Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Multifunctional ligands based on dihydrolipoic acid and polyethylene glycol to promote biocompatibility of quantum dots

Abstract

One of the common strategies to promote the transfer of quantum dots (QDs) to buffer media and to couple them to biological molecules has relied on cap exchange. We have shown previously that dihydrolipoic acid (DHLA) and polyethylene glycol (PEG)-appended DHLA can effectively replace the native ligands on CdSe-ZnS QDs. Here we explain in detail the synthesis of a series of modular ligands made of the DHLA-PEG motif appended with terminal functional groups. This design allows easy coupling of biomolecules and dyes to the QDs. The ligands are modular and each is comprised of three units: a potential biological functional group (biotin, carboxylic acid and amine) and a DHLA appended at the ends of a short PEG chain, where PEG promotes water solubility and DHLA provides anchoring onto the QD. The resulting QDs are stable over a broad pH range and accessible to simple bioconjugation techniques, such as avidin–biotin binding.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Modular design of hydrophilic ligands with terminal functional groups used in this study.
Figure 2: Chemical structures and synthetic routes of the surface ligands used in this study.
Figure 3: FT-IR spectra for ligands produced in this study.
Figure 4: Surface-binding assays of biotin-modified QDs to NeutrAvidin-functionalized surfaces.
Figure 5: Absorption and emission spectra of EDC-coupled QD-dye conjugates.

Similar content being viewed by others

References

  1. Murray, C.B., Kagan, C.R. & Bawendi, M.G. Synthesis and characterization of monodisperse nanocrystals and close-packed nanocrystal assemblies. Annu. Rev. Mater. Sci. 30, 545–610 (2000).

    Article  CAS  Google Scholar 

  2. Michalet, X. et al. Quantum dots for live cells, in vivo imaging, and diagnostics. Science 307, 538–544 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Medintz, I.L., Uyeda, H.T., Goldman, E.R. & Mattoussi, H. Quantum dot bioconjugates for imaging, labelling and sensing. Nat. Mater. 4, 435–446 (2005).

    Article  CAS  PubMed  Google Scholar 

  4. Hermanson, G.T. Bioconjugate Techniques (Academic Press, San Diego, 2008).

    Google Scholar 

  5. Murray, C.B., Norris, D.J. & Bawendi, M.G. Synthesis and characterization of nearly monodisperse CdE (E=S, Se, Te) semiconductor nanocrystallites. J. Am. Chem. Soc. 115, 8706–8715 (1993).

    Article  CAS  Google Scholar 

  6. Peng, Z.A. & Peng, X. Formation of high-quality CdTe, CdSe, and CdS nanocrystals using CdO as precursor. J. Am. Chem. Soc. 123, 183–184 (2001).

    Article  CAS  PubMed  Google Scholar 

  7. Bruchez, M. Jr., Moronne, M., Gin, P., Weiss, S. & Alivisatos, A.P. Semiconductor nanocrystals as fluorescent biological labels. Science 281, 2013–2016 (1998).

    Article  CAS  PubMed  Google Scholar 

  8. Gerion, D. et al. Synthesis and properties of biocompatible water-soluble silica-coated CdSe/ZnS semiconductor quantum dots. J. Phys. Chem. B 105, 8861–8871 (2001).

    Article  CAS  Google Scholar 

  9. Wu, X. et al. Immunofluorescent labeling of cancer marker Her2 and other cellular targets with semiconductor quantum dots. Nature Biotechnol. 21, 41–46 (2003).

    Article  CAS  Google Scholar 

  10. Yu, W.W. et al. Forming biocompatible and nonaggregated nanocrystals in water using amphiphilic polymers. J. Am. Chem. Soc. 129, 2871–2879 (2007).

    Article  CAS  PubMed  Google Scholar 

  11. Dubertret, B. et al. In vivo imaging of quantum dots encapsulated in phospholipid micelles. Science 298, 1759–1762 (2002).

    Article  CAS  PubMed  Google Scholar 

  12. Mattoussi, H. et al. Self-assembly of CdSe–ZnS quantum dot bioconjugates using an engineered recombinant protein. J. Am. Chem. Soc. 122, 12142–12150 (2000).

    Article  CAS  Google Scholar 

  13. Wang, Y.A., Li, J.J., Chen, H. & Peng, X. Stabilization of inorganic nanocrystals by organic dendrons. J. Am. Chem. Soc. 124, 2293–2298 (2002).

    Article  CAS  PubMed  Google Scholar 

  14. Pons, T., Uyeda, H.T., Medintz, I.L. & Mattoussi, H. Hydrodynamic dimensions, electrophoretic mobility, and stability of hydrophilic quantum dots. J. Phys. Chem. B 110, 20308–20316 (2006).

    Article  CAS  PubMed  Google Scholar 

  15. Choi, H.S. et al. Renal clearance of quantum dots. Nat. Biotechnol. 25, 1165–1170 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Clapp, A.R. et al. Fluorescence resonance energy transfer between quantum dot donors and dye-labeled protein acceptors. J. Am. Chem. Soc. 126, 301–310 (2004).

    Article  CAS  PubMed  Google Scholar 

  17. Clapp, A.R., Medintz, I.L. & Mattoussi, H. Förster resonance energy transfer investigations using quantum-dot fluorophores. Chem. Phys. Chem. 7, 47–57 (2006).

    Article  CAS  PubMed  Google Scholar 

  18. Uyeda, H.T., Medintz, I.L., Jaiswal, J.K., Simon, S.M. & Mattoussi, H. Synthesis of compact mutidentate ligands to prepare stable hydrophilic quantum dot fluorophores. J. Am. Chem. Soc. 127, 3870–3878 (2005).

    Article  CAS  PubMed  Google Scholar 

  19. Mei, B.C. et al. Modular poly(ethylene glycol) ligands for biocompatible semiconductor and gold nanocrystals with extended pH and ionic stability. J. Mater. Chem. 18, 4949–4958 (2008).

    Article  CAS  Google Scholar 

  20. Susumu, K. et al. Enhancing the stability and biological functionalities of quantum dots via compact multifunctional ligands. J. Am. Chem. Soc. 129, 13987–13996 (2007).

    Article  CAS  PubMed  Google Scholar 

  21. Hines, M.A. & Guyot-Sionnest, P. Synthesis and characterization of strongly luminescing ZnS-Capped CdSe nanocrystals. J. Phys. Chem. 100, 468–471 (1996).

    Article  CAS  Google Scholar 

  22. Dabbousi, B.O. et al. (CdSe)ZnS Core-Shell quantum dots: synthesis and characterization of a size series of highly luminescent nanocrystallites. J. Phys. Chem. B 101, 9463–9475 (1997).

    Article  CAS  Google Scholar 

  23. Reiss, P., Bleuse, J. & Pron, A. Highly luminescent CdSe/ZnSe core/shell nanocrystals of low size dispersion. Nano Lett. 2, 781–784 (2002).

    Article  CAS  Google Scholar 

  24. Clapp, A.R., Goldman, E.R. & Mattoussi, H. Capping of CdSe-ZnS quantum dots with DHLA and subsequent conjugation with proteins. Nat. Protoc. 1, 1258–1267 (2006).

    Article  CAS  PubMed  Google Scholar 

  25. Leatherdale, C.A., Woo, W.-K., Mikulec, F.V. & Bawendi, M.G. On the absorption cross section of CdSe nanocrystal quantum dots. J. Phys. Chem. B 106, 7619–7622 (2002).

    Article  CAS  Google Scholar 

  26. Sapsford, K.E. et al. Surface-immobilized self-assembled protein-based quantum dot nanoassemblies. Langmuir 20, 7720–7728 (2004).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We acknowledge NRL, Office of Naval Research (ONR) and the Army Research Office for financial support. We thank Drs Horn-Bond Lin and Igor Medintz for assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hedi Mattoussi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Susumu, K., Mei, B. & Mattoussi, H. Multifunctional ligands based on dihydrolipoic acid and polyethylene glycol to promote biocompatibility of quantum dots. Nat Protoc 4, 424–436 (2009). https://doi.org/10.1038/nprot.2008.247

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2008.247

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing