, O. M., Streit, S., Hart, S. & Ullrich, A. The epidermal growth factor receptor family as a central element for cellular signal transduction and diversification. Endocr. Relat. Cancer 8, 11–31 (2001).

    Article  CAS  PubMed  Google Scholar 

  86. Slichenmyer, W. J. & Fry, D. W. Anticancer therapy targeting the erbB family of receptor tyrosine kinases. Semin. Oncol. 28 (Suppl. 16), 67–79 (2001).

    Article  CAS  PubMed  Google Scholar 

  87. Yarden, Y. & Sliwkowski, M. X. Untangling the ErbB signalling network. Nature Rev. Mol. Cell Biol. 2, 127–137 (2001).

    Article  CAS  Google Scholar 

  88. Baselga, J. New technologies in epidermal growth factor receptor-targeted cancer therapy. Signal 1, 12–21 (2000).

    Google Scholar 

Download references

Acknowledgements

Our thanks to all of the patients with lung cancer who enrolled in clinical studies with gefitinib and other agents.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roy S. Herbst.

Ethics declarations

Competing interests

All authors have served as consultants for, and received research support from, AstraZeneca.

Related links

Related links

DATABASES

Entrez Gene

AKT

EGFR

ERBB2

γ-catenin

FLT1

KDR

p27

STAT5A

STAT5B

VEGF

National Cancer Institute

breast cancer

colorectal cancer

head and neck cancer

non-small-cell lung cancer

ovarian cancer

FURTHER INFORMATION

Epidermal growth factor receptor information and resources

Information on gefitinib

National Cancer Institute's Cancer Therapy Evaluation Program

National Cancer Institute's information on the Expanded Access Program

Rights and permissions

Reprints and permissions

About this article

Cite this article

Herbst, R., Fukuoka, M. & Baselga, J. Gefitinib — a novel targeted approach to treating cancer. Nat Rev Cancer 4, 956–965 (2004). https://doi.org/10.1038/nrc1506

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc1506

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing