Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

One-step 18F-labeling of peptides for positron emission tomography imaging using the SiFA methodology

This article has been updated

Abstract

Here we present a procedure to label peptides with the positron-emitting radioisotope fluorine-18 (18F) using the silicon-fluoride acceptor (SiFA) labeling methodology. Positron emission tomography (PET) has gained high importance in noninvasive imaging of various diseases over the past decades, and thus new specific imaging probes for PET imaging, especially those labeled with 18F, because of the advantageous properties of this nuclide, are highly sought after. N-terminally SiFA–modified peptides can be labeled with 18F in one step at room temperature (20–25 °C) or below without forming side products, thereby producing satisfactory radiochemical yields of 46 ± 1.5% (n = 10). The degree of chemoselectivity of the 18F-introduction, which is based on simple isotopic exchange, allows for a facile cartridge-based purification fully devoid of HPLC implementation, thereby yielding peptides with specific activities between 44.4 and 62.9 GBq μmol−1 (1,200–1,700 Ci mmol−1) within 25 min.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: 18F-Labeling of peptides using SiFA.
Figure 2: Influence of the amount of oxalic acid on the radiochemical yield of peptide labeling with 18F (labeled peptide = SiFA-Aoa-Tyr3-TATE).
Figure 3: 18F-Labeling of SiFA-Aoa-Asn(AcNH-β-Glc)-(Asp)2-PEG-Tyr3-octreotate.
Figure 4: HPLC chromatogram of SPE-purified [18F]SiFA-Aoa-Asn(AcNH-β-Glc)-(Asp)2-PEG-Tyr3-octreotate ([18F]5).

Similar content being viewed by others

Change history

  • 23 October 2012

     In the version of this article initially published online, Katy Orchowski's name was spelled incorrectly. The surname Orchovski has been corrected to read Orchowski. The error has been corrected in all versions of this article.

References

  1. Schirrmacher, R. et al. F-18-labeling of peptides by means of an organosilicon-based fluoride acceptor. Angew. Chem. Int. Ed. Engl. 45, 6047–6050 (2006).

    Article  CAS  PubMed  Google Scholar 

  2. Wängler, C. et al. Silicon-[18F]fluorine radiochemistry: basics, applications and challenges. Appl. Sci. 2, 277–302 (2012).

    Article  Google Scholar 

  3. Wängler, B. et al. Protein labeling with the labeling precursor [18F]SiFA-SH for positron emission tomography. Nat. Protoc. 7, 1964–1969 (2012).

    Article  PubMed  Google Scholar 

  4. Wängler, C. et al. One-step (18)F-labeling of carbohydrate-conjugated octreotate-derivatives containing a silicon-fluoride-acceptor (SiFA): in vitro and in vivo evaluation as tumor imaging agents for positron emission tomography (PET). Bioconjug. Chem. 21, 2289–2296 (2010).

    Article  PubMed  Google Scholar 

  5. Iovkova-Berends, L. et al. t-Bu(2)SiF-derivatized D(2)-receptor ligands: the first SiFA-containing small molecule radiotracers for target-specific PET-imaging. Molecules 16, 7458–7479 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Iovkova, L. et al. Para-functionalized aryl-di-tert-butylfluorosilanes as potential labeling synthons for F-18 radiopharmaceuticals. Chemistry 15, 2140–2147 (2009).

    Article  CAS  PubMed  Google Scholar 

  7. Kostikov, A.P. et al. N-(4-(Di-tert-butyl[(18)F]fluorosilyl)benzyl)-2-hydroxy-N,N-dimethylethylammonium bromide ([(18)F]SiFAN(+)Br(−)): a novel lead compound for the development of hydrophilic SiFA-based prosthetic groups for (18)F-labeling. J. Fluorine Chem. 132, 27–34 (2011).

    Article  CAS  Google Scholar 

  8. Schirrmacher, E. et al. Synthesis of p-(di-tert-butyl[(18)f]fluorosilyl)benzaldehyde ([F-18]SiFA-A) with high specific activity by isotopic exchange: a convenient Labeling synthon for the F-18-labeling of n-amino-oxy derivatized peptides. Bioconjug. Chem. 18, 2085–2089 (2007).

    Article  CAS  PubMed  Google Scholar 

  9. Kostikov, A.P. et al. Synthesis of [18F]SiFB: a prosthetic group for direct protein radiolabeling for application in positron emission tomography. Nat. Protoc. 7, 1956–1963 (2012).

    Article  CAS  PubMed  Google Scholar 

  10. Mu, L.J. et al. Silicon-based building blocks for one-step (18)F-radiolabeling of peptides for PET imaging. Angew. Chem. Int. Engl. 47, 4922–4925 (2008).

    Article  CAS  Google Scholar 

  11. Höhne, A. et al. Organofluorosilanes as model compounds for F-18-labeled silicon-based PET tracers and their hydrolytic stability: experimental data and theoretical calculations (PET = positron emission tomography). Chemistry 15, 3736–3743 (2009).

    Article  PubMed  Google Scholar 

  12. Höhne, A. et al. Synthesis, F-18-labeling, and in vitro and in vivo studies of bombesin peptides modified with silicon-based building blocks. Bioconjug. Chem. 19, 1871–1879 (2008).

    Article  PubMed  Google Scholar 

  13. Balentova, E. et al. Synthesis and hydrolytic stability of novel 3-[(18)F]fluoroethoxybis (1-methylethyl)silyl]propanamine-based prosthetic groups. J. Fluorine Chem. 132, 250–257 (2011).

    Article  CAS  Google Scholar 

  14. Wessmann, S.H., Henriksen, G. & Wester, H.J. Cryptate mediated nucleophilic F-18-fluorination without azeotropic drying. Nuklearmedizin 51, 1–8 (2012).

    CAS  PubMed  Google Scholar 

  15. Gill, H.S. & Marik, J. Preparation of F-18-labeled peptides using the copper(I)-catalyzed azide-alkyne 1,3-dipolar cycloaddition. Nat. Protoc. 6, 1718–1725 (2011).

    Article  CAS  PubMed  Google Scholar 

  16. Marik, J. & Sutcliffe, J.L. Click for PET: rapid preparation of [F-18]fluoropeptides using Cu-I catalyzed 1,3-dipolar cycloaddition. Tetrahedron Lett. 47, 6681–6684 (2006).

    Article  CAS  Google Scholar 

  17. Glaser, M. & Arstad, E. 'Click labeling' with 2-[F-18]fluoroethylazide for positron emission tomography. Bioconjug. Chem. 18, 989–993 (2007).

    Article  CAS  PubMed  Google Scholar 

  18. Tietze, L.F. & Schmuck, K. SiFA azide: a new building block for PET imaging using click chemistry. Synlett 1697–1700 (2011).

  19. Maschauer, S. et al. Labeling and glycosylation of peptides using click chemistry: a general approach to (18)F-glycopeptides as effective imaging probes for positron emission tomography. Angew. Chem. Int. Engl. 49, 976–979 (2010).

    Article  CAS  Google Scholar 

  20. Ramenda, T., Kniess, T., Bergmann, R., Steinbach, J. & Wuest, F. Radiolabelling of proteins with fluorine-18 via click chemistry. Chem. Commun. 7521–7523 (2009).

  21. Gill, H.S. et al. A modular platform for the rapid site-specific radiolabeling of proteins with F-18 exemplified by quantitative positron emission tomography of human epidermal growth factor receptor 2. J. Med. Chem. 52, 5816–5825 (2009).

    Article  CAS  PubMed  Google Scholar 

  22. Roehn, U. et al. Nucleophilic ring-opening of activated aziridines: a one-step method for labeling biomolecules with fluorine-18. J. Fluorine Chem. 130, 902–912 (2009).

    Article  CAS  Google Scholar 

  23. Becaud, J. et al. Direct one-step(18)F-labeling of peptides via nucleophilic aromatic substitution. Bioconjug. Chem. 20, 2254–2261 (2009).

    Article  CAS  PubMed  Google Scholar 

  24. Jacobson, O. et al. Rapid and simple one-step F-18 labeling of peptides. Bioconjug. Chem. 22, 422–428 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Olberg, D.E. et al. One step radiosynthesis of 6-[F-18]fluoronicotinic acid 2,3,5,6-tetrafluorophenyl ester ([F-18]F-Py-TFP): a new prosthetic group for efficient labeling of biomolecules with fluorine-18. J. Med. Chem. 53, 1732–1740 (2010).

    Article  CAS  PubMed  Google Scholar 

  26. Vaidyanathan, G. & Zalutsky, M.R. Improved synthesis of N-succinimidyl 4-[F-18]fluorobenzoate and its application to the labeling of a monoclonal-antibody fragment. Bioconjug. Chem. 5, 352–356 (1994).

    Article  CAS  PubMed  Google Scholar 

  27. Wester, H.J., Hamacher, K. & Stocklin, G. A comparative study of NCA fluorine-18 labeling of proteins via acylation and photochemical conjugation. Nucl. Med. Biol. 23, 365–372 (1996).

    Article  CAS  PubMed  Google Scholar 

  28. Wuest, F., Kohler, L., Berndt, M. & Pietzsch, J. Systematic comparison of two novel, thiol-reactive prosthetic groups for F-18 labeling of peptides and proteins with the acylation agent succinimidyl-4-[F-18]fluorobenzoate ([F-18]SFB). Amino Acids 36, 283–295 (2009).

    Article  CAS  PubMed  Google Scholar 

  29. Glaser, M. et al. Methods for F-18-labeling of RGD peptides: comparison of aminooxy [F-18]fluorobenzaldehyde condensation with 'click labeling' using 2-[F-18]fluoroethylazide, and S-alkylation with [F-18]fluoropropanethiol. Amino Acids 37, 717–724 (2009).

    Article  CAS  PubMed  Google Scholar 

  30. Berndt, M., Pietzsch, J. & Wuest, F. Labeling of low-density lipoproteins using the F-18-labeled thiol-reactive N-[6-(4-[F-18]fluorobenzylidene)aminooxyhexyl]maleimide. Nucl. Med. Biol. 34, 5–15 (2007).

    Article  CAS  PubMed  Google Scholar 

  31. Cai, W.B., Zhang, X.Z., Wu, Y. & Chen, X. A thiol-reactive F-18-labeling agent, N-[2-(4-F-18-fluorobenzamido)ethyl]maleimide, and synthesis of RGD peptide-based tracer for PET imaging of α(v)β(3) integrin expression. J. Nucl. Med. 47, 1172–1180 (2006).

    CAS  PubMed  Google Scholar 

  32. Poethko, T. et al. Two-step methodology for high-yield routine radiohalogenation of peptides: F-18-labeled RGD and octreotide analogs. J. Nucl. Med. 45, 892–902 (2004).

    CAS  PubMed  Google Scholar 

  33. Inkster, J.A.H., Guerin, B., Ruth, T.J. & Adam, M.J. Radiosynthesis and bioconjugation of [F-18]FPy5yne, a prosthetic group for the F-18 labeling of bioactive peptides. J. Labelled Compd. Radpharm. 51, 444–452 (2008).

    Article  CAS  Google Scholar 

  34. Namavari, M. et al. A novel method for direct site-specific radiolabeling of peptides using [F-18]FDG. Bioconjug. Chem. 20, 432–436 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Bruus-Jensen, K. et al. Chemoselective hydrazone formation between HYNIC-functionalized peptides and F-18-fluorinated aldehydes. Nucl. Med. Biol. 33, 173–183 (2006).

    Article  CAS  PubMed  Google Scholar 

  36. Arumugam, S., Chin, J., Schirrmacher, R., Popik, V.V. & Kostikov, A.P. [F-18] Azadibenzocyclooctyne ([F-18]ADIBO): a biocompatible radioactive labeling synthon for peptides using catalyst free [3+2] cycloaddition. Bioorg. Med. Chem. Lett. 21, 6987–6991 (2011).

    Article  CAS  PubMed  Google Scholar 

  37. Sutcliffe-Goulden, J.L., O'Doherty, M.J. & Bansal, S.S. Solid phase synthesis of [F-18]labelled peptides for positron emission tomography. Bioorg. Med. Chem. Lett. 10, 1501–1503 (2000).

    Article  CAS  PubMed  Google Scholar 

  38. Sutcliffe-Goulden, J.L. et al. Rapid solid phase synthesis and biodistribution of F-18-labelled linear peptides. Eur. J. Nucl. Med. Mol. Imaging 29, 754–759 (2002).

    Article  CAS  PubMed  Google Scholar 

  39. Marik, J., Hausner, S.H., Fix, L.A., Gagnon, M.K.J. & Sutcliffe, J.L. Solid-phase synthesis of 2-[F-18]fluoropropionyl peptides. Bioconjug. Chem. 17, 1017–1021 (2006).

    Article  CAS  PubMed  Google Scholar 

  40. Cai, L.S., Lu, S.Y. & Pike, V.W. Chemistry with [F-18]fluoride ion. Eur. J. Org. Chem. 2008, 2853–2873 (2008).

    Article  Google Scholar 

  41. Smith, G.E., Sladen, H.L., Biagini, S.C.G. & Blower, P.J. Inorganic approaches for radiolabelling biomolecules with fluorine-18 for imaging with positron emission tomography. Dalton Trans. 40, 6196–6205 (2011).

    Article  CAS  PubMed  Google Scholar 

  42. Mu, L., Schubiger, A.P. & Ametamey, S.M. [18F]Fluorosilicon- and [18F]fluoroboron-based biomolecules for PET imaging. Curr. Radiopharm. 3, 224–242 (2010).

    Article  CAS  Google Scholar 

  43. Mamat, C., Ramenda, T. & Wuest, F.R. Recent applications of click chemistry for the synthesis of radiotracers for molecular imaging. Mini Rev. Org. Chem. 6, 21–34 (2009).

    Article  CAS  Google Scholar 

  44. Wängler, C., Schirrmacher, R., Bartenstein, P. & Wängler, B. Click-chemistry reactions in radiopharmaceutical chemistry: fast and easy introduction of radiolabels into biomolecules for in vivo imaging. Curr. Med. Chem. 17, 1092–1116 (2010).

    Article  PubMed  Google Scholar 

  45. Glaser, M. & Robins, E.G. 'Click labelling' in PET radiochemistry. J. Labelled Compd. Radpharm. 52, 407–414 (2009).

    Article  CAS  Google Scholar 

  46. Ting, R., Adam, M.J., Ruth, T.J. & Perrin, D.M. Arylfluoroborates and alkylfluorosilicates as potential PET imaging agents: High-yielding aqueous biomolecular F-18-labeling. J. Am. Chem. Soc. 127, 13094–13095 (2005).

    Article  CAS  PubMed  Google Scholar 

  47. Li, Y. et al. Towards kit-like F-18-labeling of marimastat, a noncovalent inhibitor drug for in vivo PET imaging cancer associated matrix metalloproteases. Medchemcomm 2, 942–949 (2011).

    Article  CAS  Google Scholar 

  48. Ting, R. et al. Toward [(18)F]-labeled aryltrifluoroborate radiotracers: in vivo positron emission tomography imaging of stable aryltrifluoroborate clearance in mice. J. Am. Chem. Soc. 130, 12045–12055 (2008).

    Article  CAS  PubMed  Google Scholar 

  49. McBride, W.J. et al. A novel method of (18)F radiolabeling for PET. J. Nucl. Med. 50, 991–998 (2009).

    Article  CAS  PubMed  Google Scholar 

  50. McBride, W.J. et al. Improved (18)F labeling of peptides with a fluoride-aluminum-chelate complex. Bioconjug. Chem. 21, 1331–1340 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. McBride, W.J., D'Souza, C.A., Karacay, H., Sharkey, R.M. & Goldenberg, D.M. New lyophilized kit for rapid radiofluorination of peptides. Bioconjug. Chem. 2012, 538 (2012).

    Article  Google Scholar 

  52. D'Souza, C.A., McBride, W.J., Sharkey, R.M., Todaro, L.J. & Goldenberg, D.M. High-yielding aqueous (18)F-labeling of peptides via Al(18)F chelation. Bioconjug. Chem. 22, 1793–1803 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Hamacher, K., Coenen, H.H. & Stocklin, G. Efficient stereospecific synthesis of no-carrier-added 2-[F-18]-fluoro-2-deoxy-D-glucose using aminopolyether supported nucleophilic-substitution. J. Nucl. Med. 27, 235–238 (1986).

    CAS  PubMed  Google Scholar 

  54. Wellings, D.A. & Atherton, E. Standard Fmoc protocols. Methods Enzymol. 289, 44–67 (1997).

    Article  CAS  PubMed  Google Scholar 

  55. Patgiri, A., Menzenski, M.Z., Mahon, A.B. & Arora, P.S. Solid-phase synthesis of short α-helices stabilized by the hydrogen bond surrogate approach. Nat. Protoc. 5, 1857–1865 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank the cyclotron crew of the McConnell Brain Imaging Centre for providing fluorine-18. The financial support of the following grant agencies is gratefully acknowledged: Canada Foundation for Innovation (CFI) project no. 203639 to R.S., Natural Sciences and Engineering Research Council of Canada (NSERC) Strategic Project Grant Program (STPGP) no. 412893 to R.S., Bayern-Quebec-Allianz to S.N., Deutsche Forschungsgemeinschaft (DFG) grant no. WA 2132/3-1 to B.W., and Fonds der Chemischen Industrie to C.W.

Author information

Authors and Affiliations

Authors

Contributions

A.P.K., S.N., J.C., K.O., E.S., L.I.-B., K.J. and C.W. performed the experimental work. C.W., B.W. and R.S. wrote the manuscript.

Corresponding authors

Correspondence to Carmen Wängler or Björn Wängler.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Video 1

18F-labeling of peptides and proteins using the SiFA protocol, Part 1 (AVI 29017 kb)

Supplementary Video 2

18F-labeling of peptides and proteins using the SiFA protocol, Part 2 (AVI 32890 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wängler, C., Niedermoser, S., Chin, J. et al. One-step 18F-labeling of peptides for positron emission tomography imaging using the SiFA methodology. Nat Protoc 7, 1946–1955 (2012). https://doi.org/10.1038/nprot.2012.109

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2012.109

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing