Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

PET imaging of herpes simplex virus type 1 thymidine kinase (HSV1-tk) or mutant HSV1-sr39tk reporter gene expression in mice and humans using [18F]FHBG

Abstract

The herpes simplex virus type 1 thymidine kinase (HSV1-tk) positron emission tomography (PET) reporter gene (PRG) or its mutant HSV1-sr39tk are used to investigate intracellular molecular events in cultured cells and to image intracellular molecular events and cell trafficking in living subjects. The expression of these PRGs can be imaged using 18F- or 124I-radiolabeled acycloguanosine or pyrimidine analog PET reporter probes (PRPs). This protocol describes the procedures for imaging HSV1-tk or HSV1-sr39tk PRG expression in living subjects with the acycloguanosine analog 9-4-[18F]fluoro-3-(hydroxymethyl)butyl]guanine ([18F]FHBG). [18F]FHBG is a high-affinity substrate for the HSV1-sr39TK enzyme with relatively low affinity for mammalian TK enzymes, resulting in improved detection sensitivity. Furthermore, [18F]FHBG is approved by the US Food and Drug Administration as an investigational new imaging agent and has been shown to detect HSV1-tk transgene expression in the liver tumors of patients. MicroPET imaging of each small animal can be completed in approximately 1.5 h, and each patient imaging session takes approximately 3 h.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structure of positron emission tomography (PET) reporter probes (PRPs) for imaging herpes simplex virus type 1 thymidine kinase (HSV1-tk) or HSV1-sr39tk expression in living subjects.
Figure 2: Pictures of micro positron emission tomography (PET) scanners manufactured by (a) GE Healthcare and (b) Concorde Microsystems.
Figure 3
Figure 4: Whole-body coronal images of [18F]FHBG biodistribution in a healthy human subject at four time periods after 4.53 mCi i.v. injection of the positron emission tomography (PET) tracer.

Similar content being viewed by others

References

  1. Yaghoubi, S.S. & Gambhir., S.S. Measuring herpes simplex virus thymidine kinase reporter gene expression in vitro. Nat. Protocols. 1, 2137–2142 (2006).

    Article  CAS  Google Scholar 

  2. Saito, Y. et al. Quantitative autoradiographic mapping of herpes simplex virus encephalitis with radiolabeled antiviral drug. Science 217, 1151–1153 (1982).

    Article  CAS  Google Scholar 

  3. Tjuvajev, J.G. et al. Noninvasive imaging of herpes virus thymidine kinase gene transfer and expression: a potential method for monitoring clinical gene therapy. Cancer Res. 56, 4087–4095 (1996).

    CAS  PubMed  Google Scholar 

  4. Gambhir, S.S. et al. Imaging of adenoviral-directed herpes simplex virus type 1 thymidine kinase reporter gene expression in mice with radiolabeled ganciclovir. J. Nucl. Med. 39, 2003–2011 (1998).

    CAS  PubMed  Google Scholar 

  5. Ponomarev, V. et al. A novel triple-modality reporter gene for whole-body fluorescent, bioluminescent, and nuclear noninvasive imaging. Eur. J. Nucl. Med. Mol. Imaging 31, 740–751 (2004).

    Article  CAS  Google Scholar 

  6. Jacobs, A. et al. Positron-emission tomography of vector-mediated gene expression in gene therapy for gliomas. Lancet 358, 727–729 (2001).

    Article  CAS  Google Scholar 

  7. Jacobs, A. et al. Positron emission tomography-based imaging of transgene expression mediated by replication-conditional, oncolytic herpes simplex virus type 1 mutant vectors in vivo. Cancer Res. 61, 2983–2995 (2001).

    CAS  PubMed  Google Scholar 

  8. Gambhir, S.S. et al. Imaging adenoviral-directed reporter gene expression in living animals with positron emission tomography. Proc. Natl. Acad. Sci. USA 96, 2333–2338 (1999).

    Article  CAS  Google Scholar 

  9. Iyer, M. et al. 8-[18F]fluoropenciclovir: an improved reporter probe for imaging HSV1-tk reporter gene expression in vivo using PET. J. Nucl. Med. 42, 96–105 (2001).

    CAS  PubMed  Google Scholar 

  10. Gambhir, S.S. et al. A Mutant herpes simplex virus type 1 thymidine kinase reporter gene shows improved sensitivity for imaging reporter gene expression with positron emission tomography. Proc. Natl. Acad. Sci. USA 97, 2785–2790 (2000).

    Article  CAS  Google Scholar 

  11. Gambhir, S.S. et al. Imaging transgene expression with radionuclide imaging technologies. Neoplasia 2, 118–138 (2000).

    Article  CAS  Google Scholar 

  12. Alauddin, M.M. & Conti, P.S. Synthesis and preliminary evaluation of 9-(4-[18F]-fluoro-3-hydroxymethylbutyl)guanine ([18F]FHBG): a new potential imaging agent for viral infection and gene therapy using PET. Nucl. Med. Biol. 25, 175–180 (1998).

    Article  CAS  Google Scholar 

  13. Alauddin, M.M., Shahinian, A., Gordon, E.M., Bading, J.R. & Conti, P.S. Preclinical evaluation of the penciclovir analog 9-(4-[18F]fluoro-3-hydroxymethylbutyl)guanine for in vivo measurement of suicide gene expression with PET. J. Nucl. Med. 42, 1682–1690 (2001).

    CAS  PubMed  Google Scholar 

  14. Black, M.E., Kokoris, M.S. & Sabo, P. Herpes simplex virus-1 thymidine kinase mutants created by semi-random sequence mutagenesis improve prodrug-mediated tumor cell killing. Cancer Res. 61, 3022–3026 (2001).

    CAS  PubMed  Google Scholar 

  15. Black, M.E., Newcomb, T.G., Wilson, H.M. & Loeb, L.A. Creation of drug-specific herpes simplex virus type 1 thymidine kinase mutants for gene therapy. Proc. Natl. Acad. Sci. USA 93, 3525–3529 (1996).

    Article  CAS  Google Scholar 

  16. Min, J.-J., Iyer, M. & Gambhir, S.S. Comparison of [18F]FHBG and [14C]FIAU for imaging of HSV1-tk reporter gene expression: adenoviral infection vs stable transfection. Eur. J. Nucl. Med. Mol. Imaging 30, 1547–1560 (2003).

    Article  CAS  Google Scholar 

  17. Tjuvajev, J.G. et al. Comparison of radiolabeled nucleoside probes (FIAU, FHBG, and FHPG) for PET imaging of HSV1-tk gene expression. J. Nucl. Med. 43, 1072–1083 (2002).

    PubMed  Google Scholar 

  18. Alauddin, M.M., Shahinian, A., Gordon, E.M. & Conti, P.S. Direct comparison of radiolabeled probes FMAU, FHBG, and FHPG as PET imaging agents for HSV1-tk expression in a human breast cancer model. Mol. Imaging 3, 76–84 (2004).

    Article  CAS  Google Scholar 

  19. Buursma, A.R. et al. 18F-FEAU as a radiotracer for herpes simplex virus thymidine kinase gene expression: in-vitro comparison with other PET tracers. Nucl. Med. Commun. 27, 25–30 (2006).

    Article  CAS  Google Scholar 

  20. Yaghoubi, S.S. et al. Human pharmacokinetic and dosimetry studies of [18F]FHBG: a reporter probe for imaging herpes simplex virus type-1 thymidine kinase reporter gene expression. J. Nucl. Med. 42, 1225–1234 (2001).

    CAS  PubMed  Google Scholar 

  21. Yaghoubi, S.S. et al. Preclinical safety evaluation of 18F-FHBG: a PET reporter probe for imaging herpes simplex virus type 1 thymidine kinase (HSV1-tk) or mutant HSV1-sr39tk's expression. J. Nucl. Med. 47, 706–715 (2006).

    CAS  PubMed  Google Scholar 

  22. Yaghoubi, S.S. et al. Imaging progress of herpes simplex virus type 1 thymidine kinase suicide gene therapy in living subjects with positron emission tomography. Cancer Gene Ther. 12, 329–339 (2005).

    Article  CAS  Google Scholar 

  23. Penuelas, I. et al. Positron emission tomography imaging of adenoviral-mediated transgene expression in liver cancer patients. Gastroenterology 128, 1787–1795 (2005).

    Article  CAS  Google Scholar 

  24. Ponde, D.E., Dence, C.S., Schuster, D.P. & Welch, M.J. Rapid and reproducible radiosynthesis of [18F]FHBG. Nucl. Med. Biol. 31, 133–138 (2004).

    Article  CAS  Google Scholar 

  25. Shiue, G.G. et al. A simplified one-pot synthesis of 9-[(3-[18F]fluoro-1-hydroxy-2-propoxy)methyl]guanine ([18F]FHPG) and 9-(4-[18F]fluoro-3-hydroxymethylbutyl)guanine ([18F]FHBG) for gene therapy. Nucl. Med. Biol. 28, 875–883 (2001).

    Article  CAS  Google Scholar 

  26. Penuelas, I. et al. A fully automated one pot synthesis of 9-(4-[18F]fluoro-3-hydroxymethylbutyl)guanine for gene therapy studies. Mol. Imaging Biol. 4, 415–424 (2003).

    Article  Google Scholar 

  27. Hudson, H.M. & Larkin, R.S. Accelerated image reconstruction using ordered subsets of projection data. IEEE Trans. Med. Imaging 13, 601–609 (1994).

    Article  CAS  Google Scholar 

  28. Loening, A.M. & Gambhir, S.S. AMIDE: a free software tool for multimodality medical image analysis. Mol. Imaging 2, 131–137 (2003).

    Article  Google Scholar 

  29. Green, L.A. et al. A tracer kinetic model for 18F-FHBG for quantitating herpes simplex virus type 1 thymidine kinase reporter gene expression in living animals using PET. J. Nucl. Med. 45, 1560–1570 (2004).

    CAS  PubMed  Google Scholar 

  30. Liang, Q. et al. Noninvasive, repetitive, quantitative measurement of gene expression from a bicistronic message by positron emission tomography, following gene transfer with adenovirus. Mol. Ther. 6, 73–82 (2002).

    Article  CAS  Google Scholar 

  31. Yaghoubi, S.S. et al. Direct correlation between positron emission tomographic images of two reporter genes delivered by two distinct adenoviral vectors. Gene Ther. 8, 1072–1080 (2001).

    Article  CAS  Google Scholar 

  32. Sundaresan, G. et al. MicroPET imaging of Cre-loxP-mediated conditional activation of a herpes simplex virus type 1 thymidine kinase reporter gene. Gene Ther. 11, 609–618 (2004).

    Article  CAS  Google Scholar 

  33. De, A., Lewis, X.Z. & Gambhir, S.S. Noninvasive imaging of lentiviral-mediated reporter gene expression in living mice. Mol. Ther. 7, 681–691 (2003).

    Article  CAS  Google Scholar 

  34. Ray, P., De, A., Min, J.J., Tsien, R.Y. & Gambhir, S.S. Imaging tri-fusion multimodality reporter gene expression in living subjects. Cancer Res. 64, 1323–1330 (2004).

    Article  CAS  Google Scholar 

  35. Pantuck, A.J. et al. Optimizing prostate cancer suicide gene therapy using herpes simplex virus thymidine kinase active site variants. Hum. Gene Ther. 13, 777–789 (2002).

    Article  CAS  Google Scholar 

  36. Pantuck, A.J. et al. CL1-SR39: a noninvasive molecular imaging model of prostate cancer suicide gene therapy using positron emission tomography. J. Urol. 168, 1193–1198 (2002).

    Article  CAS  Google Scholar 

  37. Sun, X. et al. Quantitative imaging of gene induction in living animals. Gene Ther. 8, 1572–1579 (2001).

    Article  CAS  Google Scholar 

  38. Yu, Y. et al. Quantification of target gene expression by imaging reporter gene expression in living animals. Nat. Med. 6, 933–937 (2000).

    Article  CAS  Google Scholar 

  39. Yang, H., Berger, F., Tran, C., Gambhir, S.S. & Sawyers, C.L. MicroPET imaging of prostate cancer in LNCAP-SR39TK-GFP mouse xenografts. Prostate 55, 39–47 (2003).

    Article  Google Scholar 

  40. Wang, Y. et al. Noninvasive monitoring of target gene expression by imaging reporter gene expression in living animals using improved bicistronic vectors. J. Nucl. Med. 46, 667–674 (2005).

    CAS  PubMed  Google Scholar 

  41. Richard, J.-C., Factor, P., Welch, L.C. & Schuster, D.P. Imaging the spatial distribution of transgene expression in the lungs with positron emission tomography. Gene Ther. 10, 2074–2080 (2003).

    Article  CAS  Google Scholar 

  42. Wu, J.C., Inubushi, M., Sundaresan, G., Schelbert, H.R. & Gambhir, S.S. Positron emission tomography imaging of cardiac reporter gene expression in living rats. Circulation 106, 180–183 (2002).

    Article  Google Scholar 

  43. Sen, L. et al. Noninvasive imaging of ex vivo intracoronarily delivered nonviral therapeutic transgene expression in heart. Mol. Ther. 12, 49–57 (2005).

    Article  CAS  Google Scholar 

  44. Kim, Y.J., Dubey, P., Ray, P., Gambhir, S.S. & Witte, O.N. Multimodality imaging of lymphocytic migration using lentiviral-based transduction of a tri-fusion reporter gene. Mol. Imaging Biol. 6, 331–340 (2004).

    Article  Google Scholar 

  45. Dubey, P. et al. Quantitative imaging of T cell antitumor response by positron-emission tomography. Proc. Natl. Acad. Sci. USA 100, 1232–1237 (2003).

    Article  CAS  Google Scholar 

  46. Cao, F. et al. In vivo visualization of embryonic stem cell survival, proliferation, and migration after cardiac delivery. Circulation 113, 1005–1014 (2006).

    Article  Google Scholar 

  47. Penuelas, I., Haberkorn, U., Yaghoubi, S. & Gambhir, S.S. Gene therapy imaging in patients for oncological applications. Eur. J. Nucl. Med. Mol. Imaging 32, S384–S403 (2005).

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the following funding sources: NIH grants NCI ICMIC P50 CA114747, SAIRP R24 CA92865, P50 CA86306, R01 CA82214-01; DOE contract DE-FC03-87ER60615; RSNA Postdoctoral Fellowship in Basic Radiological Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanjiv S Gambhir.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Video

Shown is a mouse microPET dynamic image set taken over the course of 60 min after injection of the tracer [18F]FHBG via tail-vein. The mouse was injected via tail-vein with 1 × 109 plaque forming units of a replication deficient adenovirus carrying the HSV1-sr39tk reporter gene 48 h prior to the small animal PET imaging study. The tracer quickly distributes out of the blood and clears via the renal system into the bladder. Tracer is a so slowly extracted from the blood and is trapped in hepatocytes that express the HSV1-sr39tk reporter gene. Some tracer also clear via the hepatobiliary system into the gastro-intestinal tract. (MPG 1098 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yaghoubi, S., Gambhir, S. PET imaging of herpes simplex virus type 1 thymidine kinase (HSV1-tk) or mutant HSV1-sr39tk reporter gene expression in mice and humans using [18F]FHBG. Nat Protoc 1, 3069–3074 (2006). https://doi.org/10.1038/nprot.2006.459

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2006.459

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing