Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Measuring herpes simplex virus thymidine kinase reporter gene expression in vitro

Abstract

The herpes simplex 1 virus thymidine kinase (HSV1-tk) positron emission tomography (PET) reporter gene (PRG) or its mutant HSV1-sr39tk are used to investigate intracellular molecular events in cultured cells and for imaging intracellular molecular events and cell trafficking in living subjects. Two in vitro methods are available to assay gene expression of HSV1-tk or HSV1-sr39tk in cells or tissues. One method determines the level of HSV1-TK or HSV1-sr39TK enzyme activity in cell or tissue lysates by measuring the amount of the radiolabeled substrates that have been phosphorylated by these enzymes in a fixed amount of cell lysate protein after a fixed incubation time. The other method, called the 'cell-uptake assay', takes into account the natural uptake and efflux characteristics of the radiolabeled substrate by specific cells, in addition to the level of HSV1-TK or HSV1-sr39TK activity. Both of these assays can be used to validate molecular models in cultured cells, prior to studying them in living research subjects. Each of these assays can be completed in one day.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2: Correlation between TK activity in C6 cells and levels of Ad-CMV-HSV1-sr39tk infecting C6 cells.
Figure 3: Cell-uptake studies.

Similar content being viewed by others

References

  1. Massoud, T.F. & Gambhir, S.S. Molecular imaging in living subjects: seeing fundamental biological processes in a new light. Genes Dev. 17, 545–580 (2003).

    Article  CAS  PubMed  Google Scholar 

  2. Sundaresan, G. & Gambhir, S.S. in Brain Mapping. The Methods Edn. 2nd. (eds. Toga, A.W. & Mazziotta, J.C.) 799–818 (Academic Press, San Diego, 2002).

    Google Scholar 

  3. Gambhir, S.S. in Diagnostic Nuclear Medicine (ed. Schiepers, C.) 253–271 (Springer, Berlin Heidelberg, New York, 1999).

    Google Scholar 

  4. Gambhir, S.S., Barrio, J.R., Herschman, H.R. & Phelps, M.E. Assays for noninvasive imaging of reporter gene expression. Nucl. Med. Biol. 26, 481–490 (1999).

    Article  CAS  PubMed  Google Scholar 

  5. Gambhir, S.S. et al. Imaging transgene expression with radionuclide imaging technologies. Neoplasia 2, 118–138 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Dubey, P. et al. Quantitative imaging of T cell antitumor response by positron-emission tomography. Proc. Natl Acad. Sci. USA 100, 1232–1237 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Cao, F. et al. In vivo visualization of embryonic stem cell survival, proliferation, and migration after cardiac delivery. Circulation 113, 1005–1014 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Ray, P. et al. Monitoring gene therapy with reporter gene imaging. Semin. Nucl. Med. 31, 312–320 (2001).

    Article  CAS  PubMed  Google Scholar 

  9. Yaghoubi, S.S. et al. Direct correlation between positron emission tomographic images of two reporter genes delivered by two distinct adenoviral vectors. Gene Ther. 8, 1072–1080 (2001).

    Article  CAS  PubMed  Google Scholar 

  10. Weissleder, R. et al. In vivo magnetic resonance imaging of transgene expression. Nat. Med. 6, 351–354 (2000).

    Article  CAS  PubMed  Google Scholar 

  11. Jacobs, A. et al. Positron emission tomography-based imaging of transgene expression mediated by replication-conditional, oncolytic Herpes Simplex virus type 1 mutant vectors in vivo. Cancer Res. 61, 2983–2995 (2001).

    CAS  PubMed  Google Scholar 

  12. Wang, Y. et al. Noninvasive indirect imaging of vascular endothelial growth factor gene expression using bioluminescence imaging in living transgenic mice. Physiol. Genomics 24, 173–180 (2006).

    Article  PubMed  CAS  Google Scholar 

  13. Doubrovin, M. et al. Imaging transcriptional regulation of p53-dependent genes with positron emission tomography in vivo. Proc. Natl Acad. Sci. USA 98, 9300–9305 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Paulmurugan, R., Massoud, T.F., Huang, J. & Gambhir, S.S. Molecular imaging of drug-modulated protein-protein interactions in living subjects. Cancer Res. 64, 2113–2119 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Luker, G.D. et al. Noninvasive imaging of protein-protein interactions in living animals. Proc. Natl Acad. Sci. USA 99, 6961–6966 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Yaghoubi, S.S. et al. Imaging progress of herpes simplex virus type 1 thymidine kinase suicide gene therapy in living subjects with positron emission tomography. Cancer Gene Ther. 12, 329–339 (2005).

    Article  CAS  PubMed  Google Scholar 

  17. Penuelas, I., Haberkorn, U., Yaghoubi, S. & Gambhir, S. Gene therapy imaging in patients for oncological applications. Eur. J. Nucl. Med. Mol. Imaging 32, S384–S403 (2005).

    Article  PubMed  Google Scholar 

  18. Pantuck, A.J. et al. Optimizing prostate cancer suicide gene therapy using herpes simplex virus thymidine kinase active site variants. Hum. Gene Ther. 13, 777–789 (2002).

    Article  CAS  PubMed  Google Scholar 

  19. Deng, W. et al. Non-invasive in vivo imaging with radiolabelled FIAU for monitoring cancer gene therapy using herpes simplex virus type 1 thymidine kinase and ganciclovir. Eur. J. Nucl. Med. Mol. Imaging 31, 99–109 (2004).

    Article  CAS  PubMed  Google Scholar 

  20. Herschman, H.R. et al. In Vector Targeting for Therapeutic Gene Delivery (eds. Curiel, D.T. & Douglas, J.T.) (Wiley-Liss, New York, NY, 2002).

    Google Scholar 

  21. Bennett, J.J. et al. Positron emission tomography imaging for herpes virus infection: Implications for oncolytic viral treatments of cancer. Nat. Med. 7, 859–863 (2001).

    Article  CAS  PubMed  Google Scholar 

  22. Penuelas, I. et al. Positron emission tomography imaging of adenoviral-mediated transgene expression in liver cancer patients. Gastroenterology 128, 1787–1795 (2005).

    Article  CAS  PubMed  Google Scholar 

  23. Jacobs, A. et al. Positron-emission tomography of vector-mediated gene expression in gene therapy for gliomas. Lancet 358, 727–729 (2001).

    Article  CAS  PubMed  Google Scholar 

  24. MacLaren, D.C. et al. Repetitive, non-invasive imaging of the dopamine D2 receptor as a reporter gene in living animals. Gene Ther. 6, 785–791 (1999).

    Article  CAS  PubMed  Google Scholar 

  25. Gambhir, S.S. et al. Imaging of adenoviral directed herpes simplex virus type 1 thymidine kinase gene expression in mice with ganciclovir. J. Nucl. Med. 39, 2003–2011 (1998).

    CAS  PubMed  Google Scholar 

  26. Groot-Wassink, T. et al. Quantitative imaging of Na/I symporter transgene expression using positron emission tomography in the living animal. Mol. Ther. 9, 436–442 (2004).

    Article  CAS  PubMed  Google Scholar 

  27. Iyer, M. et al. 8-[18F]Fluoropenciclovir: An improved reporter probe for imaging HSV1-tk reporter gene expression in vivo using PET. J. Nucl. Med. 42, 96–105 (2001).

    CAS  PubMed  Google Scholar 

  28. Tjuvajev, J.G. et al. Noninvasive imaging of herpes simplex virus thymidine kinase gene transfer and expression: a potential method for monitoring clinical gene therapy. Cancer Res. 56, 4087–4095 (1996).

    CAS  PubMed  Google Scholar 

  29. Gambhir, S.S. et al. A Mutant herpes simplex virus type 1 thymidine kinase reporter gene shows improved sensitivity for imaging reporter gene expression with positron emission tomography. Proc. Natl Acad. Sci. USA 97, 2785–2790 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Black, M.E., Kokoris, M.S. & Sabo, P. Herpes simplex virus-1 thymidine kinase mutants created by semi-random sequence mutagenesis improve prodrug-mediated tumor cell killing. Cancer Res. 61, 3022–3026 (2001).

    CAS  PubMed  Google Scholar 

  31. Black, M.E., Newcomb, T.G., Wilson, H.M. & Loeb, L.A. Creation of drug-specific herpes simplex virus type 1 thymidine kinase mutants for gene therapy. Proc. Natl Acad. Sci. USA 93, 3525–3529 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Serganova, I. & Blasberg, R. Reporter gene imaging: potential impact on therapy. Nucl. Med. Biol. 32, 763–780 (2005).

    Article  CAS  PubMed  Google Scholar 

  33. Sun, X. et al. Quantitative imaging of gene induction in living animals. Gene Ther. 8, 1572–1579 (2001).

    Article  CAS  PubMed  Google Scholar 

  34. Yu, Y. et al. Quantification of target gene expression by imaging reporter gene expression in living animals. Nat. Med. 6, 933–937 (2000).

    Article  CAS  PubMed  Google Scholar 

  35. Sen, L. et al. Noninvasive imaging of ex vivo intracoronarily delivered nonviral therapeutic transgene expression in heart. Mol. Ther. 12, 49–57 (2005).

    Article  CAS  PubMed  Google Scholar 

  36. Kim, Y.J., Dubey, P., Ray, P., Gambhir, S.S. & Witte, O.N. Multimodality imaging of lymphocytic migration using lentiviral-based transduction of a tri-fusion reporter gene. Mol. Imaging Biol. 6, 331–340 (2004).

    Article  PubMed  Google Scholar 

  37. Su, H., Chang, D.S., Gambhir, S.S. & Braun, J. Monitoring the antitumor response of naive and memory CD8 T cells in RAG1−/− mice by positron-emission tomography. J. Immunol. 176, 4459–4467 (2006).

    Article  CAS  PubMed  Google Scholar 

  38. Lu, Y. et al. Noninvasive imaging of islet grafts using positron-emission tomography. Proc. Natl Acad. Sci. USA 103, 11294–11299 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Kim, S.J., Doudet, D., Ruth, T.J., Gambhir, S.S. & McIntosh, C.H.S. Quantitative in vivo imaging of transplanted islets using micro positron emission tomography scanning. Nat. Med. (in the press).

  40. Green, L.A. et al. Indirect monitoring of endogenous gene expression by positron emission tomography (PET) imaging of reporter gene expression in transgenic mice. Mol Imaging Biol 4, 71–81 (2002).

    Article  PubMed  Google Scholar 

  41. Ponomarev, V. et al. Imaging TCR-dependent NFAT-mediated T-cell activation with positron emission tomography in vivo. Neoplasia 3, 480–488 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Sundaresan, G. et al. MicroPET imaging of Cre-loxP-mediated conditional activation of a herpes simplex virus type 1 thymidine kinase reporter gene. Gene Ther. 11, 609–618 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Gambhir, S.S. et al. Imaging adenoviral-directed reporter gene expression in living animals with positron emission tomography. Proc. Natl Acad. Sci. USA 96, 2333–2338 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Chen, I.Y. et al. Micro-positron emission tomography imaging of cardiac gene expression in rats using bicistronic adenoviral vector-mediated gene delivery. Circulation 109, 1415–1420 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Wang, Y. et al. Noninvasive monitoring of target gene expression by imaging reporter gene expression in living animals using improved bicistronic vectors. J. Nucl. Med. 46, 667–674 (2005).

    CAS  PubMed  Google Scholar 

  46. Iyer, M. et al. Two-step transcriptional amplification as a method for imaging reporter gene expression using weak promoters. Proc. Natl Acad. Sci. USA 98, 14595–14600 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Pantuck, A.J. et al. CL1-SR39: A noninvasive molecular imaging model of prostate cancer suicide gene therapy using positron emission tomography. J. Urol. 168, 1193–1198 (2002).

    Article  CAS  PubMed  Google Scholar 

  48. Padmanabhan, P. et al. Visualization of telomerase reverse transcriptase (hTERT) promoter activity using a trimodality fusion reporter construct. J. Nucl. Med. 47, 270–277 (2006).

    CAS  PubMed  Google Scholar 

  49. Min, J., Iyer, M. & Gambhir, S.S. Comparison of [18F]FHBG and [14C]FIAU for imaging of HSV1-tk reporter gene expression: adenoviral infection vs stable transfection. Eur. J. Nucl. Med. Mol. Imaging 30, 1547–1560 (2003).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to acknowledge the contributions of Meera Iyer, Eileen Bauer and Khoi Nguyen over the past decade to developing protocols for the detection of PET reporter genes in our laboratory. We also acknowledge the following funding sources: NIH grants: NCI ICMIC P50 CA114747, SAIRP R24 CA92865, P50 CA86306, R01 CA82214; DOE contract DE-FC03-87ER60615; RSNA Postdoctoral Fellowship in Basic Radiological Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanjiv S Gambhir.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yaghoubi, S., Gambhir, S. Measuring herpes simplex virus thymidine kinase reporter gene expression in vitro. Nat Protoc 1, 2137–2142 (2006). https://doi.org/10.1038/nprot.2006.334

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2006.334

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing