Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The potential of positron-emission tomography to study anticancer-drug resistance

Key Points

  • Positron-emission tomography (PET) is a sensitive method for imaging cellular and molecular processes in humans.

  • PET is a quantitative tool that can measure picomolar levels of drugs and ligands.

  • PET can be used to image processes involved in resistance and responses to anticancer drugs, such as pharmacokinetics and metabolism, angiogenesis, hypoxia, proliferation, apoptosis and DNA repair.

  • Spatial, temporal and functional information can be provided using PET.

  • Studies of mechanisms of resistance to the widely used anticancer agent 5-fluorouracil using PET illustrate the potential of this technique.

  • To avoid the high rate of attrition from initial drug development to regulatory approval, the ability of PET to image anticancer-drug resistance pathways should be exploited in proof-of-concept studies at an early stage of drug development.

  • Validation of new imaging probes requires multidisciplinary collaboration involving those working in PET, oncology, tumour-cell and molecular biology, and anticancer-drug discovery, and requires development within both academia and the pharmaceutical industry.

Abstract

Positron-emission tomography (PET) is a powerful tool for imaging and quantifying cellular and molecular processes in humans. It has enormous potential to increase our understanding of the pathophysiology of human tumours and to support the development of anticancer drugs. The ability of PET to image mechanisms of anticancer-drug resistance in vivo should be exploited in proof-of-concept studies at early stages of drug development.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: 5-Fluorouracil-resistance pathways and their visualization using positron-emission tomography.
Figure 2: Positron-emission tomography visualization of drug-resistance pathways in humans, using 5-FU as an example.

Similar content being viewed by others

References

  1. Bomanji, J. B., Costa, D. C. & Ell, P. J. Clinical role of positron emission tomography in oncology. Lancet Oncol. 2, 157–164 (2001).

    Article  CAS  PubMed  Google Scholar 

  2. Hoekstra, C. J. et al. Monitoring response to therapy in cancer using [18F]2-fluoro-2-deoxy-D-glucose and positron emission tomography: an overview of different analytical methods. Eur. J. Nucl. Med. 27, 731–743 (2000).

    Article  CAS  PubMed  Google Scholar 

  3. Young, H. et al. Measurement of clinical and subclinical tumour response using [18F]fluorodeoxyglucose and positron emission tomography: review and 1999 EORTC recommendations. European Organization for Research and Treatment of Cancer (EORTC) PET Study Group. Eur. J. Cancer 35, 1773–1782 (1999).

    Article  CAS  PubMed  Google Scholar 

  4. Ray, P. et al. Monitoring gene therapy with reporter gene imaging. Semin. Nucl. Med. 31, 312–320 (2001).

    Article  CAS  PubMed  Google Scholar 

  5. Haberkorn, U. & Altmann, A. Imaging methods in gene therapy of cancer. Curr. Gene Ther. 1, 163–182 (2001).

    Article  CAS  PubMed  Google Scholar 

  6. Osman, S. et al. Comparative biodistribution and metabolism of carbon-11-labeled N-[2-(dimethylamino)ethyl]acridine-4-carboxamide and DNA-intercalating analogues. Cancer Res. 61, 2935–2944 (2001).

    CAS  PubMed  Google Scholar 

  7. Meikle, S. R. et al. Pharmacokinetic assessment of novel anti-cancer drugs using spectral analysis and positron emission tomography: a feasibility study. Cancer Chemother. Pharmacol. 42, 183–193 (1998).

    Article  CAS  PubMed  Google Scholar 

  8. Propper, D. J. et al. Use of positron emission tomography in pharmacokinetic studies to investigate therapeutic advantage in a phase I study of 120-hour intravenous infusion XR5000. J. Clin. Oncol. 21, 203–210 (2003).

    Article  CAS  PubMed  Google Scholar 

  9. Saleem, A. et al. Pharmacokinetic evaluation of N-[2-(dimethylamino)ethyl]acridine-4-carboxamide in patients by positron emission tomography. J. Clin. Oncol. 19, 1421–1429 (2001).

    Article  CAS  PubMed  Google Scholar 

  10. Blasberg, R. PET imaging of gene expression. Eur. J. Cancer 38, 2137–2146 (2002). A comprehensive review of the use of PET to measure gene expression in vivo.

    Article  CAS  PubMed  Google Scholar 

  11. Booth, B., Glassman, R. & Ma, P. Oncology's trials. Nature Rev. Drug Discov. 2, 609–610 (2003). Commentary highlighting the scientific and regulatory challenges associated with the high rate of attrition from early drug development to approval.

    Article  CAS  Google Scholar 

  12. Gambhir, S. S. Molecular imaging of cancer with positron emission tomography. Nature Rev. Cancer 2, 683–693 (2002).

    Article  CAS  Google Scholar 

  13. Ginos, J. Z. et al. [13N]cisplatin PET to assess pharmacokinetics of intra-arterial versus intravenous chemotherapy for malignant brain tumors. J. Nucl. Med. 28, 1844–1852 (1987).

    CAS  PubMed  Google Scholar 

  14. Mitsuki, S. et al. Pharmacokinetics of 11C-labelled BCNU and SarCNU in gliomas studied by PET. J. Neurooncol. 10, 47–55 (1991).

    Article  CAS  PubMed  Google Scholar 

  15. Diksic, M. et al. Pharmacokinetics of positron-labeled 1,3-bis(2-chloroethyl)nitrosourea in human brain tumors using positron emission tomography. Cancer Res. 44, 3120–3124 (1984).

    CAS  PubMed  Google Scholar 

  16. Strauss, L. G. & Conti, P. S. The applications of PET in clinical oncology. J. Nucl. Med. 32, 623–648 (1991).

    CAS  PubMed  Google Scholar 

  17. Dimitrakopoulou, A. et al. Studies with positron emission tomography after systemic administration of fluorine-18-uracil in patients with liver metastases from colorectal carcinoma. J. Nucl. Med. 34, 1075–1081 (1993).

    CAS  PubMed  Google Scholar 

  18. Kissel, J. et al. Pharmacokinetic analysis of 5-[18F]fluorouracil tissue concentrations measured with positron emission tomography in patients with liver metastases from colorectal adenocarcinoma. Cancer Res. 57, 3415–3423 (1997).

    CAS  PubMed  Google Scholar 

  19. Hutchinson, O. C., Collingridge, D. R., Barthel, H., Price, P. M. & Aboagye, E. O. Pharmacokinetics of radiolabelled anticancer drugs for positron emission tomography. Curr. Pharm. Des. 9, 917–929 (2003).

    Article  CAS  PubMed  Google Scholar 

  20. Collingridge, D. R. et al. The development of [124I]iodinated-VG76e: a novel tracer for imaging vascular endothelial growth factor in vivo using positron emission tomography. Cancer Res. 62, 5912–5919 (2002).

    CAS  PubMed  Google Scholar 

  21. Masson, E. & Zamboni, W. C. Pharmacokinetic optimisation of cancer chemotherapy. Effect on outcomes. Clin. Pharmacokinet. 32, 324–343 (1997).

    Article  CAS  PubMed  Google Scholar 

  22. Doherty, M. M. & Michael, M. Tumoral drug metabolism: perspectives and therapeutic implications. Curr. Drug Metab. 4, 131–149 (2003).

    Article  CAS  PubMed  Google Scholar 

  23. Bos, R. et al. Biologic correlates of 18fluorodeoxyglucose uptake in human breast cancer measured by positron emission tomography. J. Clin. Oncol. 20, 379–387 (2002).

    Article  CAS  PubMed  Google Scholar 

  24. Saleem, A. et al. Metabolic activation of temozolomide measured in vivo using positron emission tomography. Cancer Res. 63, 2409–2415 (2003).

    CAS  PubMed  Google Scholar 

  25. Ito, M. et al. Measurement of regional cerebral blood flow and oxygen utilisation in patients with cerebral tumours using 15O and positron emission tomography: analytical techniques and preliminary results. Neuroradiology 23, 63–74 (1982).

    Article  CAS  PubMed  Google Scholar 

  26. Wieder, H. et al. PET imaging with [11C]methyl-L-methionine for therapy monitoring in patients with rectal cancer. Eur. J. Nucl. Med. Mol. Imaging 29, 789–796 (2002).

    Article  CAS  PubMed  Google Scholar 

  27. Jager, P. L. et al. Radiolabelled amino acids: basic aspects and clinical applications in oncology. J. Nucl. Med. 42, 432–445 (2001).

    CAS  PubMed  Google Scholar 

  28. Liu, D. et al. Use of radiolabelled choline as a pharmacodynamic marker for the signal transduction inhibitor geldanamycin. Br. J. Cancer 87, 783–789 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Burke, D., Carnochan, P., Glover, C. & Allen-Mersh, T. G. Correlation between tumour blood flow and fluorouracil distribution in a hypovascular liver metastasis model. Clin. Exp. Metastasis 18, 617–622 (2000).

    Article  CAS  PubMed  Google Scholar 

  30. Anderson, H. & Price, P. Clinical measurement of blood flow in tumours using positron emission tomography: a review. Nucl. Med. Commun. 23, 131–138 (2002).

    Article  CAS  PubMed  Google Scholar 

  31. Wilson, C. B., Lammertsma, A. A., McKenzie, C. G., Sikora, K. & Jones, T. Measurements of blood flow and exchanging water space in breast tumors using positron emission tomography: a rapid and noninvasive dynamic method. Cancer Res. 52, 1592–1597 (1992).

    CAS  PubMed  Google Scholar 

  32. Anderson, H. L. et al. Assessment of pharmacodynamic vascular response in a phase I trial of combretastatin A4 phosphate. J. Clin. Oncol. 21, 2823–2830 (2003). First PET study in patients with cancer to measure flow changes in response to combretastatin A4 phosphate.

    Article  CAS  PubMed  Google Scholar 

  33. Anderson, H. et al. Measurement of renal tumour and normal tissue perfusion using positron emission tomography in a phase II clinical trial of razoxane. Br. J. Cancer 89, 262–267 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Burke, D. et al. Continuous angiotensin II infusion increases tumour: normal blood flow ratio in colo-rectal liver metastases. Br. J. Cancer 85, 1640–1645 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Flower, M. A. et al. 62Cu-PTSM and PET used for the assessment of angiotensin II-induced blood flow changes in patients with colorectal liver metastases. Eur. J. Nucl. Med. 28, 99–103 (2001). First PET study in patients with cancer to measure flow changes in response to angiotensin II.

    Article  CAS  PubMed  Google Scholar 

  36. Mattern, J. Role of angiogenesis in drug resistance. Anticancer Res. 21, 4265–4270 (2001).

    CAS  PubMed  Google Scholar 

  37. Folkman, J. Role of angiogenesis in tumor growth and metastasis. Semin. Oncol. 29, 15–18 (2002).

    Article  CAS  PubMed  Google Scholar 

  38. Kerbel, R. S. et al. Possible mechanisms of acquired resistance to anti-angiogenic drugs: implications for the use of combination therapy approaches. Cancer Metastasis Rev. 20, 79–86 (2001).

    Article  CAS  PubMed  Google Scholar 

  39. Jayson, G. C. et al. Molecular imaging and biological evaluation of HuMV833 anti-VEGF antibody: implications for trial design of antiangiogenic antibodies. J. Natl Cancer Inst. 94, 1484–1493 (2002). First study to use an anti-VEGF PET probe in patients. The study showed marked heterogeneity of the distribution and clearance of the antibody between and within patients, and between and within individual tumours.

    Article  CAS  PubMed  Google Scholar 

  40. Barthel, H. Endostatin imaging to help understanding of antiangiogenic drugs. Lancet Oncol. 3, 520 (2002). Commentary highlighting how nuclear-medicine imaging has the potential to revolutionize oncology.

    Article  PubMed  Google Scholar 

  41. Johnstrom, P. et al. Syntheses of the first endothelin-A- and-B-selective radioligands for positron emission tomography. J. Cardiovasc. Pharmacol. 36, S58–S60 (2000).

    Article  CAS  PubMed  Google Scholar 

  42. Johnstrom, P. et al. 18F-Endothelin-1, a positron emission tomography (PET) radioligand for the endothelin receptor system: radiosynthesis and in vivo imaging using microPET. Clin. Sci. (London) 103 (Suppl. 48), 4S–8S (2002).

    Article  CAS  Google Scholar 

  43. Aleksic, S. et al. In vivo labeling of endothelin receptors with [11C]L-753,037: studies in mice and a dog. J. Nucl. Med. 42, 1274–1280 (2001).

    CAS  PubMed  Google Scholar 

  44. Chen, X. et al. MicroPET and autoradiographic imaging of breast cancer αv-integrin expression using 18F- and 64Cu-labeled RGD peptide. Bioconjug. Chem. 15, 41–49 (2004).

    Article  PubMed  CAS  Google Scholar 

  45. Chen, X. et al. 18F-labeled RGD peptide: initial evaluation for imaging brain tumor angiogenesis. Nucl. Med. Biol. 31, 179–189 (2004).

    Article  CAS  PubMed  Google Scholar 

  46. Haubner, R. et al. [18F]Galacto-RGD: synthesis, radiolabeling, metabolic stability, and radiation dose estimates. Bioconjug. Chem. 15, 61–69 (2004).

    Article  CAS  PubMed  Google Scholar 

  47. Chen, X., Park, R., Shahinian, A. H., Bading, J. R. & Conti, P. S. Pharmacokinetics and tumor retention of 125I-labeled RGD peptide are improved by PEGylation. Nucl. Med. Biol. 31, 11–19 (2004).

    Article  CAS  PubMed  Google Scholar 

  48. Haubner, R. et al. Glycosylated RGD-containing peptides: tracer for tumor targeting and angiogenesis imaging with improved biokinetics. J. Nucl. Med. 42, 326–336 (2001).

    CAS  PubMed  Google Scholar 

  49. Haubner, R. et al. Noninvasive imaging of α(v)β3 integrin expression using 18F-labeled RGD-containing glycopeptide and positron emission tomography. Cancer Res. 61, 1781–1785 (2001).

    CAS  PubMed  Google Scholar 

  50. Haubner, R. H., Wester, H. J., Weber, W. A. & Schwaiger, M. Radiotracer-based strategies to image angiogenesis. Q. J. Nucl. Med. 47, 189–199 (2003).

    CAS  PubMed  Google Scholar 

  51. Vabuliene, E. et al. Correlation between α-v-β-3 expression of melanoma cells and uptake of radiolabelled cyclic RGD peptides. J. Nucl. Med. 43 (Suppl.), 121P (2002).

    Google Scholar 

  52. Bernards, R. Cancer: cues for migration. Nature 425, 247–248 (2003).

    Article  CAS  PubMed  Google Scholar 

  53. Harris, A. L. Hypoxia — a key regulatory factor in tumour growth. Nature Rev. Cancer 2, 38–47 (2002).

    Article  CAS  Google Scholar 

  54. Grau, C. & Overgaard, J. Effect of etoposide, carmustine, vincristine, 5-fluorouracil, or methotrexate on radiobiologically oxic and hypoxic cells in a C3H mouse mammary carcinoma in situ. Cancer Chemother. Pharmacol. 30, 277–280 (1992).

    Article  CAS  PubMed  Google Scholar 

  55. Liang, B. C. Effects of hypoxia on drug resistance phenotype and genotype in human glioma cell lines. J. Neurooncol. 29, 149–155 (1996).

    Article  CAS  PubMed  Google Scholar 

  56. Koch, S., Mayer, F., Honecker, F., Schittenhelm, M. & Bokemeyer, C. Efficacy of cytotoxic agents used in the treatment of testicular germ cell tumours under normoxic and hypoxic conditions in vitro. Br. J. Cancer 89, 2133–2139 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Sakata, K. et al. Hypoxia-induced drug resistance: comparison to P-glycoprotein-associated drug resistance. Br. J. Cancer 64, 809–814 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Bentzen, L. et al. Feasibility of detecting hypoxia in experimental mouse tumours with 18F-fluorinated tracers and positron emission tomography — a study evaluating [18F]fluoro-2-deoxy-D-glucose. Acta Oncol. 39, 629–637 (2000).

    Article  CAS  PubMed  Google Scholar 

  59. Bentzen, L. et al. Assessment of hypoxia in experimental mice tumours by [18F]fluoromisonidazole PET and pO2 electrode measurements. Influence of tumour volume and carbogen breathing. Acta Oncol. 41, 304–312 (2002).

    Article  CAS  PubMed  Google Scholar 

  60. Rasey, J. S. et al. Determining hypoxic fraction in a rat glioma by uptake of radiolabelled fluoromisonidazole. Radiat. Res. 153, 84–92 (2000).

    Article  CAS  PubMed  Google Scholar 

  61. Barthel, H. et al. Small animal scanner assisted evaluation of [18F]fluoroetanidazole for imaging of modulated tumor hypoxia with positron emission tomography. Proc. Am. Assoc. Cancer Res. 44, 1346 (2003).

    Google Scholar 

  62. Gronroos, T. et al. Pharmacokinetics of [18F]FETNIM: a potential marker for PET. J. Nucl. Med. 42, 1397–1404 (2001).

    CAS  PubMed  Google Scholar 

  63. Ziemer, L. S. et al. Noninvasive imaging of tumor hypoxia in rats using the 2-nitroimidazole 18F-EF5. Eur. J. Nucl. Med. Mol. Imaging 30, 259–266 (2003).

    Article  CAS  PubMed  Google Scholar 

  64. Bentzen, L. et al. Tumour oxygenation assessed by 18F-fluoromisonidazole PET and polarographic needle electrodes in human soft tissue tumours. Radiother. Oncol. 67, 339–344 (2003).

    Article  CAS  PubMed  Google Scholar 

  65. Dehdashti, F. et al. Assessing tumor hypoxia in cervical cancer by positron emission tomography with 60Cu-ATSM: relationship to therapeutic response — a preliminary report. Int. J. Radiat. Oncol. Biol. Phys. 55, 1233–1238 (2003).

    Article  PubMed  Google Scholar 

  66. Sorger, D. et al. [18F]Fluoroazomycinarabinofuranoside (18FAZA) and [18F]fluoromisonidazole (18FMISO): a comparative study of their selective uptake in hypoxic cells and PET imaging in experimental rat tumors. Nucl. Med. Biol. 30, 317–326 (2003).

    Article  CAS  PubMed  Google Scholar 

  67. Serganova, I. et al. Imaging hypoxia-induced HIF–1α signalling by PET. J. Nucl. Med. 43 (Suppl.), 69P (2002).

    Google Scholar 

  68. Berger, F. & Gambhir, S. S. Recent advances in imaging endogenous or transferred gene expression utilizing radionuclide technologies in living subjects: applications to breast cancer. Breast Cancer Res. 3, 28–35 (2001).

    Article  CAS  PubMed  Google Scholar 

  69. Gottesman, M. M., Fojo, T. & Bates, S. E. Multidrug resistance in cancer: role of ATP-dependent transporters. Nature Rev. Cancer 2, 48–58 (2002).

    Article  CAS  Google Scholar 

  70. Hendrikse, N. H. & Vaalburg, W. Imaging of P glycoprotein function in vivo with PET. Novartis Found. Symp. 243, 137–145 (2002).

    CAS  PubMed  Google Scholar 

  71. Elsinga, P. H. et al. Carbon-11-labeled daunorubicin and verapamil for probing P-glycoprotein in tumors with PET. J. Nucl. Med. 37, 1571–1575 (1996).

    CAS  PubMed  Google Scholar 

  72. Levchenko, A. et al. Evaluation of 11C-colchicine for PET imaging of multiple drug resistance. J. Nucl. Med. 41, 493–501 (2000).

    CAS  PubMed  Google Scholar 

  73. Hendrikse, N. H. et al. A new in vivo method to study P-glycoprotein transport in tumors and the blood-brain-barrier. Cancer Res. 59, 2411–2416 (1999).

    CAS  PubMed  Google Scholar 

  74. Avril, N. et al. Glucose metabolism of breast cancer assessed by 18F-FDG PET: histologic and immunohistochemical tissue analysis. J. Nucl. Med. 42, 9–16 (2001).

    CAS  PubMed  Google Scholar 

  75. Yamada, S., Kubota, K., Kubota, R., Ido, T. & Tamahashi, N. High accumulation of fluorine-18-fluorodeoxyglucose in turpentine-induced inflammatory tissue. J. Nucl. Med. 36, 1301–1306 (1995).

    CAS  PubMed  Google Scholar 

  76. Gudjonssona, O. et al. Analysis of 76Br-BrdU in DNA of brain tumors after a PET study does not support its use as a proliferation marker. Nucl. Med. Biol. 28, 59–65 (2001).

    Article  CAS  PubMed  Google Scholar 

  77. Blasberg, R. G. et al. Imaging brain tumor proliferative activity with [124I]iododeoxyuridine. Cancer Res. 60, 624–635 (2000).

    CAS  PubMed  Google Scholar 

  78. Seitz, U. et al. In vivo evaluation of 5-[18F]fluoro-2′-deoxyuridine as tracer for positron emission tomography in a murine pancreatic cancer model. Cancer Res. 61, 3853–3857 (2001).

    CAS  PubMed  Google Scholar 

  79. Shields, A. F. et al. Analysis of 2-carbon-11-thymidine blood metabolites in PET imaging. J. Nucl. Med. 37, 290–296 (1996).

    CAS  PubMed  Google Scholar 

  80. Shields, A. F. et al. Contribution of labeled carbon dioxide to PET imaging of carbon-11-labeled compounds. J. Nucl. Med. 33, 581–584 (1992).

    CAS  PubMed  Google Scholar 

  81. Vander Borght, T., Labar, D., Pauwels, S. & Lambotte, L. Production of [2-11C]thymidine for quantification of cellular proliferation with PET. Int. J. Rad. Appl. Instrum. [A] 42, 103–104 (1991).

    Article  CAS  Google Scholar 

  82. Vander Borght, T. et al. Noninvasive measurement of liver regeneration with positron emission tomography and [2-11C]thymidine. Gastroenterology 101, 794–799 (1991).

    Article  CAS  PubMed  Google Scholar 

  83. Gunn, R. N. et al. A general method to correct PET data for tissue metabolites using a dual-scan approach. J. Nucl. Med. 41, 706–711 (2000).

    CAS  PubMed  Google Scholar 

  84. Shields, A. F. et al. Carbon-11-thymidine and FDG to measure therapy response. J. Nucl. Med. 39, 1757–1762 (1998).

    CAS  PubMed  Google Scholar 

  85. Wells, P. et al. Assessment of proliferation in vivo using 2-[11C]thymidine positron emission tomography in advanced intra-abdominal malignancies. Cancer Res. 62, 5698–5702 (2002).

    CAS  PubMed  Google Scholar 

  86. Wells, J. M. et al. Kinetic analysis of 2-[11C]thymidine PET imaging studies of malignant brain tumors: preliminary patient results. Mol. Imaging 1, 145–150 (2002).

    Article  CAS  PubMed  Google Scholar 

  87. Shields, A. F. et al. Imaging proliferation in vivo with [F-18]FLT and positron emission tomography. Nature Med. 4, 1334–1336 (1998).

    Article  CAS  PubMed  Google Scholar 

  88. Conti, P. S., Alauddin, M. M., Fissekis, J. R., Schmall, B. & Watanabe, K. A. Synthesis of 2'-fluoro-5-[11C]-methyl-1-β-D-arabinofuranosyluracil ([11C]-FMAU): a potential nucleoside analog for in vivo study of cellular proliferation with PET. Nucl. Med. Biol. 22, 783–789 (1995).

    Article  CAS  PubMed  Google Scholar 

  89. Rasey, J. S., Grierson, J. R., Wiens, L. W., Kolb, P. D. & Schwartz, J. L. Validation of FLT uptake as a measure of thymidine kinase-1 activity in A549 carcinoma cells. J. Nucl. Med. 43, 1210–1217 (2002).

    CAS  PubMed  Google Scholar 

  90. Lu, L. et al. Rat studies comparing 11C-FMAU, 18F-FLT, and 76Br-BFU as proliferation markers. J. Nucl. Med. 43, 1688–1698 (2002).

    CAS  PubMed  Google Scholar 

  91. Barthel, H. et al. 3′-deoxy-3′-[18F]fluorothymidine as a new marker for monitoring tumor response to antiproliferative therapy in vivo with positron emission tomography. Cancer Res. 63, 3791–3798 (2003).

    CAS  PubMed  Google Scholar 

  92. Shields, A. F. PET imaging with 18F-FLT and thymidine analogs: promise and pitfalls. J. Nucl. Med. 44, 1432–1434 (2003). An excellent overview of the current status of the development of PET proliferation probes.

    CAS  PubMed  Google Scholar 

  93. Ito, M. et al. Development of a new ligand, 11C–labeled annexin V, for PET imaging of apoptosis. J. Nucl. Med. 43 (Suppl.), 362P (2002).

    Google Scholar 

  94. Zijlstra, S., Gunawan, J. & Burchert, W. Synthesis and evaluation of a 18F-labelled recombinant annexin-V derivative, for identification and quantification of apoptotic cells with PET. Appl. Radiat. Isot. 58, 201–207 (2003).

    Article  CAS  PubMed  Google Scholar 

  95. Murakami, Y. et al. 18F–labelled annexin V: a PET tracer for apoptosis imaging. Eur. J. Nucl. Med. Mol. Imaging 31, 469–474 (2004).

    Article  CAS  PubMed  Google Scholar 

  96. Glaser, M. et al. Iodine-124 labelled annexin-V as a potential radiotracer to study apoptosis using positron emission tomography. Appl. Radiat. Isot. 58, 55–62 (2003).

    Article  CAS  PubMed  Google Scholar 

  97. Blasberg, R. G. & Tjuvajev, J. G. Molecular-genetic imaging: current and future perspectives. J. Clin. Invest. 111, 1620–1629 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. van Oosterom, A. T. et al. Safety and efficacy of imatinib (STI571) in metastatic gastrointestinal stromal tumours: a phase I study. Lancet 358, 1421–1423 (2001). Study showing that FDG PET-scan responses predicted subsequent computed-tomography responses to imatinib.

    Article  CAS  PubMed  Google Scholar 

  99. Gayed, I. et al. The role of 18F-FDG PET in staging and early prediction of response to therapy of recurrent gastrointestinal stromal tumors. J. Nucl. Med. 45, 17–21 (2004).

    CAS  PubMed  Google Scholar 

  100. Stroobants, S. et al. 18FDG-Positron emission tomography for the early prediction of response in advanced soft tissue sarcoma treated with imatinib mesylate (Glivec). Eur. J. Cancer 39, 2012–2020 (2003).

    Article  CAS  PubMed  Google Scholar 

  101. Donato, N. J. et al. BCR–ABL independence and LYN kinase overexpression in chronic myelogenous leukemia cells selected for resistance to STI571. Blood 101, 690–698 (2003).

    Article  CAS  PubMed  Google Scholar 

  102. Nimmanapalli, R. et al. Molecular characterization and sensitivity of STI-571 (imatinib mesylate, Gleevec)-resistant, Bcr–Abl-positive, human acute leukemia cells to SRC kinase inhibitor PD180970 and 17-allylamino-17-demethoxygeldanamycin. Cancer Res. 62, 5761–5769 (2002).

    CAS  PubMed  Google Scholar 

  103. Ramos-Suzarte, M. et al. 99mTc-labeled antihuman epidermal growth factor receptor antibody in patients with tumors of epithelial origin: part III. Clinical trials safety and diagnostic efficacy. J. Nucl. Med. 40, 768–775 (1999).

    CAS  PubMed  Google Scholar 

  104. Divgi, C. R. et al. Phase I and imaging trial of indium 111-labeled anti-epidermal growth factor receptor monoclonal antibody 225 in patients with squamous cell lung carcinoma. J. Natl Cancer Inst. 83, 97–104 (1991).

    Article  CAS  PubMed  Google Scholar 

  105. Bonasera, T. A. et al. Potential 18F-labeled biomarkers for epidermal growth factor receptor tyrosine kinase. Nucl. Med. Biol. 28, 359–374 (2001).

    Article  CAS  PubMed  Google Scholar 

  106. Ben-David, I., Rozen, Y., Ortu, G. & Mishani, E. Radiosynthesis of ML03, a novel positron emission tomography biomarker for targeting epidermal growth factor receptor via the labeling synthon: [11C]acryloyl chloride. Appl. Radiat. Isot. 58, 209–217 (2003).

    Article  CAS  PubMed  Google Scholar 

  107. Ortu, G. et al. Labeled EGFr-TK irreversible inhibitor (ML03): in vitro and in vivo properties, potential as PET biomarker for cancer and feasibility as anticancer drug. Int. J. Cancer 101, 360–370 (2002).

    Article  CAS  PubMed  Google Scholar 

  108. Serganova, I. et al. Imaging TGFβ signal transduction pathway activity with PET. J. Nucl. Med. 43 (Suppl.), 69P (2002).

    Google Scholar 

  109. Doubrovin, M. et al. Imaging transcriptional regulation of p53-dependent genes with positron emission tomography in vivo. Proc. Natl Acad. Sci. USA 98, 9300–9305 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Middleton, M. R. & Margison, G. P. Improvement of chemotherapy efficacy by inactivation of a DNA-repair pathway. Lancet Oncol. 4, 37–44 (2003).

    Article  CAS  PubMed  Google Scholar 

  111. Liu, X. et al. Synthesis and preliminary biological evaluation of 6-O-[11C]-[(methoxymethyl)benzyl]guanines, new potential PET breast cancer imaging agents for the DNA repair protein AGT. Bioorg. Med. Chem. Lett. 13, 641–644 (2003).

    Article  CAS  PubMed  Google Scholar 

  112. Zheng, Q. H. et al. Synthesis and preliminary biological evaluation of radiolabelled O6-benzylguanine derivatives, new potential PET imaging agents for the DNA repair protein O6-alkylguanine-DNA alkyltransferase in breast cancer. Nucl. Med. Biol. 30, 405–415 (2003).

    Article  CAS  PubMed  Google Scholar 

  113. Calabrese, C. R. et al. Anticancer chemosensitization and radiosensitization by the novel poly(ADP-ribose) polymerase-1 inhibitor AG14361. J. Natl Cancer Inst. 96, 56–67 (2004).

    Article  CAS  PubMed  Google Scholar 

  114. Miyake, Y. et al. Biodistribution of 3,4-dihydro-5-[11C]methoxy-1(2H)-isoquinolinone, a potential PET tracer for poly(ADP-ribose) synthetase. Nucl. Med. Biol. 27, 701–705 (2000).

    Article  CAS  PubMed  Google Scholar 

  115. Miyake, Y. et al. Biodistribution of 11CMIQO in tumor-bearing rats. J. Nucl. Med. 43 (Suppl.), 361P–362P (2002).

    Google Scholar 

  116. Longley, D. B., Harkin, D. P. & Johnston, P. G. 5-fluorouracil: mechanisms of action and clinical strategies. Nature Rev. Cancer 3, 330–338 (2003).

    Article  CAS  Google Scholar 

  117. Shani, J. & Wolf, W. A model for prediction of chemotherapy response to 5-fluorouracil based on the differential distribution of 5-[18F]fluorouracil in sensitive versus resistant lymphocytic leukemia in mice. Cancer Res. 37, 2306–2308 (1977). First PET study using radiolabelled 5-FU.

    CAS  PubMed  Google Scholar 

  118. Visser, G. W., van der Wilt, C. L., Wedzinga, R., Peters, G. J. & Herscheid, J. D. 18F-radiopharmacokinetics of [18F]-5-fluorouracil in a mouse bearing two colon tumors with a different 5-fluorouracil sensitivity: a study for a correlation with oncological results. Nucl. Med. Biol. 23, 333–342 (1996).

    Article  CAS  PubMed  Google Scholar 

  119. Brix, G., Bellemann, M. E., Haberkorn, U., Gerlach, L. & Lorenz, W. J. Assessment of the biodistribution and metabolism of 5-fluorouracil as monitored by 18F PET and 19F MRI: a comparative animal study. Nucl. Med. Biol. 23, 897–906 (1996).

    Article  CAS  PubMed  Google Scholar 

  120. Dimitrakopoulou-Strauss, A. et al. Intravenous and intra-arterial oxygen-15-labeled water and fluorine-18-labeled fluorouracil in patients with liver metastases from colorectal carcinoma. J. Nucl. Med. 39, 465–473 (1998).

    CAS  PubMed  Google Scholar 

  121. Dimitrakopoulou-Strauss, A. et al. Fluorine-18-fluorouracil to predict therapy response in liver metastases from colorectal carcinoma. J. Nucl. Med. 39, 1197–1202 (1998).

    CAS  PubMed  Google Scholar 

  122. Harte, R. J., Matthews, J. C., O'Reilly, S. M. & Price, P. M. Sources of error in tissue and tumor measurements of 5-[18F]fluorouracil. J. Nucl. Med. 39, 1370–1376 (1998).

    CAS  PubMed  Google Scholar 

  123. Moehler, M. et al. 18F-labeled fluorouracil positron emission tomography and the prognoses of colorectal carcinoma patients with metastases to the liver treated with 5-fluorouracil. Cancer 83, 245–253 (1998).

    Article  CAS  PubMed  Google Scholar 

  124. Harte, R. J. et al. Tumor, normal tissue, and plasma pharmacokinetic studies of fluorouracil biomodulation with N-phosphonacetyl-L-aspartate, folinic acid, and interferon-α. J. Clin. Oncol. 17, 1580–1588 (1999).

    Article  CAS  PubMed  Google Scholar 

  125. Bading, J. R. et al. Blocking catabolism with eniluracil enhances PET studies of 5-[18F]fluorouracil pharmacokinetics. J. Nucl. Med. 41, 1714–1724 (2000).

    CAS  PubMed  Google Scholar 

  126. Wils, J. et al. High-dose 5-fluorouracil plus low dose methotrexate plus or minus low-dose PALA in advanced colorectal cancer: a randomised phase II–III trial of the EORTC Gastrointestinal Group. Eur. J. Cancer 39, 346–352 (2003).

    Article  CAS  PubMed  Google Scholar 

  127. O'Dwyer, P. J. et al. Fluorouracil modulation in colorectal cancer: lack of improvement with N-phosphonoacetyl-l-aspartic acid or oral leucovorin or interferon, but enhanced therapeutic index with weekly 24-hour infusion schedule — an Eastern Cooperative Oncology Group/Cancer and Leukemia Group B Study. J. Clin. Oncol. 19, 2413–2421 (2001).

    Article  CAS  PubMed  Google Scholar 

  128. Saleem, A. et al. Modulation of fluorouracil tissue pharmacokinetics by eniluracil: in-vivo imaging of drug action. Lancet 355, 2125–2131 (2000).

    Article  CAS  PubMed  Google Scholar 

  129. Bading, J. R. et al. Kinetic modeling of 5-fluorouracil anabolism in colorectal adenocarcinoma: a positron emission tomography study in rats. Cancer Res. 63, 3667–3674 (2003).

    CAS  PubMed  Google Scholar 

  130. Aboagye, E. O., Saleem, A., Cunningham, V. J., Osman, S. & Price, P. M. Extraction of 5-fluorouracil by tumor and liver: a noninvasive positron emission tomography study of patients with gastrointestinal cancer. Cancer Res. 61, 4937–4941 (2001).

    CAS  PubMed  Google Scholar 

  131. Cascinu, S. et al. Vascular endothelial growth factor expression, S-phase fraction and thymidylate synthase quantitation in node-positive colon cancer: relationships with tumor recurrence and resistance to adjuvant chemotherapy. Ann. Oncol. 12, 239–244 (2001).

    Article  CAS  PubMed  Google Scholar 

  132. Aschele, C. et al. Thymidylate synthase protein expression in colorectal cancer metastases predicts for clinical outcome to leucovorin-modulated bolus or infusional 5-fluorouracil but not methotrexate-modulated bolus 5-fluorouracil. Ann. Oncol. 13, 1882–1892 (2002).

    Article  CAS  PubMed  Google Scholar 

  133. Milano, G. & McLeod, H. L. Can dihydropyrimidine dehydrogenase impact 5-fluorouracil-based treatment? Eur. J. Cancer 36, 37–42 (2000).

    Article  CAS  PubMed  Google Scholar 

  134. Wells, P. et al. 2-[11C]thymidine positron emission tomography as an indicator of thymidylate synthase inhibition in patients treated with AG337. J. Natl Cancer Inst. 95, 675–682 (2003). Study showing how 2-[11C]thymidine PET can be used to measure thymidine salvage kinetics directly in the tissue of interest in patients.

    Article  CAS  PubMed  Google Scholar 

  135. Graham, M. M., Peterson, L. M. & Hayward, R. M. Comparison of simplified quantitative analyses of FDG uptake. Nucl. Med. Biol. 27, 647–655 (2000).

    Article  CAS  PubMed  Google Scholar 

  136. Schmidt, K. C. & Turkheimer, F. E. Kinetic modeling in positron emission tomography. Q. J. Nucl. Med. 46, 70–85 (2002).

    CAS  PubMed  Google Scholar 

  137. Frackowiak, R. S., Lenzi, G. L., Jones, T. & Heather, J. D. Quantitative measurement of regional cerebral blood flow and oxygen metabolism in man using 15O and positron emission tomography: theory, procedure, and normal values. J. Comput. Assist. Tomogr. 4, 727–736 (1980).

    Article  CAS  PubMed  Google Scholar 

  138. Roivainen, A. et al. 68Ga-Labeled Oligonucleotides for in vivo Imaging with PET. J. Nucl. Med. 45, 347–355 (2004).

    CAS  PubMed  Google Scholar 

  139. Blasberg, R. G. & Gelovani-Tjuvajev, J. In vivo molecular-genetic imaging. J. Cell. Biochem. (Suppl. 39), 172–183 (2002).

  140. Price, P. PET as a potential tool for imaging molecular mechanisms of oncology in man. Trends Mol. Med. 7, 442–446 (2001).

    Article  CAS  PubMed  Google Scholar 

  141. Gupta, N., Price, P. M. & Aboagye, E. O. PET for in vivo pharmacokinetic and pharmacodynamic measurements. Eur. J. Cancer 38, 2094–2107 (2002).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank D. R. Newell for his helpful comments on this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Catharine M. L West.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

DATABASES

Cancer.gov

Acute myelogenous leukaemia

brain tumour

colorectal cancer

gastrointestinal cancer

gastrointestinal stromal tumour

hepatoma

melanoma

neuroblastoma

Entrez Gene

ABL

AGT

annexin V

BCR

CDKN1A

EGFR

endostatin

GLUT1

hexokinase 1

HIF-1α

KIT

PARP/PARS

P-gp

TGF-β

thymidine kinase

thymidylate synthase

Glossary

REPORTER GENE

Use of a reporter gene enables monitoring of the level of expression of a particular gene by producing a measurable product whenever the gene of interest is transcribed. The reporter gene is placed either within or near to the gene of interest under the control of a promoter that requires the presence of the product of the gene of interest to activate the expression of the reporter gene.

AREA UNDER THE CURVE (AUC)

This is the mathematical integration of the area under a curve. If the curve is for drug concentration against time it reflects drug exposure. If the curve is for a positron-emission tomography (PET) probe standardized-uptake value against time it reflects tissue exposure to the radiolabel in the PET probe (this can include the parent compound and its metabolites).

CYCLOTRON

Particle accelerator in which a magnetic field causes particles to orbit in circles and an oscillating electric field accelerates the particles. The particles collide with a target, so transforming the atoms in the target into radioactive, unstable isotopes.

MULTIDRUG-RESISTANCE PHENOTYPE

The insensitivity of various tumours to a range of chemically unrelated anticancer drugs; it is mediated by a process of inactivating the drug or removing it from the target tumour cells.

Rights and permissions

Reprints and permissions

About this article

Cite this article

West, C., Jones, T. & Price, P. The potential of positron-emission tomography to study anticancer-drug resistance. Nat Rev Cancer 4, 457–469 (2004). https://doi.org/10.1038/nrc1368

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc1368

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing